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1. Introduction

When light travels in a optical fiber, a fraction of its total power is always scattered to other
wavelengths (or polarization) due to material non linearity. Whether that scattering is weak or
strong, desirable or not, depends on the situation. One distinguishes (i) scattering stimulated
by the presence of a seed wave (at another wavelength or polarization), (ii) spontaneous
scattering, and (iii) amplified spontaneous scattering. Stimulated Raman scattering (SRS),
stimulated Brillouin scattering (SBS) and four-wave mixing (FWM) are examples of stimulated
scatterings. Those have been thoroughly studied in the past thirty years and are well
summarized in classic nonlinear fiber optics textbooks, e.g. (Agrawal, 2007). Several chapters
of this book also deal with specific aspects and applications of stimulated scattering. The
present chapter focuses on spontaneous scattering processes, cases (ii) and (iii).
The chapter also concentrates on nonlinear scattering in silica fibers because nowadays those
are the most common and widely used types of fibers. Gas-filled hollow core fibers (Benabid
et al., 2005) and ion doped fibers (Digonnet, 2001) are not considered here, and it is assumed
that the fiber has not been subjected to poling (Bonfrate et al., 1999; Huy et al., 2007; Kazansky
et al., 1997), so that the main non linearity is of third order. In this context the most important
spontaneous nonlinear scattering processes are

1. the spontaneous Raman scattering (RS),

2. the spontaneous Brillouin scattering (BS), and

3. the spontaneous four-photon scattering (FPS).

These phenomena play an important role in many applications of optical fibers. This role can
be positive as in remote optical sensing (Alahbabi et al., 2005a;b; Dakin et al., 1985; Farahani &
Gogolla, 1999; Wait et al., 1997). It can also be detrimental as in fiber optics telecommunication,
where spontaneous nonlinear scattering processes contribute to decrease the signal-to-noise
ratio (SNR) or in supercontinuum generation, where it limits the coherence and stability of the
supercontinuum (Corwin et al., 2003; Dudley et al., 2006). In the emerging field of quantum
photonics, fiber optical photon-pair sources are intrinsically based on the physics of the FPS
(Amans et al., 2005; Brainis, 2009; Brainis et al., 2005), while at the same time RS is the main
factor that limits the SNR (Brainis et al., 2007; Dyer et al., 2008; Fan & Migdall, 2007; Lee et al.,
2006; Li et al., 2004; Lin et al., 2006; 2007; Rarity et al., 2005; Takesue, 2006).
This chapter reviews the physics of spontaneous nonlinear scattering processes in optical
fibers. In Sec. 2, the physical origin of RS, BS and FPS in explained. Because those are pure
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quantum mechanical effects, they cannot be properly described in the framework of classical
nonlinear optics. A quantum mechanical treatment is presented in Sec. 3. Finally, in Sec. 4, the
coupling between different scattering processes in considered.

2. Physics of nonlinear scattering processes in optical fibers

2.1 Raman scattering

Light at frequency ωp traveling in an optical fiber, can excite the fiber molecules from ground
to excited vibrational states. In amorphous silica fiber, vibrational states have energy h̄|Ω|
with |Ω|/(2π) in the 0-40 THz range.These energies (about 0.05 eV) being much smaller than
the photon energy h̄ωp, no direct excitation of the vibrational states is possible. However, the
states can be excited through a second order Raman transition involving a second photon at
frequency ωs and a virtual state as shown in Fig. 1. The spontaneous inelastic scattering that
converts a ωp photon into a ωs = ωp − |Ω| photon and a vibrational excitation at frequency
|Ω| is call a spontaneous Stokes process. If a vibrational state at frequency |Ω| is initially
populated, the complementary process in which a ωp photon is converted into a ωa = ωp +
|Ω| photon is also allowed and called a spontaneous anti-Stokes process, see Fig. 1.

Fig. 1. Spontaneous Stokes and anti-Stokes processes in amorphous silica fibers

Molecular vibrations behave like waves (phonons). The momentum of these vibrational
waves corresponds to the momentum mismatch of the pump and (anti-)Stoke waves and
does not depend on |Ω|. For this reason, Raman scattering has no preferential direction. It
happens in the forward but also in the backward direction. The damping of a phonon wave
depends on the wave number and is stronger for shorter wavelength. In fibers the damping is
very strong because of the amorphous nature of silica. Therefore the molecular vibration can
to a good approximation be considered as local. Yet the small difference in the forward and
backward damping explains that the strengths of Raman scattering in forward and backward
directions is slightly different (Bloembergen & Shen, 1964).
In addition to the Stokes and anti-Stokes processes that convert pump photons to other
wavelengths, Raman scattering can also convert the Stokes and anti-Stokes photons at ωs and
ωa back to the pump mode through reverse Stokes and anti-Stokes scattering. In Sec. 3.1, both
direct and reverse scattering processes are taken into account to derive the basic equations
governing the net energy transfer from the pump to Stokes and anti-Stokes waves. For a
single monochromatic pump wave at ωp the scattered spectral power density S(z, ω) obeys
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Spontaneous Nonlinear Scattering Processes in Silica Optical Fibers 3

the following propagation equation

d

dz
S(z, ω) =

[

S(z, ω)g(ωp, Ω, θ) +
h̄ω

2π
[mth(|Ω|) + ν(Ω)] |g(ωp, Ω, θ)|

]

Pp(z) (1)

where Ω = ωp − ω (positive for a Stokes process and negative for an anti-Stokes ones), ν(Ω)
is the Heaviside step function, and

mth(|Ω|) =
[

exp

(

h̄|Ω|
kBT

)

− 1

]−1

(2)

is the thermal equilibrium expectation value of the number of vibrational excitations at
angular frequency |Ω|. The function g(ωp, Ω, θ) in Eq. (1) is the Raman gain. The Raman
gain measures the scattering strength and is polarization dependent. For a linearly polarized
pump field, the Raman gain is maximal for photon scattered with polarization parallel to the
pump and minimal for photons scattered with polarization orthogonal to the pump (Stolen,
1979):

g(ωp, Ω, θ) = g‖(ωp, Ω) cos2(θ) + g⊥(ωp, Ω) sin2(θ), (3)

where θ is the angle between the linear polarization vectors of pump and scattered photons.
The parallel and orthogonal gains are g‖(ωp, Ω) and g⊥(ωp, Ω) are material properties that
can be measured experimentally. It can be shown (see Sec. 3.1) that the ratio of the Stokes to
anti-Stokes gain corresponding to the same vibrational mode |Ω| is

g(ωp, Ω, θ)

g(ωp,−Ω, θ)
= −n(ωp + |Ω|)

n(ωp − |Ω|

(

ωp − |Ω|
ωp + |Ω|

)3

. (4)

Stokes and anti-Stokes gain have opposite signs: Stokes gain is positive while anti-Stokes gain
is negative.

2.1.1 Spontaneous scattering

With initial condition S(0, ω) = 0, ∀ω �= ωp, Eq. (1) describes both spontaneous Raman
scattering and its subsequent amplification. In the initial propagation stage, the first term in
the square bracket can be neglected. This regime corresponds to pure spontaneous Raman
scattering. The solution of Eq. (1) is

S(L, ω) =
h̄ω

2π
[mth(|Ω|) + ν(Ω)] |g(ωp, Ω, θ)| Pp L, (5)

where L is the propagation length. The strength of the spontaneous Raman parallel and
orthogonal scattering is often measured by the parallel and orthogonal spontaneous Raman
coefficients

R‖,⊥(ωp, Ω, T) =
h̄ωp

2π
[mth(|Ω|) + ν(Ω)] |g‖,⊥(ωp, Ω)|. (6)

Spontaneous Raman scattering has been observed and measured in bulk glass (Hellwarth
et al., 1975; Stolen & Ippen, 1973) and in optical fibers (Stolen et al., 1984; Wardle, 1999).
In optical fiber, the polarization properties are usually more difficult to measure because
standard fibers do not preserve and even scramble polarization. For this reason, the effective
spontaneous Raman coefficient is often taken to be R = (R‖ + R⊥)/2.
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It is interesting to note that the ratio of Stoke to anti-Stokes spectral components only depend
on temperature:

S(L, ωp − |Ω|)
S(L, ωp + |Ω|) =

n(ωp + |Ω|)
n(ωp − |Ω|

(

ωp − |Ω|
ωp + |Ω|

)4

exp

(

h̄|Ω|
kBT

)

. (7)

This is the reason why spontaneous Raman scattering is used for temperature sensing
(Alahbabi et al., 2005a;b; Dakin et al., 1985; Farahani & Gogolla, 1999; Wait et al., 1997).

2.1.2 Amplified spontaneous scattering

According to Eq. (1), the spontaneous scattering regime ends as soon as S(z, ω) becomes

significant compared to h̄ω
2π [mth(|Ω|) + ν(Ω)]. At that point, the scattering becomes

stimulated and the system enters the amplification regime. From Eq. (5), one sees that the
amplification regime is reached when g(ωp, Ω, θ) Pp L ≈ 1. For S(0, ω) = 0, the solution of
Eq. (1) is

S(L, ω) =
h̄ω

2π
[mth(|Ω|) + ν(Ω)]

∣

∣

∣
eg(ωp ,Ω,θ) Pp L − 1

∣

∣

∣
. (8)

Stokes radiation (Ω > 0, g > 0) is grows exponentially while anti-Stokes (Ω > 0, g < 0)

radiation saturates at S(L, ω) = h̄ω
2π mth(|Ω|). When losses are taken into account, the gain

must overcome a threshold value to enter the amplification regime. Since the Raman gain is
frequency dependent, the amplification bandwidth depends on the input power. The effective
amplification threshold is usually considered to be reached when Stokes and pump intensity
have the same value at the output of the fiber (Agrawal, 2007; Smith, 1972).
By measuring the grows of the Stokes wave, one can deduced the Raman gain as a function of
frequency (Mahgerefteh et al., 1996; Stolen et al., 1984). Amplified spontaneous Stokes wave
plays an important role in Raman fiber amplifiers (Aoki, 1988; Mochizuki et al., 1986; Olsson
& Hegarty, 1986).
Fig. 2 shows the typical (forward) Raman gain g‖(ωp, Ω) and the spontaneous Raman

coefficient R‖(ωp, Ω, T) in a silica fiber at λp = 1.5 µm. The parallel Raman gain has a
peak at ΩR = 13.2 THz and a width of about 5 THz. The peak value varies for fiber to
fiber. A typical value is gR = 1.6 W−1 km−1. The orthogonal gain g⊥(ωp, Ω) is about 30
times smaller (Agrawal, 2007; Dougherty et al., 1995; Stolen, 1979). The parallel gain can
be fit using a 10-Lorentzian model, each Lorentzian having three independent parameters :
strength, central frequency, and width (Drummond & Corney, 2001). Note that spontaneous
anti-Stokes scattering can be eliminated by lowering the temperature, while the spontaneous
Stokes coefficient R‖ is at least h̄ωp/(2π)× g‖.

2.2 Brillouin scattering

Brillouin scattering is very similar to Raman scattering in the sense it couples two light modes
to material vibrations. However, in the contrast with Raman scattering which couples light to
molecular vibrations, Brillouin scattering couples light to vibration modes of the fiber itself,
that is sound waves. Therefore the vibrational frequencies involved in Brillouin scattering are
much lower: |Ω|/(2π) is usually in the 10 GHz range. BS is also polarization dependent: as
long as the fiber can be considered as mechanically isotropic, their is no orthogonal BS, that is
g⊥ = 0 (Benedek & Fritsch, 1966; McElhenny et al., 2008; Stolen, 1979). The major difference
between Raman and Brillouin scattering lies in the dispersion relation of acoustics vibrations:

|Ω| = vA |kA|, (9)

28 Recent Progress in Optical Fiber Research
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Fig. 2. (a) Raman gain g‖ in a silica fiber for λp = 1.5 µm and forward propagation. Peak

value: gR = 1.6 W−1 km−1. Peak position: ΩR = 13.2 THz. (b) Spontaneous Raman
coefficient R‖ for λp = 1.5 µm and forward propagation at T = 295 K and 77 K.

where vA = 5.96 km/s in silica fibers and kA is the wave vector of the acoustic wave. Because
of momentum conservation, kA is equal to the wave vector mismatch between pump and
(anti-)Stokes waves: kA = kp − ks,a. Since the energy difference between pump, Stokes

and anti-Stokes waves is very small, |kp| ≈ |ks,a| and |kA|2 ≈ 2|kp|2 [1 − cos(φ)] =

4|kp|2 sin2(φ/2), where φ is the angle between kp and ks,a. Eq. (9) yields

|Ω| = 2 vA |kp| sin2(φ/2) = 4π vA
n(ωp)

λp
sin2(φ/2). (10)

The maximum value of |Ω| occurs for backward propagation (φ = π), while for forward
propagation of (anti-)Stokes waves (φ = 0), |Ω| = 0. Therefore, forward Brillouin scattering
is not observed. In the backward direction the Brillouin gain as a peak is at ΩR/(2π) = 11.1
GHz when λp = 1.55 µm. The Brillouin gain has a Lorentzian spectrum

g‖(ωp, Ω) = sign(Ω)
gB(ΓB/2)2

(|Ω| − ΩB)2 + (ΓB/2)2
(11)

and its spectral width ΓB/(2π) is in the 10-100 MHz range. 1/ΓB is the decay time of the
sound waves. The peak value gB is usually of the order of 1000 W−1 km−1, one thousand
times higher than the Raman gain peak gR.
The Brillouin gain spectrum discussed so far corresponds to a plane acoustic wave
propagating along the fiber axis. Other smaller peaks may occur due to other acoustic modes,
the presence of dopants and their spatial distribution (Lee et al., 2005; Yeniay et al., 2002).
Guided acoustic wave can also produce narrow and very low frequency Brillouin shifts (50
kHz to 1 GHz) and can be even observed in the forward direction (Shelby et al., 1985a;b).
Despite the differences in the Raman and Brillouin gain functions, the underlying scattering
mechanism is the same. Therefore, the principle explained in Sec. 3.1 in the context of RS
also apply to BS. In particular spontaneous BS exhibits the same temperature dependence
as spontaneous RS. Spontaneous Brillouin scattering can be used for temperature sensing
(Alahbabi et al., 2005a;b; Pi et al., 2008; Wait et al., 1997).

29Spontaneous Nonlinear Scattering Processes in Silica Optical Fibers

www.intechopen.com



6 Will-be-set-by-IN-TECH

2.3 Four-photon scattering

The four-photon scattering process differs from the previous scattering processes in that it
involves four photons and no material vibration. Since a silica fiber is centro-symmetric,
it is the lowest order nonlinear scattering phenomenon that involves only photons in the
input and output channels. As shown in Fig. 3, a FPS process consists in the conversion

Fig. 3. Spontaneous four-photon scattering processes in silica fibers: ordinary and
degenerated case.

of two pump photons at frequencies ωp1 and ωp2 into two other photons at frequencies ωs

and ωa. The photon of lower energy is called “Stokes”, the one of higher energy in called
“anti-Stokes” as in the RS and BS processes. The conversion process satisfies the energy and
moment conservation laws

ωp1 + ωp2 = ωs + ωa, (12)

kp1 + kp2 = ks + ka. (13)

When ωp1 = ωp2 the FPS process is said to degenerated and is by far the most studied
case, both experimentally and theoretically. FPS is a non resonant process. Therefore many
different resonances can contribute to it. In silica, the main contribution comes from electronic
resonances. Molecular vibrations contribute to a fraction fR = 18% of the FPS strength.
The spectrum of a spontaneous FPS process is usually very broadband. It is not limited by
resonance conditions (as RS) or losses (as BS), but merely by the phase matching conditions
(13). If a single mode fiber, the wave number of a optical wave has a linear part kL(ω) =
n(ω)ω/c that depends on the effective index n(ω) of the mode, and a nonlinear part kNL

that depends on the power carried by the wave itself (self-phase modulation) and the power
of the other waves propagation in the fiber (cross-phase modulation) (Agrawal, 2007). In a
spontaneous FPS problem, Stokes and anti-Stokes waves are so faint that their contribution to
self or cross-phase modulation is negligible. On the other hand, the pump wave modulates
its own phase as well as the phases of the Stokes and anti-Stokes waves. If a wave carries a
power P, self-phase modulation changes its own wave number by kNL = γP, where γ is the
nonlinear coefficient of the fiber. At the same time, that wave modifies the wave number of
any other co-polarized wave by kNL = 2γP and any other orthogonally polarized wave by
kNL = (2/3)γP, through the cross-phase modulation effect. For instance, for a degenerate
co-polarized FPS, the wave number mismatch is ∆k = ks + ka − 2kp = (kLs + 2γPp) +
(kLa + 2γPp) − 2(kLp + γPp) = ∆kL + 2γPp, where Pp is the pump power. Using quantum

30 Recent Progress in Optical Fiber Research
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Spontaneous Nonlinear Scattering Processes in Silica Optical Fibers 7

perturbation theory (Brainis, 2009), it can be shown that the spectral density of power at Stokes
and anti-Stokes wavelengths is

S(L, ωs) = S(L, ωa) =
h̄ωs,a

2π

(

γPpL
)2

sinc2

(

∆k

2
L

)

(14)

in the case of degenerate co-polarized FPS. Equivalent formulas for non co-polarized
degenerate FPS processes can be found in (Brainis, 2009). Whatever the FPS process
(degenerated or not, co-polarized or not, ...), Stokes and anti-Stokes powers are always equal
because those photons are created in pairs and the spectrum always depends on the wave
number mismatch through the same sinc-function factor, see also Sec. 4.2.
It is important to note that the strength of a spontaneous FPS process scales as (PpL)2, while
the strength of spontaneous RS and BS scales as PpL. The spontaneous FPS spectrum is also
independent on temperature. Increasing the propagation length L not only increases the
amount of scattered photons, but also narrows the spectrum. In contrast, raising the pump
power increases scattering, but as little impact of the spectrum. Therefore, adjusting both
parameters, it is possible to set the spectral width of the Stokes and anti-Stokes waves as well
as their intensities. Because Stokes and anti-Stokes photons are created in pair, FPS as been
extensively studied in the context of photon-pair generation for quantum optics and quantum
information applications (Amans et al., 2005; Brainis, 2009; Brainis et al., 2005; 2007; Dyer et al.,
2008; Fan & Migdall, 2007; Lee et al., 2006; Li et al., 2004; Lin et al., 2006; 2007; Rarity et al.,
2005; Takesue, 2006).
When the scattered intensity becomes high enough (γPp � 1), spontaneous scattering gets
amplified. In the case of the degenerate co-polarized FPS, the growth of Stokes and anti-Stokes
waves in the amplification regime in described by (Brainis, 2009; Dyer et al., 2008)

S(L, ωs) = S(L, ωa) =
h̄ωs,a

2π

(

γPpL
)2

∣

∣

∣

∣

sinh (g(ωs,a)L)

g(ωs,a)L

∣

∣

∣

∣

2

, (15)

where g(ωs,a) =
√

(γPp)2 − (∆k/2)2 is the parametric gain function that appears in the

classical theory of four-wave mixing (Agrawal, 2007). Amplification only occurs at those
frequencies for which g(ωs,a) ∈ R. Because such a condition is never satisfied in the

spontaneous regime (g(ωs,a)
P→0−→ i

√

∆kLγPp), it strongly modifies the FPS spectrum when
amplification begins. It the amplified regime, the spectral width is determined by g(ωs,a)
rather by the propagation length. The peak value of the parametric gain gP is larger by 70%
that the Raman peak gain gR.

3. Quantum mechanical description of nonlinear scattering

Spontaneous scattering of light cannot be understood in the framework of classical nonlinear
optics. A proper description requires the quantum theory. There are two possible approaches.
The most elementary one consists in (i) applying quantum perturbation theory to calculate
the scattering of light by a single molecule in the first place, then (ii) extending the result
to continuous media. The drawback of this method is that it gives access the scattered power
density, but not to the field amplitudes. The second approach consists in using a quantum field
theory of propagation of light in the fiber that is based on an effective matter/light interaction
Hamiltonian.

31Spontaneous Nonlinear Scattering Processes in Silica Optical Fibers
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The “perturbation theory” approach is used in Sec. 3.1 to derive, from first principles, the
main formula of Sec. 2.1 for RS. Having identified the limitations of that method, the “field
theory method” will be presented in Sec. 3.2.

3.1 Perturbation theory of Raman scattering

The simplest way to model Stokes and anti-Stokes Raman scattering from a coherent pump
wave at ωp consists in applying second order perturbation theory (Crosignani et al., 1980;
Wardle, 1999) to matter/light coupling described by the interaction Hamiltonian H = −d · E,
where

E(r, t) = i
f (x, y)√

L

[
√

h̄ωp

2ǫ0n2(ωp)
αp ei(k(ωp)z−ωpt)

ep − c.c. +

√

h̄ω

2ǫ0n2(ω)
a ei(k(ω)z−ωt)

e − h.c.

]

(16)
is the electric field operator associated to the light travelling in the fiber and d is the electronic
dipole moment operator of a scattering fiber molecule at position r. In Eq. (16), the field
as been reduced to a pump mode in a coherent state with amplitude α (treated as a strong
classical field) and a signal mode representing either the Stokes or anti-Stokes wave at
frequency ω. The polarization of the pump and signal modes is defined by the unit vectors
ep and e. In Eq. (16), the quantity L is the quantization length, a formal parameter that will

disappear at the end of the calculation and f (x, y) is normalized so that
∫∫

f 2(x, y)dA = 1,
where the integration is over the entire fiber cross-section. This normalization is such that

h̄ω
c

n(ω)L
〈a†a〉 = P(ω) and h̄ωp

c

n(ωp)L
|αp|2 = Pp, (17)

with Pp and P(ω) the powers in the pump mode and the signal mode, respectively.
The vibration of a molecule can be decomposed in normal modes. Assuming that only one
normal mode is excited, the electronic dipole moment of the molecule can be written to first
order as

d = d0 + d
′Q, (18)

where Q is the normal mode coordinate of the vibration, d0 the dipole moment around the

molecular equilibrium point and d′ = ∂d

∂Q .

Consider the Stokes process first (ω < ωp). Assuming that the molecule starts in the electronic
ground state |g〉 and the vibrational number state |m〉 and that the Stokes mode is in the Fock
state |n〉, the transition probability amplitude to the state |g, m + 1, n + 1〉 after an interaction
time t can be calculated using second order perturbation theory (Wardle, 1999):

c(Ω, m, n, t) =
f 2(x, y)

L
ei[k(ω)−k(ωp)]z

√

ωpω

8h̄ǫ2
0n2(ωp)n2(ω)MΩ

√
m + 1

√
n + 1 αp

[ep]
† · R · e

ei(Ω+ω−ωp)t − 1

Ω + ω − ωp
,

(19)

where M and Ω are the effective mass and angular frequency of the molecular normal mode
of vibration, while R ≈ 2 ∑e

1
ωeg

〈e|d ⊗ d′ + d′ ⊗ d|g〉, where ⊗ denotes the tensor product of

two vectors and the sum runs over all the electronic excited states of the scattering molecule
having Bohr frequencies ωeg with respect to the ground state.
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Spontaneous Nonlinear Scattering Processes in Silica Optical Fibers 9

Around each point r, the material medium is made of many molecules and each molecule has
several normal modes of vibration. Since all the molecules are at thermal equilibrium, their
vibration have no locked phase relationship. The local field is thus simultaneously coupled to
a large thermal reservoir of independent vibration modes and the contribution c(Ω, m, n, t) of
each of them to the overall scattering probability can be added incoherently. Writing ρ(Ω) the
number of vibration modes in the volume dV centered on r with a frequency in the interval
[Ω, Ω + dΩ] and and taking the thermal average of the number of excitations in a vibration
mode Ω, the Stokes scattering rate from the point r (integrated over all the possible vibration
modes frequencies Ω) is found to be

S(n; r) =
dV

L2
f 4(x, y)

πωpω

4h̄ǫ2
0n2(ωp)n2(ω)

ρ(|Ω|)〈(e†
p · R · e)2〉

M|Ω| (mth(|Ω|) + 1)(n + 1)|αp|2, (20)

where Ω is not an independent variable anymore but is now defined as Ω := ωp − ω,
and mth(|Ω|) – given by Eq. (2) – is the Bose-Einstein expectation value of the number of
vibrational excitations. The average 〈(e†

p · R · e)2〉 is taken over arbitrary molecular orientation

in amorphous silica. Therefore the quantity 〈(e†
p · R · e)2〉 only depends on the angle θ between

ep and e. As a result, one can write

ρ(|Ω|)〈(e†
p · R · e)2〉

M|Ω| = K‖(|Ω|) cos2(θ) + K⊥(|Ω|) sin2(θ) = K(|Ω|, θ), (21)

where K‖(|Ω|) and K⊥(|Ω|) are material characteristics that can be determined

experimentally1. The total scattering rate from ωp to ω due to the Stokes process in a fiber
segment dz is obtained by integration S(n, r) over the fiber cross-section. As a consequence,

Sp→s(n) = dz
πωpω

4h̄ǫ2
0n2(ωp)n2(ω)AeffL

2
K(|Ω|, θ) (mth(|Ω|) + 1) (n + 1) |αp|2, (22)

where Aeff = 1/
(∫∫

f 4(x, y)dA
)

is the effective area of the fiber (Agrawal, 2007).
The scattering rate for the anti-Stokes process (ω > ωp) can be computed according to the
same lines: the rate is the same as in Eq. (22) with the exception that (mth(|Ω|) + 1) is replaced
by mth(|Ω|) since an vibrational excitation is destroyed in that process:

Ap→a(n) = dz
πωpω

4h̄ǫ2
0n2(ωp)n2(ω)AeffL

2
K(|Ω|, θ) mth(|Ω|) (n + 1) |αp|2. (23)

During propagation, light is not only scattered from the pump to the Stokes and anti-Stokes
modes at ωp − |Ω| and ωp + |Ω| but also from these mode to the pump wave. The rates
associated to these reverse Raman processes are

As→p(n) = dz
πωpω

4h̄ǫ2
0n2(ωp)n2(ω)AeffL

2
K(|Ω|, θ) mth(Ω) n |αp|2, (24)

Sa→p(n) = dz
πωpω

4h̄ǫ2
0n2(ωp)n2(ω)AeffL

2
K(|Ω|, θ) (mth(|Ω|) + 1) n |αp|2. (25)

1 Note that K‖(|Ω|) and K⊥(|Ω|) are slightly different in the core and in the cladding of the fiber because
of the dopants. Here, we neglect this difference.
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Therefore the net Raman scattering rates from a coherent pump to Stokes and anti-Stokes
modes (containing n photons initially) are

S(n) = Sp→s(n)− As→p(n) =
πωpωdz

4h̄ǫ2
0n2(ωp)n2(ω)AeffL

2
K(|Ω|, θ) (n + mth(|Ω|) + 1) |αp|2,

(26)

A(n) = Ap→a(n)− Sa→p(n) =
πωpωdz

4h̄ǫ2
0n2(ωp)n2(ω)AeffL

2
K(|Ω|, θ) (−n + mth(|Ω|)) |αp|2.

(27)

When a pump wave is launched in an optical fiber it scatters photons to many Stokes and
anti-Stokes modes simultaneously. The variation in the power spectral density dS(z, ω)
due to the scattering in the fiber slice dz is found by multiplying Eqs. (26) or (27) by the
photon energy h̄ω and summing over the contribution from all the c/(n(ω)L)dω modes in
the interval [ω, ω + dω]. Therefore the following differential equations hold for Stokes and
anti-Stokes radiation, respectively:

d

dz
S(z, ω) =

⎧

⎨

⎩

[

S(z, ω) + h̄ω
2π (mth(|Ω|) + 1)

]

g(ωp, Ω, θ)Pp(z) if Ω = ωp − ω > 0 (Stokes)
[

S(z, ω)− h̄ω
2π mth(|Ω|)

]

g(ωp, Ω, θ)Pp(z) if Ω = ωp − ω<0 (anti-Stokes)

(28)

where

g(ωp, Ω, θ) =sign(Ω)
π

4h̄2c2ǫ2
0

ω

n(ωp)n(ω)Aeff

(

K‖(|Ω|) cos2(θ) + K⊥(|Ω|) sin2(θ)
)

=g‖(ωp, Ω) cos2(θ) + g⊥(ωp, Ω) sin2(θ)

(29)

is the Raman gain. Eq. (28) is identical to Eq. (1).
Unfortunately, BS and FPS laws cannot be established in the same manner. For FPS, one can
start the analysis at the molecular scale, but fourth order perturbation theory is required. In
addition, transition amplitudes must be added coherently to get the phase matching right (see
Sec. 2.3). For BS, a molecular approach is not possible since BS couples light to the excitation
of an acoustic wave involving many molecules (see Sec. 2.2).

3.2 Nonlinear quantum field theory

The purpose of the quantum field theory approach is to establish a quantum generalization
of the nonlinear Schrödinger equation (NLSE) that governs the propagation of the optical
field in a fiber, accounting for dispersion and nonlinear interaction with matter, as well as for
spontaneous effects.

3.2.1 Operator equation for nonlinear propagation

Kärtner et al. presented a field theory model of Raman scattering (Kärtner et al., 1994). In
this model, a light field A(z, t) is coupled to an harmonic field Q(z), the amplitude of which
depends on the position in the fiber. The light field A(z, t) represents the envelope of the
E-field oscillating at the carrier frequency ω0 and is assumed to travel in the fiber at group
velocity vg and with no dispersion. Depending on the dispersion relationship of the field
Q(z), it can represent acoustical phonons (if ω(q) = vAq) or optical photons (if ω(q) = ΩR
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is independent of q). Coupling to acoustical and optical phonons is responsible for BS and
RS, respectively. In (Kärtner et al., 1994) it is assumed that Q(z) is an optical phonon field.
Physically Q(z) represents the coordinate of a molecular normal mode of vibration at position
z in the fiber. Such a field does not propagate but is nevertheless damped. In order to model
the damping (with a rate ΓR), it is assumed that Q(z) itself is coupled to a large bath of
harmonic oscillators at many different frequencies that are at thermal equilibrium. These
harmonic oscillators represent other optical and acoustical vibration modes. After eliminating
the field Q(z) and the bath variables from the equations, one founds that A(z, t) obeys the
nonlinear field equation

∂

∂z
A(z, t) =− 1

vg

∂

∂t
A(z, t) + i(1 − fR)γA†(z, t)A(z, t)A(z, t)

+ i fRγ
∫ t

−∞
hR(t − t′)A†(z, t′)A(z, t′)dt′A(z, t) + i

√

fRγNR(z, t)A(z, t),

(30)

and the commutation relationship

[

A(z, t), A†(z, t′)
]

= h̄ω0δ(t − t′), (31)

where fR = 0.18 (see Sec. 2.3), γ is the nonlinear coefficient (see Sec. 2.3),

hR(t) =
Ω2

R
√

Ω2
R − (ΓR/2)2

sin

(

√

Ω2
R − (ΓR/2)2 t

)

exp (−(ΓR/2)t) ν(t) (32)

is the Raman response function, and NR(z, t) is the Raman noise field (see Eqs . (35) and 36
below). In Eq. (32), ν(t) is the Heaviside step function. The Fourier transform of hR(t) is
called the Raman susceptibility:

χ
(3)
R (Ω) = χ′

R(Ω) + iχ′′
R(Ω) =

∫ ∞

−∞
hR(t) e−iΩtdt. (33)

Since hR(t) ∈ R and is normalized such that
∫ ∞

−∞
hR(t)dt = 1,

χ′
R(−Ω) = χ′

R(Ω), χ′′
R(−Ω) = −χ′′

R(Ω), χ′
R(0) = 1, χ′′

R(0) = 0. (34)

The Raman noise operator is such that its Fourier transform

ÑR(z, Ω) =
∫ ∞

−∞
NR(z, t) e−iΩt dt (35)

satisfies the following spectral correlations (Boivin et al., 1994; Drummond & Corney, 2001):

〈Ñ†
R(z, Ω)ÑR(z

′, Ω′)〉 = h̄(ω0 − Ω)
|χ′′

R(Ω)|
π

[mth(|Ω|) + ν(Ω)] δ(z − z′)δ(Ω − Ω′). (36)

The second term at the right-hand side of Eq. (30) does not come out of Kärtner’s model
but has been added phenomenologically to account for the (1 − fR) fraction of the total non
linearity that originates in the interaction of light with bound electrons rather than molecular
vibrations.
The last term in Eq. (30) is the one responsible for the spontaneous Raman scattering. In
order to make the connection with the description given in Secs. 2.1 and 3.1, consider the
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propagation of a strong continuous pump field Ap(z, t) =
√

Pp together with a weak scattered
field Asc(z, t) that is null at the input of the fiber: A(z, t) = Ap + Asc(z, t). Ignoring all the

terms but the last one in Eq. (30) one easily finds that Asc(z, t) ≈ i
√

fRγPp
∫ L

0 NR(z, t)dz.
Therefore, the total scattered power is

∫ ∞

−∞
S(L, ω0 − Ω)dΩ = 〈A†

sc(z, t)Asc(z, t)〉 = fRγPp

∫ L

0
dz

∫ L

0
dz′〈N†

R(z, t)NR(z
′, t′)〉

= fRγP
∫ ∞

−∞
dΩ

∫ ∞

−∞
dΩ′

∫ L

0
dz

∫ L

0
dz′〈Ñ†

R(z, Ω)ÑR(z
′, Ω′)〉

Using Eq. (36), one finally gets

S(L, ω = ω0 − Ω) = h̄(ω0 − Ω) fRγ
|χ′′

R(Ω)|
π

[mth(|Ω|) + ν(Ω)] PpL. (37)

Comparing this expression with Eq. (5), the Raman gain is found to be related to the imaginary
part of the Raman susceptibility by the following relationship:

g‖(ωp, Ω) = −2 fRγχ′′
R(Ω) (38)

According to the Kärtner’s model, the Raman gain would be Lorentzian in shape because

χ′′
R(Ω) =

ΩΩ2
RΓR

(Ω2
R − Ω2)2 + Ω2Γ2

, (39)

according to Eqs. (32) and (33). This would be a rough approximation of the actual Raman
gain in Fig. 2a. As explained in (Drummond & Corney, 2001), the Raman gain is well fitted by
a 10-Lorentzian model. Modifying the quantum field model to couple light to ten Lorentzian
vibration modes is trivial: it only changes the shape of the Raman response function hR(t) in
Eq. (32), which becomes a linear superposition of damped sine functions with appropriate
oscillation frequencies and damping constants.
With this modification, the quantum propagation equation (30) is able to simulate the
spontaneous grow of Stokes and anti-Stokes wave and their amplification. However, Eq. (30)
is unable to simulate FPS despite that all the terms (second and third term of the right-hand
side) responsible for photon-pair generation are included. This is because phase-matching is
of crucial importance for the FPS process and Eq. (30) does not properly deal with the group
velocity dispersion of the traveling waves.

3.2.2 Dispersion

Dispersion plays an important role in the physics of spontaneous and stimulated nonlinear
effects. The exact dispersion of the fiber can be include in the quantum non linear propagation
equation (30) by replacing the first term in the right-hand side

− 1

vg

∂

∂t
A(z, t) (40)

by the generalized dispersion operator

D[A(z, t)] = +i
∞

∑
a=1

(i)a ka

a!

∂a

∂ta
A(z, t), (41)
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where

ka =
da

dωa
kL(ω)

∣

∣

∣

∣

ω=ω0

(42)

are the derivatives of the propagation constant kL(ω). The dispersion operator can also be
written as a convolution integral (Kärtner et al., 1994; Lin et al., 2007)

D[A(z, t)] = i
∫ t

−∞
hL(t − t′)A(z, t′)dt′, (43)

where

hL(t) =
1

2π

∫ ∞

−∞
[kL(ω0 − Ω)− kL(ω0)]e

iΩtdΩ (44)

is the linear response function of the fiber. Using (43) Eq. (30) reads:

∂

∂z
A(z, t) =i

∫ t

−∞
hL(t − t′)A(z, t′)dt′ + i(1 − fR)γA†(z, t)A(z, t)A(z, t)

+ i fRγ
∫ t

−∞
hR(t − t′)A†(z, t′)A(z, t′)dt′A(z, t) + i

√

fRγNR(z, t)A(z, t),

(45)

3.2.3 Brillouin and polarization effects

As mentioned in Sec. 3.2.1, the quantum propagation model couples light to non propagative
phonons. Strictly speaking, such a model is unsuitable for describing BS. However, if the
propagation length is long enough to consider that momentum conservation (opto-acoustical
phase matching) is verified, the phonon field has a well defined oscillation frequency ΩB =

4π vA
n(ωp)

λp
, see Eq. (10). Therefore, the Brillouin Lorentzian gain can be included as an

eleventh Lorentzian (ultra-low frequency) contribution to the nonlinear Raman response hR(t)
(Drummond & Corney, 2001).
Eq. (45) only takes into account nonlinear effects that involve photons with the same
polarization state. One can generalize the model to take polarization into account (Brainis,
2009; Brainis et al., 2005; Lin et al., 2006; 2007).

3.2.4 Solving the quantum propagation equation

There are two main methods to solve the quantum nonlinear propagation equation.
The first one is using numerical integration and consists in converting Eq. 45 into a set of
c-number equations with stochastic terms in order to solve them on a computer (Brainis et al.,
2005; Kennedy & Wright, 1988). These methods have been first introduced to solve the scalar
quantum equation without the Raman effect ( fR = 0) to study the squeezing of a quantum
soliton (Carter et al., 1987; Drummond & Carter, 1987) and co-polarized FPS (Brainis et al.,
2005). It has been then generalized to study different types of non co-polarized FPS processes
(Amans et al., 2005; Brainis et al., 2005; Kennedy, 1991) and squeezing in birefringent fibers
(Kennedy & Wabnitz, 1988), as well as Raman scattering noise (Drummond & Corney, 2001).
The second method consists in linearizing the quantum nonlinear equation around a classical
solution such as a continuous pump wave or a soliton in order to derive linear couple mode
operator equations that can be solved analytically (Brainis, 2009; Brainis et al., 2007; Lin et al.,
2006; 2007). Coupled mode equations are easier to establish from the Fourier transform of Eq.
(45). Defining the Fourier components of the wave as

Ã(z, Ω) =
∫ ∞

−∞
A(z, t)e−iΩtdt, (46)
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one finds that they satisfy the following equation:

∂

∂z
Ã(z, Ω) = i[kL(ω0 − Ω)− kL(ω0)]Ã(z, Ω) + i

√

fRγ
1

2π

∫ ∞

−∞
dω1NR(z, Ω − ω1)A(z, ω1)

+ iγ
1

(2π)2

∫ ∞

−∞
dω1

∫ ∞

−∞
dω2χ(ω2 − ω1)Ã(z, ω1)Ã(z, ω2)Ã(z, Ω + ω1 − ω2),

(47)

where
χ(Ω) = (1 − fR) + fR χR(Ω) (48)

is the total third order susceptibility which takes into account both electronic and vibrational
non linearity. χ(Ω) is a complex function that has the same symmetry properties as χR(Ω),
see Eq. (34)

χ′(−Ω) = χ′(Ω), χ′′(−Ω) = −χ′′(Ω), χ′(0) = 1, χ′′(0) = 0. (49)

Using Eq. (31), one finds that the operators Ã(z, Ω) satisfy the following commutation
relations

[

Ã(z, Ω), Ã†(z, Ω′)
]

= 2πh̄ω0δ(Ω − Ω′). (50)

A generalization of Eqs. (47)-(50) that takes into account polarization can be found in (Lin
et al., 2007). Linearized coupled mode equations are directly obtained from Eq. (47). Hereafter,
the result is given for one and two pump waves. These coupled-mode equations will be used
in Sec. 4 to analyze the competition between the RS process and the FPS process.

3.2.4.1 Single pump configuration

Let us assume that that a monochromatic pump wave with frequency ωp = ω0 and spectral

amplitude Ã(z = 0, Ω) = 2π
√

Ppδ(Ω) is launched in the fiber. During the propagation,

the pump remains monochromatic but acquires a nonlinear phase modulation: Ã(z, Ω) =
2πAp(z)δ(Ω). The amount of phase modulation can be derived by injecting this ansatz in Eq.
(47). One finds that

dAp

dz
= iγA†

p(z)Ap(z)Ap(z). (51)

The solution of this equation is

Ap(z) =
√

PpeiγPpz. (52)

However, this solution is not a stable solution of Eq. (47). Brillouin, Raman and four-photon
scattering, will spontaneously scattered power from the pump to Stokes and anti-Stokes
frequencies. Nevertheless, for the calculation of the Stokes and anti-Stokes amplitudes, one
can make the assumption that the pump remains undepleted, i.e. (52) is approximately valid.
Injecting the ansatz

Ã(z, Ω) =
[

2πAp(z)δ(Ω) + Ãsc(z, Ω)
]

, (53)

and retaining only the terms of highest order in P, one finds that the scattered field Ãsc(z, Ω)
satisfies

∂

∂z
Ãsc(z, Ω) = i

[

[kL(ωp − Ω)− kL(ωp)] + B(Ω)γPp
]

Ãsc(z, Ω)

+ i χ(Ω)γPei2γPpz Ã†
sc(z,−Ω) + i

√

fRγPpeiγPpz NR(z, Ω),

(54)
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where
B(Ω) = χ(0) + χ(Ω) = 1 + χ(Ω) = 2 − fR[1 − χR(Ω)]. (55)

The coefficient B(Ω) measures the relative strength of the cross-phase modulation of the
scattered field by the pump and the self-phase modulation of the pump, see Eq. (52). If
Raman scattering is ignored ( fR = 0), it takes the usual value B = 2. At frequencies close to
the pump (Ω → 0), one also finds B ≈ 2, because χR ≈ 1 + 0i. Very far away from the pump
frequency (Ω → ∞), B ≈ 1.82 because χr ≈ 0 + 0i and fR = 0.18. The third term of the Eq.
(54) represents a FWM process with a complex coupling coefficient χ(Ω)γPp. In Sec. 4, it will
be shown that this term is responsible for stimulated FWM, stimulated Raman and Brillouin
scattering, as well as spontaneous FPS. One may notice that this term couples each spectral
component at Ω > 0 (Stokes) to the symmetric component at frequency Ω < 0 (anti-Stokes),
as required by the aforementioned processes. The last term in the right-hand side of Eq. (54)
is the source of spontaneous Raman and Brillouin scattering. Since Stokes and anti-Stokes
frequencies are always coupled, the coupled-mode equations

∂

∂z
Ãsc(z, Ω) = i

[

[kL(ωp − Ω)− kL(ωp)] + B(Ω)γPp
]

Ãsc(z, Ω)

+ i χ(Ω)γPpei2γPpz Ã†
sc(z,−Ω) + i

√

fRγPpeiγPpz NR(z, Ω), (56)

∂

∂z
Ãsc(z,−Ω) = i

[

[kL(ωp + Ω)− kL(ωp)] + B(−Ω)γPp
]

Ãsc(z,−Ω)

+ i χ(−Ω)γPpei2γPpz Ã†
sc(z, Ω) + i

√

fRγPpeiγPpz NR(z,−Ω). (57)

must be solved together to solve the propagation problem. These are linear, but
inhomogeneous equations. Note that

χ(−Ω) = χ∗(Ω), and B(−Ω) = B∗(Ω). (58)

3.2.4.2 Dual pump configuration

If two pump waves at frequencies ωp1 = ω0 − Ωp and ωp2 = ω0 + Ωp are launched
simultaneously in the fiber, the spectral amplitude can be written

Ã(z, Ω) = 2πAp1(z)δ(Ω − Ωp) + 2πAp2(z)δ(Ω + Ωp) (59)

Injecting this ansatz in Eq. 47 shows the the two pumps will interact through nonlinear effects:

dAp1

dz
= i

[

[kL(ω0 − Ωp)− kL(ω0)] + γ|Ap1|2 + B(2Ωp)γ|Ap2|2
]

Ap1(z) (60)

dAp2

dz
= i

[

[kL(ω0 + Ωp)− kL(ω0)] + γ|Ap2|2 + B(−2Ωp)γ|Ap1|2
]

Ap2(z) (61)

The third terms on the right-hand side are responsible for both cross-phase modulation and
stimulated Raman scattering: Eq. (38) shows that

iB(±2Ωp)γ = i
[

2 − fR[1 − χ′(±2Ωp)]
]

γ − fRγχ′′(±2Ωp),

= i
[

2 − fR[1 − χ′(±2Ωp)]
]

γ +
g‖(±2Ωp)

2
.

(62)
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If the propagation distance L and the initial pump powers Pp1 and Pp2 are such that
g‖(2Ωp)(Pp1 + Pp2)L ≪ 1, power transfer due to stimulated Raman scattering is negligible
and the solution of Eqs. (60) and (61) is:

Ap1(z) = Pp1 exp
[

i
[

[kL(ω0 − Ωp)− kL(ω0)] + γPp1 +ℜ[B(2Ωp)]γPp2

]

z
]

, (63)

Ap2(z) = Pp2 exp
[

i
[

[kL(ω0 + Ωp)− kL(ω0)] + γPp2 +ℜ[B(−2Ωp)]γPp1

]

z
]

. (64)

As in the single pump case, such a solution in unstable and light will be spontaneously
scattered to other wavelength. To analyze that scattering, we introduce the ansatz

Ã(z, Ω) = 2πAp1(z)δ(Ω − Ωp) + 2πAp2(z)δ(Ω + Ωp) + Ãsc(z, Ω) (65)

in Eq. (47) and only keep the terms of highest order in Pp1 and Pp2. It is found that

∂

∂z
Ãsc(z, Ω) = i

[

[kL(ω0 − Ω)− kL(ω0)] + B(Ω − Ωp)γPp1 + B(Ω + Ωp)γPp2

]

Ãsc(z, Ω)

+ iγχ(Ω − Ωp)Ap1(z)Ap1(z)Ã†
sc(z, 2Ωp − Ω)

+ iγχ(Ω + Ωp)Ap2(z)Ap2(z)Ã†
sc(z,−2Ωp − Ω)

+ iγ2ℜ
[

χ(Ωp − Ω)
]

Ap1(z)Ap2(z)Ã†
sc(z,−Ω)

+ iγχ(2Ωp)A†
p1(z)Ap2(z)Ãsc(z,−2Ωp) + iγχ(−2Ωp)A†

p2(z)Ap1(z)Ãsc(z, 2Ωp)

+ iγχ(Ωp − Ω)A†
p1(z)Ap2(z)Ãsc(z, Ω + 2Ωp)

+ iγχ(Ω − Ωp)A†
p2(z)Ap1(z)Ãsc(z, Ω − 2Ωp)

+ i
√

fRγ
[

Ap1 (z)NR(z, Ω − Ωp) + Ap2 (z)NR(z, Ω + Ωp)
]

.

(66)

In striking contrast with Eq. (54), the light scattered at frequency ω0 − Ω is not only coupled
to the symmetric mode ω0 + Ω but also to six other modes at frequencies: ω0 − 2Ωp − Ω,
ω0 − 2Ωp, ω0 − 2Ωp + Ω, ω0 + 2Ωp − Ω , ω0 + 2Ωp, ω0 + 2Ωp + Ω. As a consequence, there
is no way to write down a closed set of coupled mode equations for that problem. However,
the perturbation theory technique introduced in (Brainis, 2009) can be applied to investigation
the quantum regime of scattering (see Sec. 4.2).

4. Coupling between spontaneous scattering processes

When light propagates in an optical fiber, spontaneous RS, BS and FPS take place
simultaneously. Several processes may scatter light to the same modes so that it may not
be possible the decouple the processes. Hereafter, that point is illustrated in the single and
dual pump configuration.

4.1 Single pump configuration

The field evolution in the single pump configuration is fully described by the coupled-mode
equations (56) and ( 57), the solution of which is

Ãsc(L, Ω) = μ1(L, Ω)Ãsc(0, Ω) + μ2(L, Ω)Ã†
sc(0,−Ω)

+ i
√

fRγP
∫ L

0
NR(z, Ω) (μ1(L − z, Ω)− μ2(L − z, Ω))dz (67)
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Ãsc(L,−Ω) = μ1(L,−Ω)Ãsc(0, Ω) + μ2(L,−Ω)Ã†
sc(0, Ω)

+ i
√

fRγP
∫ L

0
NR(z,−Ω) (μ1(L − z,−Ω)− μ2(L − z,−Ω))dz. (68)

If Ω > 0, Ãsc(L, Ω) corresponds to the Stokes part of the spectrum and Ãsc(L,−Ω) to the
anti-Stokes part. The functions μ1(z, Ω) and μ2(z, Ω) are defined as

μ1(z, Ω) =

[

cosh(g(Ω)L) + i
∆k(Ω)

2g(Ω)
sinh(g(Ω)L)

]

exp

(

i
kL(Ω)− kL(−Ω)

2
L

)

(69)

μ2(z, Ω) = i
γχ(Ω)Ppei2γPp L

g(Ω)
sinh(g(Ω)L) exp

(

i
kL(Ω)− kL(−Ω)

2
L

)

(70)

where

∆k(Ω) = kL(ωp − Ω) + kL(ωp + Ω)− 2kL(ωp) + 2γPp[B(Ω)− 1] = ∆kL(Ω) + 2γPpχ(Ω)
(71)

is the total phase mismatch and

g(Ω) =
√

(χ(Ω)γPp)2 − (∆k(Ω)/2)2 =
√

−∆kL(Ω)γPpχ(Ω)− (∆kL(Ω)/2)2 (72)

is the parametric gain. The square-root in Eq. (72) is chosen such that ℜ(g) > 0. Comparing
with the results of Sec. 2.3, both the phase mismatch parameter and the parametric gain have
a modified value due to the simultaneous action of FPS and RS. This modification impacts the
stimulated FWM (Golovchenko et al., 1990; Vanholsbeeck et al., 2003) as well as spontaneous
FPS regime (Brainis et al., 2007; Lin et al., 2006).
The spontaneous regime corresponds to the initial conditions 〈Ã†

sc(0, Ω)Ãsc(0, Ω)〉 = 0, for
any value of Ω. The spectral power density S(L, ωp − Ω) at the fiber output can be calculated
as follows (Brainis et al., 2005; 2007):

S(L, ωp − Ω) = lim
ǫ→0

1

2πǫ

∫ Ω+ǫ/2

Ω−ǫ/2

∫ Ω+ǫ/2

Ω−ǫ/2
〈Ã†

sc(L, Ω1)Ãsc(L, Ω2)〉dΩ1dΩ2. (73)

Using Eqs. (67) and (68), one finds (Brainis et al., 2007)

S(L, ωp − Ω)

h̄
(

ωp − Ω
) =

1

2π

∣

∣χ(Ω)γPpL
∣

∣

2
∣

∣

∣

∣

sinh(g(Ω)L)

g(Ω)L

∣

∣

∣

∣

2

+
|ℑ[χ(Ω)]|γPp

π
ρ(L, Ω) (mth(|Ω|) + ν(Ω)) ,

(74)
where

ρ(L, Ω) =
∫ L

0

∣

∣

∣

∣

cosh(g(Ω)z) + i sign(Ω)
∆k(Ω)

2g(Ω)
sinh(g(Ω)z)

∣

∣

∣

∣

2

dz. (75)

The first and second terms in the right-hand side of Eq. (74) represent the photons scattered
through the four-photon and Raman processes, respectively. Note that |ℑ[χ(Ω)]|γ =
fRγ|χ′′

R(Ω)| = |g‖(ωp, Ω)|/2, see Eq. (38).

In the spontaneous regime (|g(Ω)|Pp → 0), Eq. (74) reduces to

S(L, ωp − Ω)

h̄
(

ωp − Ω
) =

(|χ(Ω)|PpL)2

2π
sinc2

(

∆k

2
L

)

+
|g‖(ωp, Ω)|PpL

2π
(mth(|Ω|) + ν(Ω)) . (76)
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The Raman contribution to the scattered light is exactly the one given by Eq. 5: this means that
FPS has no impact on RS. The reverse is not true: RS as an influence on FPS since it modifies
the total susceptibility χ(Ω) appearing in the first term. In absence of RS ( fR = 0), χ(Ω) = 1
and one recovers the spectral density of power given by Eq. (14). Since −1 < χ′

R(Ω) ≤ 1 and

−1.4 < χ′′
R(Ω) < 1.4, |χ(Ω)| =

√

(1 − fR(1 − χ′
R(Ω)))2 + ( fRχ′′

R(Ω))2 is always close to one.

For this reason, spontaneous (not amplified ) FPS and RS can be considered has uncoupled
phenomena.
If the power is high enough (|g(Ω)|PpL > 1), amplification of the spontaneous scattering takes
place. The general formula (74) is well approximated by

S(L, ωp − Ω)

h̄
(

ωp − Ω
) =

e2ℜ[g(Ω)]L

8π

[

∣

∣

∣

∣

χ(Ω)γPp

g(Ω)

∣

∣

∣

∣

2

+
|g‖(ωp, Ω)|γPp

2ℜ[g(Ω)]

|g(ω) + i sign(Ω)∆k/2|2
|g(Ω)|2

]

.

(77)
In striking contrast with the analysis of Sec. 2.1, this result shows that the Raman anti-Stokes
wave grows at the same rate as the Raman Stokes wave instead of saturating at the power density

value S(L, ωp + |Ω|) = h̄ω
2π mth(|Ω|). This effect is due to the coupling of the RS with the

FWM. Its detailed explanation can be found in (Brainis et al., 2007; Coen et al., 2002). On
the other hand, the exponential amplification of the Stokes wave is completely quenched at
frequencies satisfying ∆kL(Ω) = 0 because the gain g(Ω) vanishes in that case, see Eq. (72)
(Golovchenko et al., 1990; Vanholsbeeck et al., 2003).

4.2 Dual pump configuration

In the dual pump configuration, the coupled-mode equations (66) do not form a closed set.
For this reason, one cannot write an explicit solution as in Sec. 4.1. To study the spontaneous
photon scattering, we apply the first-order perturbation technique introduced in (Brainis,
2009).
We first notice that the first term of the right-hand side of (66) represents the phase evolution
of scattered field, including the cross-phase modulation due to the two pumps. This phase
modulation has no impact on the population of the frequency modes and can be factored out
by writing the total scattered E-field

Esc(z, t) =

√

h̄ω0

4πǫ0n0c

∫

a(z, Ω) ei[kL(ω0−Ω)+B(Ω−Ωp)γPp1+B(Ω+Ωp)γPp2]ze−i(ω0−Ω)tdΩ, (78)

where a(z, Ω) is the annihilation operator of the frequency mode ω − Ω. Because the exact
phase evolution of the a(z, Ω) has been factored out, the z dependence of a(z, Ω) is only due
to the FPS effect (Brainis, 2009). On the other hand, the scattered field can be written as

Esc(z, t) =
1

2π
√

2ǫ0n0c
eikL(ω0)z−iω0t

∫

Ãsc(z, Ω)eiΩtdΩ, (79)

where we used the fact that E(z, t) =
√

1/(2ǫ0n0c)A(z, t)eikL(ω0)z−iω0t and Eq. (46).
Comparing Eqs. (78) and (79), one sees that

Ãsc(z, Ω) =
√

2πh̄ω0 a(z, Ω) ei[kL(ω0−Ω)−kL(ω0)+B(Ω−Ωp)γPp1+B(Ω+Ωp)γPp2]z. (80)
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In the following, we make the approximation that B(Ω) ≈ 2, see Eq. (55) and χ(Ω) ≈ 1, see
Eq. (48). This approximation consists in neglecting the dispersion of the non linearity. Using
Eq. (80), one obtains the evolution equation for the annihilation operators:

∂

∂z
a(z, Ω) = i γ Pp1 e−i∆k11(Ω)z a†(z, 2Ωp − Ω) + i γ Pp2 e−i∆k22(Ω)z a†(z,−2Ωp − Ω)

+ i 2γ
√

Pp1Pp2 e−i∆k12(Ω)z a†(z,−Ω)

+ i γ
√

Pp1Pp2 ei∆kaz a(z,−2Ωp) + i γ
√

Pp1Pp2 ei∆kbz a(z, 2Ωp)

+ i γ
√

Pp1Pp2 ei∆kcz a(z, Ω + 2Ωp) + i γ
√

Pp1Pp2 ei∆kdz a(z, Ω − 2Ωp)

+ i

√

fRγPp1

2πh̄ω0
ei[k(ω0−Ωp)−k(ω0−Ω)−γPp1]z NR(z, Ω − Ωp)

+ i

√

fRγPp2

2πh̄ω0
ei[k(ω0+Ωp)−k(ω0−Ω)−γPp2]z NR(z, Ω + Ωp)

(81)

where

∆k11(Ω) = kL(ω0 − Ω) + kL(ω0 − 2Ωp + Ω)− 2kL(ω0 − Ωp) + 2γPp1 (82)

∆k22(Ω) = kL(ω0 − Ω) + kL(ω0 + 2Ωp + Ω)− 2kL(ω0 + Ωp) + 2γPp2 (83)

∆k12(Ω) = kL(ω0 − Ω) + kL(ω0 + Ω)− kL(ω0 − Ωp)− kL(ω0 + Ωp) + γPp1 + γPp2 (84)

∆ka(Ω) = kL(ω0 + 2Ωp) + kL(ω0 + Ωp)− kL(ω0 − Ωp)− kL(ω0 − Ω) + γPp1 − γPp2 (85)

∆kb(Ω) = kL(ω0 − 2Ωp) + kL(ω0 − Ωp)− kL(ω0 + Ωp)− kL(ω0 − Ω)− γPp1 + γPp2 (86)

∆kc(Ω) = kL(ω0 − Ω − 2Ωp) + kL(ω0 − Ωp)− kL(ω0 + Ωp)− kL(ω0 − Ω) + γPp1 − γPp2

(87)

∆kd(Ω) = kL(ω0 − Ω + 2Ωp) + kL(ω0 − Ωp)− kL(ω0 + Ωp)− kL(ω0 − Ω)− γPp1 + γPp2

(88)

Eq. (81) can be written

ih̄
∂

∂z
a(z, Ω) = [G(z), a(z, Ω)] + ih̄L(z, Ω), (89)

where

L(z, Ω) = i

√

fRγ

2πh̄ω0

[√

Pp1 ei[k(ω0−Ωp)−k(ω0−Ω)−γPp1]z NR(z, Ω − Ωp)

+
√

Pp2 ei[k(ω0+Ωp)−k(ω0−Ω)−γPp2]z NR(z, Ω + Ωp)
]

(90)
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and

G(z) =
h̄

2
γPp1

∫ ∞

−∞
dΩ′e−i∆k11(Ω′)z a†(z, Ω′)a†(z, 2Ωp − Ω′) + h.c.

+
h̄

2
γPp2

∫ ∞

−∞
dΩ′e−i∆k22(Ω′)z a†(z, Ω′)a†(z,−2Ωp − Ω′) + h.c.

+ h̄γ
√

Pp1Pp2

∫ ∞

−∞
dΩ′e−i∆k12(Ω′)z a†(z, Ω′)a†(z,−Ω′) + h.c.

+ h̄γ
√

Pp1Pp2

∫ ∞

−∞
dΩ′ei∆ka(Ω′)z a†(z, Ω′)a(z,−2Ωp) + h.c.

+ h̄γ
√

Pp1Pp2

∫ ∞

−∞
dΩ′ei∆kb(Ω

′)z a†(z, Ω′)a(z, 2Ωp) + h.c.

+ h̄γ
√

Pp1Pp2

∫ ∞

−∞
dΩ′ei∆kc(Ω′)z a†(z, Ω′)a(z, Ω′ − 2Ωp) + h.c.

+ h̄γ
√

Pp1Pp2

∫ ∞

−∞
dΩ′ei∆kd(Ω

′)z a†(z, Ω′)a(z, Ω′ + 2Ωp) + h.c.

(91)

In Eq. (89), L(z, Ω) represents the Raman scattering from both pumps. Raman scattered
photons contribute incoherently,

SR(L, ωp − Ω)

h̄(ω − Ω)
=

|g‖(ωp1, Ω − Ωp)|Pp1L

2π

(

mth(|Ω − Ωp|) + ν(Ω − Ωp)
)

+
|g‖(ωp2, Ω + Ωp)|Pp2L

2π

(

mth(|Ω + Ωp|) + ν(Ω + Ωp)
)

,

(92)

to the total scattered photon flux. The [G(z), a(z, Ω)] part of Eq. (89) represents several FPS
processes taking place simultaneously: (i) 2ωp1 → (ωp1 + Ωp − Ω) + (ωp1 − Ωp + Ω), (ii)
2ωp2 → (ωp2 − Ωp − Ω) + (ωp2 + Ωp + Ω), (iii) ωp1 + ωp2 → (ω0 − Ω) + (ω0 + Ω). To see
this explicitly, we writing down the evolution of the quantum state of light in the interaction
picture. The interaction picture is chosen such that the phase evolution of the modes is
part of the operator evolution, while energy transfer from mode to mode is part of the state

evolution. In this interaction picture a(I)(z, Ω) = a(0, Ω) (Brainis, 2009). Therefore the first
order perturbation Dyson expansion gives:

|ψ(L)〉 =
(

1 +
i

h̄

∫ L

0
G(I)(z)dz

)

|0〉 = |0〉+
∫ ∞

−∞
dΩ

(

ξ11(L, Ω)|1Ω, 12Ωp−Ω〉+ ξ12(L, Ω)|1Ω, 1−Ω〉+ ξ22(L, Ω)|1Ω, 1−2Ωp−Ω〉
)

(93)

where

ξ11(L, Ω) = i
1

2
(γPp1L) e−i∆k11(Ω′) L

2 sinc

(

∆k11(Ω
′)

L

2

)

(94)

ξ12(L, Ω) = i(γ
√

Pp1Pp2L) e−i∆k12(Ω′) L
2 sinc

(

∆k12(Ω
′)

L

2

)

(95)

ξ22(L, Ω) = i
1

2
(γPp2L) e−i∆k22(Ω′) L

2 sinc

(

∆k22(Ω
′)

L

2

)

. (96)

The threefold entanglement is a clear signature of the interference between three independent
FPS processes. The spectral density of power due to these FPS processes can be deduced from
the matrix element 〈ψ(L)|a†(0, Ω)a(0, Ω)|ψ(L)〉 (Brainis, 2009).
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5. Conclusion

In this chapter, the physics of Raman, Brillouin, and four-photon scattering processes in silica
fibers has been reviewed, as well as their theoretical modeling. It has been shown that a
complete quantum field theory is needed to understand the coupling of theses processes in
the stimulated and spontaneous regimes. Two examples of coupling have been discussed.
The first one was the coupling of the Raman and four-photon scattering processes in a single
pump configuration. In that case, it has been shown that the coupling may have spectacular
consequences in the amplified spontaneous regime, where an unexpected exponential growth
of the anti-Stokes wave is seen. In the second example, the interaction of three FPS processes
in a dual pump configuration has been considered. It has been shown that this configuration
leads to the generation of a threefold entangled bi-photon state of light.
Spontaneous scattering processes are of great importance the context of quantum light
generation and quantum information processing. The methods presented in the chapter apply
to the design of quantum source based on optical fibers: engineering the working principle
(usually four-photon scattering processes) and estimating their figure of merit (usually limited
by the Raman process).
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