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1. Introduction 

Around 100 years ago, the ocean bottom was thought to be flat and featureless. But with the 
advent of modern echo sounding techniques the picture has significantly changed. The aim 
of shallow water bathymetry (measurement and charting of the sea bottom) is to provide 
navigational safety whereas deep ocean survey is generally of an exploratory nature. Rough 
mountainous terrain, including the mid-ocean ridge system, is known to cover larger 
portions of the seabed. In order to understand dynamic processes related to the shape of 
earth the seafloor bathymetric explorations are important along with the routine offshore 
explorations of mineral deposits, especially in the Exclusive Economic Zones (EEZ). The 
Earth works as an integrated system of interacting bio-geophysico-chemical processes which 
are influenced by the land topography and ocean bathymetry. Erosion and sedimentation 
rates are much lower in the ocean than on land. However, detailed bathymetry reveals the 
morphology and geological history. The understanding of the related geological and 
geophysical parameters which shape the ocean floor, are also essential for living and non-
living resource estimation. The ocean floor acts as an interface between the oceanic 
lithosphere and hydrosphere, and the interaction (i.e., exchange of mass and energy) zone 
for the processes are provided by the boundary layers. Evidences of the interaction effects in 
terms of the geomorphology can be seen in the seafloor sediment of ripple marks and 
bioturbation. Similarly, geological evidences can be seen in the development of manganese 
nodules and forms of past and present submarine volcanism. Generally, the two basic 
processes which shape the seafloor are known as endogenic and exogenic e.g. Seibold & 
Berger (1993). The large seafloor features (seamount, ridge crest, valley etc) related to the 
plate tectonics are due to the endogenic processes i.e., those deriving their energy from the 
earth interiors. Small scale features (ripple /abyssal plain etc.) due to erosion as well as 
deposition of the sediments are attributed to the exogenic processes i.e. those driven by the 
Sun - a major parameter controls physical processes such as climate temperature and wind 
waves etc. In turn, these processes control fine-scale deep seafloor morphology. Two third of 
the earth surface i.e. 362 million square km (70 %) is covered by the ocean. In order to 
understand the seafloor various methods such as application of remote acoustic techniques 
(Lurton, 2002), seafloor photographic and geological sampling techniques are well 
established. Echo-sounding through use of hull mounted transducer became familiar during 
World War II. Advantage of this technique lies with the rapid depth data acquisition. Due to 
the improvement of the material science, the designing of the low cost but high quality 
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transducers became more widespread during the year 1950. The high resolution single beam 
echo-sounder (higher frequency and narrower beam-width) was available in 1970. Besides 
single beam echo-sounding technique, which provides single data points beneath the sea, 
other high resolution remote acoustic techniques like side scan sonar and sub-bottom 
technique became popular. GLORIA side scan sonar (operating frequency: 6 kHz) as well as 
SEAMARC (operating frequency: 12 kHz) were extensively employed by USGS during the 
1980’s. Side scan sonar system offer seabed aerial view, however, they do not provide 
accurate depth information. This is primarily due to the phase measuring techniques 
applied to ensure higher coverage, and estimation of the depth near nadir regions is still 
contested. Nonetheless, the bathymetry of the side scan sonar systems based on the 
interferometric techniques such as TOBI (NERC, UK), DSL-120 (WHOI, USA) and Swath 
Plus (SEA Ltd, UK) were also used extensively. The system details are well covered in 
Blondel (2009).    

Single beam echo sounder replaced the lead-line methods from the 1920s onwards and with 
this, continuous records of depths along track of the ship were available. Single beam echo 
sounding technique came into common usage around the 1950s which was only possible 
after the improvement of transducer technology. The spatial resolution of such systems is a 
function of the half power beam width, and the transducer beam widths were available 
around 300-600. In order to provide higher resolution, narrow beam (half power beam 
widths, 20-50) techniques were introduced much later. These systems became fully 
operational for real-time attitudes like roll pitch correction since the 1960s i.e., introduction 
of electronic stabilization. Beam steering techniques were used for such application. Using 
narrow single beam echo-sounding systems, seabed relief from meter to kilometer can be 
recorded continuously along the ship’s track. But in order to generate a bathymetric map, 
several parallel profiles at short intervals are required. Multi-beam bathymetric system (Fig. 
1), give bottom profiles which are correlated with respect to the single central track, and 
allows more reliable correlation of intersecting tracks in a single strip high density depth 
survey. In 1970, the multi-beam bathymetric system became commercially available with 
additional facilities like real-time computation and data storage capabilities. Apart from 
depth determination, this sounding system is useful for various scientific and survey 
objectives, such as geological survey to characterize the seabed, geotechnical properties and 
resource evaluation such as polymetallic nodule, ridge research, gas hydrate studies, habitat 
research etc. The high resolution and high density bathymetry data is found to be 
economical since it maintains higher depth accuracies and coverage. Multi-beam echo-
sounder is a recent successor to single beam technique. Seabeam-multi-beam system was 
available in 1970's. Multi-beam technique utilizes multiple narrow beam transmission/ 
reception for a single transmission providing better seafloor coverage. Initial 16 beam 
Seabeam system had a limited coverage which was subsequently increased to 5-7 times of 
the centre beam depth. Numbers of beams were generally increased to have high-resolution 
beam-width varying within the 1.5°-2.2°. In India first multi-beam- Hydrosweep system was 
installed onboard Ocean Research vessel (ORV) Sagar Kanya (owned by the Ministry of the 
Earth Science, New Delhi), and it was operated by the National Institute of Oceanography 
during the year 1990 (Kodagali & Sudhakar, 1993). The Hydrosweep system used to form 59 
receiving beams having 2.2° beam-widths which were covering the seafloor over twice the 
centre-beam depth. Use of modern computers provide faster signal processing techniques 
connected with position fixing equipments such as Differential Global Positioning System 
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(DGPS) which helps in collocating depth data with the beam position. Extensive 
bathymetric data acquisition and seafloor investigation was carried out under various 
scientific projects like: survey for polymetallic nodule, "ridge" i.e., mid-ocean ridge research 
etc. Recently, mapping program of the 2.2 million km2 area of Exclusive Economic Zone 
(EEZ) of India using multi-beam system has been undertaken by the Ministry of the Earth 
Sciences, New Delhi, to which the Indian Institutes e.g., the National Institute of 
Oceanography, the National Institute of Ocean Technology, and the National Centre of 
Antarctic and Ocean Research are major contributors. Apart from acquiring the bathymetry 
data, multi-beam systems were modified to acquire backscatter data also. Backscatter 
information of the seafloor provide textural aspect of the seafloor i.e., idea about the seafloor 
sediment material and small scale roughness. This information along with the bathymetry 
for structural aspect is extremely useful to understand the seafloor. Backscatter strength 
values can match with the conventional side scan sonar system and offer side scan sonar 
data along with the bathymetry. Moreover, angular backscatter strength data can be utilized 
to estimate quantitative seafloor roughness parameters such as sea-water-floor interface as 
well as sediment volume roughness. Again, at NIO, modification in the Hydrosweep – 
multi-beam system was made in 1995. Significant seafloor studies are being carried out at 
NIO during the last two decades where shallow and deep water bathymetric surveys have 
become compulsory for seafloor studies. Various seafloor segmentation techniques to 
classify the seafloor were initiated. Numerical based inversion techniques along with the 
soft computational techniques were used (Chakraborty et al, 2003). Present study will 
endeavor to elucidate modern techniques to understand seafloor processes and illustrate 
them with appropriate examples around the Indian Ocean.  

 

Fig. 1. Transducer arrays and signal processing systems used in multi-beam techniques. T.V. 

Gain, D and Z are the Time Varied Gain (TVG), depth and time display units respectively.  
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2. Indian Ocean bathymetry 

The Exclusive Economic Zone (EEZ) of India is covered with a variety of minerals of 
economic interest. The EEZ extends up to 200 nautical miles from the coastline. The coastal 
state has the right to explore and exploit the resource and protect the environment. The non-
living resources present in the EEZ around India constitute scope for the exploration of 
hydrocarbon, calcium carbonate and phosphorite etc. Apart from that, it has also suitable for 
hydrothermal mineral exploration in the Andaman back arc basin. Multi-beam bathymetric 
mapping is essential to understand the seabed morphological aspects of these areas in order 
to acquire scientific and engineering information from the point of view of exploitation. 
Multi-beam surveys conducted around western continental margin reveals the presence of 
many small to medium scale seabed topographic features which were not seen in the 
previous exploration using single beam echo-sounding systems. Some of the seafloor 
features will be covered in this article in terms of deep as well as shallow water areas.  

2.1 Bathymetry of shallower areas 

Small scale topographic prominences were seen during the echo-sounding surveys, those 
are formed of algal and/or oolitic limestone on the outer continental shelf off many tropical 
coasts. Similar features were observed during the course of multi-beam echo-sounding 
survey on the "Fifty Fathom Flat" off Mumbai, the west coast of India (Nair, 1975). The shelf 
width off Mumbai is 300 km. The outer 250 km of the shelf, have depth within the 65 to 
100m. Small scale features such as pinnacles having heights generally varying from 1-2m, 
occasionally reaching a maximum height of 8m at some places along with the associations of 
trough like features. Progressive increase in the relief is observed as one proceeds from 
shallow to deep waters. In addition to these features, mound shaped protuberances are also 
varying from 2000-4000m. The height of such mound shape features are varying within the 
6-8m. These features are prominently observed beyond the outer shelf of 80-85m, and shelf 
break in this area occurs at 95m water depth. Single beam bathymetry available on this 
margin showed reef-like features and large mounds, both made up of aragonite sands (Rao 
et al, 2003). The dimensions of these features needing detailed multi-beam survey. It is well 
known that during the Last Glacial Maximum (LGM) (18,000 14C yrs BP), the Glacio-eustatic 
sea level was at about 120-130 m below the present position (Fairbanks, 1989). Thereafter the 
sea level started rising largely due to the melting of glacial ice. The carbonate platform 
measuring about 28000 km2, extending 4 degrees of latitude lies between the 60 to 110m 
water depths on the outer continental shelf of the northwestern margin of India. Although 
the platform lies off major rivers such as Narmada and Tapi, it contains <10% terrigenous 
material. The relic deposits on the carbonate platform are largely carbonate sands. It is 
interesting to know how carbonates developed when one considers the geographic setting 
(off major rivers), age of the sediments of the platform, and environmental conditions 
(intense monsoon) during the early Holocene (Rao & Wagle, 1997). The absence of 
terrigenous flux on the platform and continued carbonate growth until 7.6 kaBP, implies 
that the riverine flux either filled the inner shelf or diverted towards the south under the 
influence of a southwest monsoon current. Therefore, detailed high resolution multi-beam 
bathymetry survey should be carried out to understand whether this is biohermal or 
manifestation of physical processes during lower sea levels. This, in-turn helps to identify 
the factors inhibiting the terrigenous flux on to the platform and processes operative during 
lowered sea levels. Below, multi-beam bathymetric map of “Fifty Fathom Height” off 
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Tarapur, Mumbai is presented (Fig. 2). The water depth varies from 70-120m having vertical 
exaggeration of thirty providing the clear indication of small scale reef like features. The 
data was acquired using EM 1002 multi-beam system installed on-board Coastal Research 
Vessel (CRV) Sagar Sukti. 

 

Fig. 2. Multi-beam bathymetric map of the "Fifty Fathom Flat" off Mumbai covering 
distances along northern and southern axes are 28.25 km and 17.75 km respectively.  

On the western continental shelf of India, the middle and outer shelf environment, beyond 
60 m depth, is uneven and is characterized by the presence of relict carbonate-rich sediments 
and a variety of limestones. Numerous prominent reefal structures between water depths of 
38 and 136 m have been identified, having positive relief, which is believed to be due to the 
biohermal growth. These reefs occur seaward within the inner and outer shelf transition 
zone, as significant number of peaks, pinnacles and protuberances of different heights. The 
height varies from <1 m to 14 m. In shallow environments, often the reefs are buried below 5 
- 10 m thick sediments. Bathymetry data of the western continental map is shown, which 
has also been acquired using EM 1002 system. Depth variation of 60-85m is shown off 
northern part of the Goa. Small-scale structures as discussed are prominently seen in the 
figure (Fig. 3) covering 197 km2 area are presented with a vertical exaggeration of 10. 
Progressive narrowing of the shelf is observed in the western continental shelf. It is around 
60m wide off Goa, and shelf break occurring at 130m water depth.  Terrace like features are 
observed here, however, such features are not so prominent than the off Mumbai area. 

Quasim & Nair (1978) discovered a living coral bank at 80m water depth, about 100km from 
the coast off Malpe (Karnataka state), west coast of India and named it as Gaveshani bank. 
The bank has a height of 42m, length of 2km and width of 1.66 km having area of 3.00 km2 
(Figure 4). Walls of this bank rise steeply from the seafloor.  Sediments collected by grabs 
from the seafloor around the bank were silty sand, predominantly carbonate, consisting of 
shells of foraminifera, fragments of mollusks and corals. The radio carbon age of the 
sediments and rocks from the outer continental shelf is between the 9000 and 11000 yr. This 
period corresponds to Holocene when sea level began to rise or when it was in transgressive 
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state. Living corals were acquired from the bank and five major species were identified. 
Coral growth in the area might have started in the Pleistocene when sea level was low. 

 

Fig. 3. Multi-beam bathymetry map showing small scale features off Goa covering distances 
along northern and southern axes are 17.50 km and 13.30 km respectively.  

2.2 Bathymetry of deeper areas  

In (Fig. 5) deep water areas from three Indian Ocean regions are presented. Locations of the 
present interest include: West of the Andaman Island (WAI), Western Continental Margin of 
India (WCMI) and Central Indian Ocean Basin (CIOB). The topographic data was collected 
using multi-beam echo sounder Hydrosweep system. Quantitative estimation of roughness 
parameters from a range of seafloor areas may help to understand the genetic linkages 
among the area seafloor features (Chakraborty et. al, 2007). Bathymetric data from the 
Andaman subduction zone in the Bay of Bengal (site A) consists of plain, trench, slope 

 

Fig. 4. Multi-beam map of the coral bank- Gaveshani bank covering distances along 
northern and southern axes are 2.40 km and 1.40 km respectively. 

www.intechopen.com



 
Bathymetric Techniques and Indian Ocean Applications 

 

9 

 

Fig. 5. Multi-beam Digital Terrain Model (DTM) & 3D perspective maps of the deep water 

sites; 'A'- (West of Andaman Island:WAI) (Chakraborty and Mukhopadhyay, 2006); 'B'- 

(Western Continental  Margin of India : WCMI) (Chakraborty et al, 2006); SITE 'C'-(Central 

Indian Ocean Basin: CIOB) (unpublished data). Please see Fig. 6 for locations and 

dimensional details etc. of the study area. 

and ridge off the Andaman Islands (Chakraborty and Mukhopadhyay, 2006). An area 
covering 25,000 km2 around Andaman subduction zone was used to produce swath 
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bathymetric map (Fig. 5). In this area the heavier Indian plate is shoving below the lighter 
continental Eurasian plate and causes the subduction morphology and associated structural 
features. The depth values were found to be varying between the 3600 m (western end of the 
trench side) to ridge areas (towards the Island side) having seafloor depth of 1000 m. In this 
region, the bathymetric grid cell size is taken to be 150 m, and the bathymetry map is 
presented. Data along three survey tracks (A to C) (Fig. 6) across the trench and other areas 
were collected to constrain exact physiographic profiles of the trench and the ridge. About 
20,500 km2 area was surveyed off the central west coast of India (WCMI) (Chakraborty et. al, 
2006 & Mukhopadhyay et al, 2008). WCMI data (site B) was acquired between the Karwar and 
the Kasargod. As mentioned, the seafloor topography in the area varies from nearly flat 
continental shelf to lower slopes (Fig. 6). The slope morphology appears to have modified by 
the presence of physiographic highs of varied dimensions and slump related features. In site B 
(WCMI) depth varies from shallow water (~ 64 m) to deep water (~2200 m). In order to obtain 
evenly spaced data, the raw data were first gridded. In site B, 100 m was found to be a suitable 
grid cell size, later on three bathymetric profiles namely D, E, and F covering outer shelf, Mid- 
Shelf Basement Ridge upper slope, and Prathap ridge of the basin were extracted respectively. 
In CIOB (site C), the gridding was carried out using suitable grid cell size of 200 m. 
Bathymetric  maps (Fig. 5) were prepared having water depth varying between 4200 – 5800 m 
and later on five bathymetric profiles were extracted G-K. Of these, three E-W profiles (G-I) are 
situated in the northern and southern end. Other two N-S profiles (J and K) are situated along 
west and eastern end. It has been observed that, the western region of the site C is 
comparatively shallower than the eastern side and the seafloor morphology varies from 
medium to large scale and has E-W trending in the central part of the area.  A chain of 
seamounts trending along N-S direction was also observed in the extreme eastern region of the 
study area. Also, few seamounts were observed in the south-west section of the map. The five 
depth profiles (G, H, I, J and K) from grid data are studied for roughness information from 
north central, south, east, and west part of the survey area respectively. 

3. Bathymetric technique using multi-beam 

3.1 Interpreting bathymetric data to understand the seafloor 

Measuring the seafloor roughness and associating it to different morphological processes is 
a major goal of this section.   

3.1.1 Spectral parameter estimation 

To estimate the spectral or power law parameter, Welch method (referred in Chakraborty et 
al., 2007) was used. In this method, all the input series or the bathymetric profile is first de-
trended to remove the best fit linear trend of the original profile. Then the first and last 10% of 
each profile is tapered with a cos2 function. This minimizes the edge effects. A Fast Fourier 
Transform (FFT) algorithm is then applied, and the resulting complex spectrum is squared to 
obtain a periodogram, which is an unbiased estimator of the true power. The periodogram is 
presented as a function of wave number k (cycles per kilometer), and the results are then 
plotted in a log10-log10 plot. This form of power spectrum was originally suggested 
(Malinverno, 1989) on the basis that the topographic profiles are self-affine and concluded that 
different depth profiles may be characterized by different fractal dimension (D). Using 
regression technique, the power law on a logarithmic scale can be written as: log10 PH = (-β) 
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log10 k + log10 c. Comparing this equation with the straight-line equation reveals that ‘β’ 
corresponds to the slope of a straight line fitted to the periodogram and ‘c’ corresponds to the 
intercept. At this stage the straight regression line fitting is done for the entire range of log10 

(wave number) of the periodogram. The detailed post processing activity is shown (Fig. 7). 

 

Fig. 6. Contour maps and chosen tracks for data analyses (adapted from Chakraborty et al., 
2007). Sites; 'A'- (West of Andaman Island :WAI) (total area: 25000 km2, maximum: 3600m  
and minimum depth: 1000m); 'B'- (Western Continental  Margin of India : WCMI) (total 
area: 25500 km2, maximum: 2200m  and minimum depth: 64m); 'C' - (Central Indian Ocean 
Basin: CIOB) (total area: 22000 km2, maximum: 5800m  and minimum depth: 4200m). 
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Fig. 7. Flow chart provides data processing and analyses steps (adapted from Chakraborty 
et al, 2007). 

3.1.2 Amplitude parameter 

The second parameter that is used to characterize the roughness of the profile is an 
amplitude parameter (S). A robust estimate is the median of the absolute deviation (MAD) 
from the sample median is given below:  

 MAD = median | z(x) - MEDIAN [Δz(x)] |  (1) 

where Δz(x) is the first differences of the depth series z(x). An estimate of 'S' from MAD is 
defined as:  

 S = 1.4826 * MAD  (2) 
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Segmentation carried out to nine long profiles from three different physiographic provinces 

give 35 segments. Three profiles (A, B and C) for site A of WAI region provide 12 segments 

(Fig. 8). Our algorithm offers no segmentation to profile A from deeper section of this area 

having depth range higher than the 3000 m and 225 km of profile length towards the 

sedimentary provinces of trench side (Fig.5). Four segments were obtained for profile B 

which lies between the sedimentary trench and ridge area having an undulating seafloor at 

similar depth range. For profile C from relatively shallower depth section of ridge area 

provides seven segments at depth range 2000 -2400 m. Similarly, for site B from WCMI the 

profile D from shallower shelf (depth within the 100 m) presents only two segments. Eight 

topographic segments were obtained for profile E from the Mid-Shelf Basement Ridge. 

Distinctly different segments for flank parts (E4 and E6) along the bathymetric high E5 of 

the profile E are seen (Fig. 8). However, four segments obtained for deeper section of the 

profile are from sedimentary areas of the Prathap Ridge (conical features of the heights in 

Fig. 5). For this profile F, two highs having significantly different heights, are distinctly 

segmented. Overall, fourteen segments are made for this part (site B) of the physiographic 

provinces. For CIOB (site C), five profiles provide only nine segments from the deeper part 

of the seafloor (~ 5000 m depth) (Figure: 8). From this basinal part of the seafloor, west to 

east profiles G and H from the northern and middle part of the area do not offer any 

segment. Interestingly, remaining depth profile (I) from E-W direction provides four 

segments. Profiles J from western and K from eastern end provide two and one segments 

respectively. Once segmentation of the profiles are carried out, the estimation of power law 

exponent (β) for segmented profiles are important for calculation of fractal dimension. The 

bathymetric profiles extracted from the three different sites viz. A, B and C have sampling 

intervals of 150 m, 100 m and 200 m respectively. Hence, the extent of the periodogram on 

the higher wave number side in terms of log10(wave number) is limited to 0.50, 0.65 and 0.40 

for site A, B and C respectively i.e., the true drop in power occurs somewhere between the 

wavelengths ~20 to ~0.2 km for Hydrosweep system operating at 15.5 kHz frequency (Fig. 

8). Hence suitable limits are applied to the periodograms for curve fitting in order to 

estimate the spectral parameters (power law). In Fig. 8, power spectral density versus wave 

number plots for segmented sections (C4, E2, and J1) of the profiles C, E and J are presented 

respectively as an example.  

3.1.3 Fine scale analyses using ‘β’ and ‘S’ parameters 

Overall, the ‘’ values are always negative and having large magnitudes, representing 

terrains which are relatively rough at large and smooth at smaller scales. Conversely, lower 

magnitudes of the ‘’ parameter represent terrains which are smoother at large scales than at 

small scales. The scatter diagram between the power spectral exponent () and amplitude 

(S) parameters offer interesting results (Fig. 8).  Overall variations in the roughness of these 

study areas may group in distinct clusters. For WAI physiographic provinces, the seafloor 

along the profile from sedimentary provinces of the trench side of site A possesses β and S 

values: 0.93 and 3.55 respectively. Profile A from sedimentary provinces of the trench side 

possesses β and S values: 0.93 and 3.55 respectively. As mentioned, high β corresponds to 

rough seafloor, while S quantifies amplitude (overall energy) of an area. For example, 

profiles having similar β but higher S will correspond to rough profile. Diagram (Fig. 8a) 
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for this physiographic province indicates an isolated point (A1) for a rough seafloor from 

trench side. However, four segmented profiles (B1– B4) between the trench and ridge side 

provide (β= -1.87 and S= 6.50),  (β= -1.64 and S= 10.20), (β= -2.00 and S= 8.86) and (β= -

1.77 and S= 13.90) respectively. Similarly, for seven segmented sections of profile C from 

adjacent ridge area from Andaman Island provide variations of spectral parameter (β) 

value between (2.19 to 3.02) and amplitude parameter S value (15.20 to 3.20). A critical 

analysis of these results indicate significantly lower β in comparison with the segments of 

the profile A i.e., smooth seafloor than the segments from the profile B & C. No clear cut 

cluster formation is seen in WAI region. Moderately to higher amplitude (S) parameters for 

profiles B&C data and relatively higher β value for profile A is indicative of higher large 

scale (B&C) and small scale (A) seafloor roughness respectively.  

For site B of the WCMI, estimated ‘’ and ‘S’ values of fourteen segmented sections are 

found to vary between (-3.56 and -0.90), and (0.24 and 22.28) respectively. The scatter 

diagram between the power spectral exponent () and amplitude (S) parameters offer 

interesting results (Fig. 8). The overall roughness observed in the study area groups in two 

distinct clusters. Cluster one includes segments from structural rises like: E6 (flank related to 

Mid-Shelf Basin Ridge), F1 (highs related to the Prathap Ridge) and F3 (S=22.28 consisting of 

two to Mid-Shelf Basin Ridge), F1 (highs related to the Prathap Ridge) and F3 (S=22.28 

consisting of two small closely associated highs and not included in Fig. 8). These areas 

show high S and low to medium  values, which suggest large scale seafloor roughness. In 

contrast to this, another cluster comprises the remainder of the areas, including a gently 

sloping outer shelf and part of the western shelf margin basins. The seafloor here shows low 

S and moderate to higher  value, suggesting dominantly small-scale undulations. A 

comparison of the clustering of the structural rises with that of the outer continental shelf 

and basin regions (Fig. 8) indicate differences in their mode of origin (volcanic and plutonic, 

respectively). For example, the Mid-Shelf Basement Ridge and the Prathap Ridge are 

believed to have been formed by emplacement of volcanic material during the separation of 

India and Madagascar in mid-Cretaceous times. Detailed tectonic and other aspects of these 

areas in terms of clustering are well covered in Chakraborty et al (2006).  

The analyses based on the spectral and amplitude parameters in the study site C (CIOB) 

has a seafloor depth vary between 4200 m and 6000 m depth. The estimated ‘’ and ‘S’ 
values of the E-W profiles (G, H and I) are found to be varying between (-1.14 and -2.70) 

and (7.44 and 4.87) respectively (Fig. 8). Also ‘’ and ‘S’ values of N-S profiles are found to 
vary between (-1.70 and –2.083) and (13.33 and 12.75) respectively. If we remove data 
points related to the southernmost E-W segmented sections (I2, I3 and I4) of the profile I, 
the β parameter becomes comparable (-1.70 and -2.10) with N-S profiles (J and K), though, 
the amplitude parameter (S) are higher for N-S oriented profiles varying between (12.75 
and 13.49) than the E-W profiles (4.9 and 7.9). Though we observe most of the profiles / 

segmented sections are similar, as far as  is concerned, however, show clear-cut existence 
of two clusters due to variation in amplitude parameter. The amplitude parameters show 
difference between the E-W and N-S profiles i.e., the amplitude (S) for N-S oriented 

profiles are higher than the E-W profiles (Kodagali & Sudhakar, 1993). For similar  
values towards the E-W and N-S direction with higher amplitude for N-S profiles than the 
E-W indicate dominant large scale roughness for N-S profiles whereas E-W profiles 
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indicate dominant small scale roughness. This fact is prominently clear in the report (see 
Fig. 5) (Malinverno, 1990). 

3.2 Beam-forming technique to generate multi-beam data 

In a multi-narrow beam system, geometrically a cross fan beam is created using two hull 

mounted linear/arc transducer arrays at right angles to each other. A narrow beam is 

produced in a direction which is perpendicular to the transducer's short axis. In general, the 

arrays are designed using a number of identical transducer elements which are equally 

spaced and driven individually. An assumption of an array which is kept at the origin of the 

co-ordinate system in a xy- plane, is made here. The separation between the elements is 

equivalent to 0.5 λ, where λ is assumed to design wavelength of the transducer array. The 

farfield pattern for a linear array is given by (Chakraborty, 1986): 

The array factor f (θ, φ ) is presented by as: 

 |F (θ, φ ) | = |f (θ, φ ) |Element pattern|  (3) 

f (θ, φ ) =
n

n
n=1

A  exp (j k rm. R) 

where An is the complex excitation coefficient, which is assumed to be unity and  k=  2 / λ  

and n is the number of array elements. For above linear array: rn= dn i, where dn is the 

element separation from the origin, and i is the unit vector along the x-axis. The polar unit 

vector R can be expressed as: 

R= (Sin θ Cos φ) i 

The array factor for a linear array can be written as: 

f (θ, φ ) = 
n

n
n=1

A  exp (j k dn Sin θ  Cos φ) 

The amount of phase delay required between the transmitting elements to steer the beam 
along the specified direction (θo, φ o) may be expressed as: 

n =dn. k (Sin θ0 Cos φ0) i 

The above term is to be applied to the far-field pattern of a uniformly excited linear array of 
the additive type. The farfield beam pattern in the final form is rewritten as:  

 f(θ, φ) = 
n

n
n=1

A  exp j {(k dn Sin θ Cos φ) - (dn. k Sin θ0 Cos φ0)} (4) 

In equation (3) 

 Element pattern = Sin ( l Sin θ Sin φ) /  (Sin θ Sin φ)   (5) 

where l is the length of the element and is equivalent to the 3.0 λ. The final expression for the 

vertical farfield pattern can be obtained by substituting equation (4) and equation (5) in  
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equation (3). The farfield pattern of a multi-beam array of 40 elements is shown (Figure 9). 

The half power beam widths slowly increase: 3.0 to 3.6o as the beam steering angles 

increases. The computed half power beam-widths are generally narrow and are useful for 

high resolution bathymetric applications. Sidelobe 1evels around -13 dB for all the 

incidence angles are also seen. Sidelobes are also a concern in echo-sounding. There are 

certain techniques for suppression of the sidelobes, which significantly affect the 

performance of the array. For multibeam applications where many beams for different 

look directions are forming at a particular instant of time, sidelobes are assumed to be 

suppressed below -25 dB. This is necessary to avoid interference between the sidelobes 

and the main beam of the other directions. These sidelobe suppressions are accomplished 

by using Dolph-Chebychev window methods. Apart from that, sidelobe levels cannot be 

suppressed extensively beyond certain levels. Because it increases the width of the main 

beam and thus decreases the resolution. So suppressed sidelobe beam patterns around -25 

dB for multibeam transducer array are acceptable as considered by echo-sounder 

designers (de Moustier, 1993).  

 

 

Fig. 8. Segmentation of the representative track lines and power law fitted straight lines and 
scatter plot of three geological provinces (adapted from Chakraborty et al., 2007). 
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Fig. 9. Beam pattern for a 40- element linear array at different directions (adapted from Nair 
and Chakraborty, 1997). 

3.2.1 Importance of sound velocity and other parameters for bathymetry   

Using array transducers for beam-forming purposes the preformed beam directions are 

dependent on the used acoustic wavelength which is a function of the sound speed C, i.e 

λ=C/f,  where C is in m/s and f is in Hz. For any changes in the sound velocity (C), λ will 

change. The sound speed is dependent on temperature, salinity and pressure (depth). Chen 

& Millero (1977) had proposed an expression to compute the sound velocity. Sound speed 

changes occur mostly due to temperature and salinity variations. Hence, variations of ƛ 

value with the variations of sound velocity, will change the half power beam-width of the 

array and also shift the beam direction. Sound speed changes of 6.6 percent are possible for 

an echo-sounding system operating at arctic and Tropical waters (temperature difference of 

30°C). Similarly for λ variation of 3.3 percent, a beam rotation of 0 to 45° will introduce an 

error amount of 1.9° for a narrow beam of 2° beam-width. Also for swath bathymetry 

application, the variation of sound speed over the entire water column must be considered. 

The angle of arrival of the different beam is affected due to the refraction effect which is 

dominant, for the outer beams of the array system. In order to correct: the refraction error in 

echo-sounding systems, computation of the sound system should be performed by 

integrating the sound speed profile from the depth of the array to the bottom. The harmonic 

mean of the sound, speed is preferred over the average sound speed (Maul & Bishop, 1970 

referred in Nair and Chakraborty, 1997). The multi-beam echo-sounder systems acquire 

bathymetry data along with other data can be used in scientific studies. As observed most of 

the multi-beam data is occasionally recorded with errors (de Moustier and Kleinrock, 1986), 

are either geometrical or refraction in nature. But to obtain a map that can be used either for 

navigation or scientific purposes, it is necessary that the data is error free. As per IHO 

standards the refraction affected data in shallow waters include uncertainties from 

navigation point of view. Also, to use in scientific applications it is vital to eliminate these 

errors from the bathymetry data. The refraction error influences the slant ranged beams and 

can be easily identified as the swath shape deviate in creating artificial features known as 

refraction artifacts. 
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For development of echo-sounding devices, certain parameters are of paramount 
importance to obtain optimum signal to noise ratio. Source level i.e. the transmitted power 

measured at 1m from the transmitting array is an important parameter. Similarly, 
transmission loss in the medium is also compensated at TVG (Time Varied Gain) module of 

the receiver. Apart from that, the noise level is also another important issue for the designer 
of the multibeam system. The noise level parameter is dictated by the location of the array in 

the hull. i.e., array should be kept in the forward part of the ship's hull, which is closest to 
the central line. The machinery noise is minimum in this area of the ship. The positioning of 

the array should also be decided based upon the ship's movement due to roll and pitch. 
Therefore, the array should be maintained submerged throughout the ship's movement. The 

major signal processing event which is known as beam-forming takes place at the receiver 
end of the array. The received signals are pre-amplified and each channel signal (array 

element) undergoes a correction for TVG loss in the correction unit and then beam forming 
techniques are applied to obtain multiple beams using predetermined delays for different 

directions. The theoretical backgrounds of the multi-beam signal processing methods have 
already been mentioned. The beam-formed waveforms are tracked at a bottom echo module 

for different preformed beam directions in order to determine the depth.  

3.2.2 High resolution beam-forming 

In multibeam sounding system, the delay-sum method (the method mentioned above) is 
used to obtain the beam-formed output in different directions. The size of the transducer 
array is a function of the beam width i.e., the spatial resolution of the system. At 15 kHz 
design frequency for a beam width of 2°, the approximate size of the transducer array has to 
be around 3 meters, which is relatively bulky. So a study is important to examine the effect 
of various methods of beam-forming which require a smaller array size by using increased 
signal processing alternatives to the dry end of the multibeam system. These techniques are 
the 'Maximum Likelihood Method' (MLM), and 'Maximum Entropy Method' (MEM) (Jantti, 
1989 & Chakraborty &: Schenke, 1994).  

The situation is more complicated when multibeam systems are operated over seamounts, 

slopes or ridge areas. The multiple sources of interference arrivals from different directions are 

well known. This condition significantly affects the map resolution so that an assumption of 

coherent and incoherent source arrival conditions is introduced to study the performance of 

the high resolution techniques. In Fig. 10, we present high resolution (MLM) beam patterns for 

incoherent and coherent sources. We assume that the sources are separated at 2° and 8° for 

different input signal to noise ratio. We observe that for closely placed sources (2°), the sources 

are unresolvable for coherent and incoherent sources. For large source separations of 8° the 

sources are resolvable for both the source conditions. The number of elements was chosen to 

be 16 which is one-fourth of the conventional array size used for multibeam systems. This 

techniques are affected due to the low signal to noise ratio conditions, and therefore needs to 

be studied using different algorithms such as ESPRIT, MUSIC, etc (Jantti, 1989). The high 

resolution beam-forming technique must also consider its use towards the real time 

application. It is unlikely that a single algorithm will satisfy all the necessary conditions to 

generate noise free bathymetry output. Development of a decision making network should be 

the next stage of development. This network will find suitable high resolution algorithms in 

real time and would be useful for multi-beam applications. 
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Fig. 10. Multi-beam High-Resolution beam patterns (MLM: Maximum Likelihood Method) 

for 16- element array. The sources are incoherent and coherent types of different signal 

strengths (adapted from Nair and Chakraborty, 1997).  

4. Bathymetry and backscatter data 

However, bathymetry only provides the shape of the seafloor features and depends on the 
resolution of the sounding system. To characterize the nature of the seafloor surveyed, 
studies of signal waveforms and their variations must be made, i.e. understanding of the 
backscatter signal is essential. Using the capabilities of multibeam system to provide 
backscatter signal from different incidence angle, modeling can be performed for seabed 
classification. 

4.1 Angular backscatter data & quantitative seabed roughness 

Multibeam systems are useful to derive angular dependent backscatter function of the 
seafloor. Besides bathymetry, different types of seafloor can be differentiated based on the 
backscatter values obtained at different incidence angle by the multibeam echo-sounder.  
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The aim of such study is to determine whether bottom types can be determined using 
angular backscatter functions. In addition, determination of the influence of the sea water-
floor interface or sediment volume roughness parameter is possible. The Multibeam 
technique is particularly suitable to the task of deriving angular dependence of seafloor 
acoustic backscatter because it provides both high resolutions related to such measurements 
and bathymetry. Though it is difficult to calibrate the backscatter data, quantitative 
estimation may be made even for the relative values. The use of composite roughness theory 
(Jackson et al, 1986) is being made to obtain seafloor parameters. In the composite roughness 
theory, Helmholtz –Kirchhoff’s interface scattering conditions and perturbation conditions 
were used including the volume scattering parameters. Extensive modeling studies have 
been carried out to use angular backscatter data to obtain quantitative roughness and 
sediment type parameters. A significant amount of work is carried out to obtain quantitative 
seafloor roughness parameters using bathymetric system such as multi-beam and single 
beam system (de Moustier & Alexandrou, 1991). The main challenge lies with this 
application is connected with the calibration, and work is still in progress to make a 
bathymetric system to obtain quantitative roughness parameters. An example of the use of 
inversion modeling from nodule bearing seafloor is provided (Fig. 11). The interface 
roughness and sediment volume parameters are estimated using the composite roughness 
theory (Chakraborty et al, 2003) from CIOB.  

 

Fig. 11. Measured (dotted line in bold) and model backscatter strength (decibels) due to sea-
floor-interface roughness (crossed line) and sediment volume roughness overlying sea-floor 
interface roughness (dashed line) versus incidence angle for four study areas (adapted from 
Chakraborty et al, 2003). 
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4.2 Seafloor backscatter image data 

The side scan modifications to the multibeam system are also a popular technique. The raw 
side scan data requires significant image enhancements. Extensive work on image 
enhancements techniques has been carried out for side scan systems such as GLORIA and 
SEAMARC (Mitchell & Somers, 1994). Large scale implementation of these techniques is made 
for multibeam systems.  Application of multi-beam bathymetric data provides interesting 
seafloor features. Besides obtaining bathymetric data for seabed characterization backscatter 
data is also important. However, use of raw multi-beam backscatter image data is limited due 
to the presence of inherent artifacts. Generally, angular backscatter strength data show higher 
values towards the normal incidence angles especially for smooth seafloor compared to outer-
beam angles. Therefore, off-line corrections are essential to compensate outer-beam backscatter 
strength data in such a way that the effect of angular backscatter strength is removed.  
Moreover the effect of on line gain functions employed to the multi-beam is also to be 
removed apart from the effect of the large scale seafloor slope along and across track 
directions. These techniques employed to backscatter strengths data of the multi-beam system 
provides a normalized image of the seafloor suitable for studying sediment lithology.  

EM 1002 multi-beam echo-sounding system installed onboard CRV Sagar Sukti has 111 pre-
formed beams i.e., recording 111 depth values for a single ping. In addition to the depth, the 
system also provides quantitative seafloor-backscatter data, which is utilized to generate 
normalized backscatter imagery for the study of spatial distribution of fine scale seafloor 
roughness and textural parameter. Originally during the time of acquisition and consequent 
storage, individual angular backscatter strength data is corrected for number of losses and 
changes such as Time Varied Gain (TVG), i.e., propagation losses, predicted beam patterns 
and for the ensonified area (with the simplifying assumptions of a flat seafloor and 
Lambertian scattering). This data then gets recorded in a packet format called datagram 
stored for every ping. A very brief discussion of the developed algorithm named as 
PROBASI (PROcessing BAckscatter SIgnal) II applied to raw backscatter data of the EM 1002 
multi-beam system in order to obtain normalized backscatter image data. 

In EM 1002 system online amplifier gain correction is accomplished by applying mean 
backscattering coefficients such  as BSN and BSO applied at 0º and at crossover incidence 
angles (normally 25º) respectively. Consequently the raw backscatter intensities recorded in 
the raw (*.all) files are corrected during data acquisition employing Lambert’s law (Simrad 
Model). However, for lower incidence angles (within the 0-25º) the gain settings in the 
electronics require a reasonably smooth gain with incidence angle i.e., the gain between BSN 

and BSo changes linearly. The sample amplitudes are also corrected suitably incorporating 
transmitted source level and transducer receiver sensitivity. Further, sonar image 
amplitudes, though corrected online, needs further improvement to generate normalized 
images for the seafloor area. This is especially needed for incidence beam angles within the 
+/10º angles (to remove routine artifacts in the raw backscatter data near normal incidence 
angles) (Fig. 12). Hence, post processing is essential to be carried out even for moderately 
rough seafloor. In addition to the artifacts close to normal incidence beams, the EM 1002 
multi-beam data show some residual amplitude due to beam pattern effect, and thus real 
time system algorithm is unable to compensate such routine situations. As we know that, 
the EM1002 multi-beam echo-sounder system automatically carries out considerable amount 
of processing on raw backscatter intensities. Even then, the data show some residuals, which 
are required to be corrected before further studies. These fluctuations may be due to: Seabed 
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Angular Response and Transducer Beam Pattern Effects. Four basic corrections are made 
during the application of the PROBASI II software: data extraction and geometric 
corrections, heading correction, position correction, bathymetry slope correction and 
Lambert’s law removal. In short the entire developmental activities are divided into four 
modules adopted through following procedure (Fernandes & Chakraborty 2009): 

 

Fig. 12. Flow diagram of multi-beam processing algorithm (PROBASI II), and HPF & LPF 

are the high pass filter & low pass filter respectively. 
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Module-I: This extracts data from seabed image, raw range and beam angle, depth, attitude 
and position datagrams (EM Datagrams Manual). The module applies heading, position, 
slope correction on data and eliminates the effect of Simrad Model from data. 

Module-II: It employs a coarse method. The module filters out maximum residuals or 
spikes in the backscatter strengths. This improves the image by 20% over the raw 
backscatter image.  

Module-III: This module utilizes iterative beam pattern removal method in a finer sense. 
Since the coarse method does the maximum job of removing center beam and beam pattern 
effects. Still to some extent small beam pattern residuals remain in the data. The employed 
fine method removes such residuals more prominently. 

Module-IV: The noise is an influencing factor on the quality of backscatter strengths. Since 
this type of data directly deals with the signal strength, sometimes the data gets recorded 
along with the noise occurring at the face of the transducer. Therefore, use of the filters 
becomes necessary. This module uses a combination of high pass and low pass filters.  

4.3 Use of multi-beam bathymetry and backscatter data for pockmark studies 

In this section we have presented a study example from western continental margin of India 

where backscatter image and bathymetric data is applied in a combined manner to generate 

a better picture of the proxies related to non-living resources such as pockmark (Dandapath 

et. al, 2010 and references therein). The pockmarks are potentially important for studies of 

marine resources and environments because of their relationship with venting of gas or 

other fluids generated by biogenic or thermogenic processes. Multibeam echo-sounders are 

potentially useful for locating and mapping these pockmarks. The presence of fluid escape 

features like seafloor pockmarks was first introduced by King & MacLean (1970). Generally, 

these are either hemispherical or disc shaped seafloor depressions having steep sides and 

flat floors. Very often, pockmarks exist in the continental margins (Hovland & Judd, 1988). 

In plan-view, these are usually circular, elliptical or elongated, and may be composite in 

shape. Present study area stretches over 105 km2 offshore Goa along WCMI (Fig. 13), in 

water depths ranging from 145 m in the northeast to 330min the southwest. The average 

slope of the study area is 0.900, whereas the slope towards the shallower depth is 0.610, and 

towards the deeper side this slope changes over to 1.680. Rao et al., (1994) have reported that 

the recent clay-rich mud overlies the inner part of this slope area while relict sand is 

abundant in the outer slope area. In this work, using multibeam data, set of pockmarks were 

observed close to NNW-SSE trending fault zone. The margin is believed to have been 

formed in two phases in geological past (Mukhopadhyay et al., 2008). Interestingly, these 

pockmarks (total: 112) are observed nearly 50 km away from a BSR zone (Rao et al., 2003) 

marked in the Fig. (13b). Acoustic backscatter strength of the area ranges from -26 to -57 dB. 

Such backscatter variability is related to the seafloor slope, sediment type and relief 

(Blondel, 2009). Backscattering strengths at different water depth for each individual 

pockmark centre. In the deeper water (>210 m), many pockmarks show high backscatters 

centrally (-27 to -40 dB). Towards the west in deeper water, the seafloor has strong 

backscatter (-35 dB) suggesting coarser grained sediment at the seafloor because of increased 

acoustic impedance, and roughness-related scattering from coarse sediment. In shallow 

water (<210 m) where seabed gradients are gentle, normally backscatter strength is low. The  
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Fig. 13. (a) Location of study area. Red highlighted lines and grey shade indicate the 
identified bottom simulating reflectors. MSBR refers to Mid-Shelf Basement Ridge, and WCF 
indicate West Coast Fault. (b) Backscatter map of the study area showing isobaths with an 
interval of 20 m depth. Pockmarks are indicated by crossed circles. Black, blue and red 
circles with cross marking represent circular, elliptical and elongated pockmarks, 
respectively. Dashed lines indicate location of identified faults. Solid black lines represent 
location of the corresponding profiles for Fig 14. (adapted from Dandapath et al, 2010).  
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area is covered by soft terrigenous clayey mud producing average seafloor backscatter 

strength (-45 dB). Occasional discrete curvilinear, circular or clustered patches of higher 

backscatter (-32 dB) occur towards the shallower part (Fig. 14). Strong backscatter (-30 to -38 

dB) is also observed around the fault. The variation in backscatter observed between these 

different areas is broadly comparable with results of calibrated acoustical measurements 

between different known sediment types. 

  

Fig. 14. Backscatter strength and bathymetric profiles for three locations and adjacent areas 
are shown. Stronger backscatter strength from the centres and upper sidewalls  are 
distinctly indicated. Locations of these profiles are also marked in Fig. 13. (adapted from 
Dandapath et al., 2010) 

We have visualized an abrupt increase in backscatter strength around the pockmark 

depressions (Fig. 14), and backscattering strength is also significantly higher within the 

pockmark-dominated areas, as reported elsewhere. The variability of backscatter strength of 

the pockmarks is also affected by slope, sediment type and relief of the seafloor. Average 

backscatter strength in the deeper area (-35 dB) is higher compared to the shallower area (-

45 dB) due to different acoustic impedance and roughness-related scattering. High seafloor 

backscatter in the deeper pockmark zone is attributed to coarse sediment, which might have 

been left inside the pockmarks due to winnowing of fine grained sediments. Likewise, the 

coarse fraction could also result from the precipitation of diagenitic or authigenic minerals 

associated with fluid venting. Low backscatter strengths in the shallower areas are caused 

by different types of recent sediments (clays). In such areas, however, occasional high 

backscatter patches surrounded by low backscatter ones are associated with sediment 

movement as observed elsewhere. Although, the backscatter over the whole study area 

widely varies between (-26 to -57 dB), but within the pockmark itself, it is limited (-27 to -48 
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dB) i.e., much higher. In this section we have presented pockmark morphological 

parameters using multibeam bathymetry data and GIS. Combined observation of 

bathymetry and backscatter data enabled us to assess and estimate the morphological 

parameters of the pockmarks. We have detected a total of 112 pockmarks of which 43 are 

circular, 51 are elliptical and the remaining 18 are of elongated type (Fig. 15). A brief account 

of dimensions, shape, cross-section, orientations, and spatial distribution of the pockmarks 

is given (Dandapath et al, (2010) and references therein. Most pockmarks are small to 

medium sized, with lengths varying from 70m to 514m and widths from 50m to 136m. The 

average length and width are 157 m and 83 m, respectively. Pockmark vertical relief varies 

from 0.7 m to 5.0 m with an average of 1.9 m. In addition, there are 11 and 16 pockmarks of 

relief >3 m and <1 m respectively. 

 

Fig. 15. Perspective view of bathymetry of typical pockmarks that are (a) circular, (b) 

elliptical, (c) elongated, (d) composite and (e) and (f) forming chain (scale is approximate; 

contour interval 0.5 m) (adapted from Dandapath et al., 2010). 

5. Conclusions 

The work embodied in this article presents the detailed methods to study the important 

aspects of the bathymetric techniques. The historical background involved in the 

development of the bathymetric system is outlined. Present day bathymetric systems such 

as single and multi-beam echo-sounding system developments have direct impact due to 
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current technology level. For example: the wet end of the system i.e., transducer is 

developed significantly due to the material development taken place in last two decades. 

Moreover, development of computer technology allows faster beam-forming and associated 

signal processing techniques to work in real time. The involvement of GIS (Geographical 

Information System) in bathymetric mapping also has contributed superbly.  

We have presented shallow water multi-beam bathymetric data from three geological 

important areas of the western continental shelf of India. The acquired data, and subsequent 

processed 3D output from three different environments visualizes the level of the 

technology to understand the earth related subject. The qualitative description of the 

seafloor processes along with the analyses presented here from “Fifty-Fathom Height” off 

Mumbai, northern part of Goa, and coral bank off Malpe generate significant interest. The 

numerical technique such as spectral methods employed to the bathymetric data of the 

deeper part of the western continental margins of India such as: western Andaman Island 

(WAI), western continental margins of India (WCMI), and central Indian Ocean basin 

(CIOB) provide power law parameters. The segmentation of the bathymetric data into linear 

form and subsequent estimation of the power law parameters through straight line fittings 

techniques have open up a method to analyze the seafloor roughness. 

Bathymetry only provides depth data based on the functioning of the bottom tracking 

gate for echo-sounding system. The echo-waveform analyses to determine arrival time of 

the bottom echo depends on the echo-peak (near nadir beams) or energy values (off nadir 

beams). The analyses made on such data for roughness studies have limitations. 

Comparatively, use of seafloor backscatter data involves entire seafloor insonified area. 

Though, large scale roughness i.e., structural aspects can be estimated using bathymetry, 

but, in order to estimate roughness towards the small scale end (cm scale) the power law 

curves are needed to be extended over high-frequency end. The backscatter data are 

found to be useful when applied to study micro-topographic studies employing Jackson 

model (1986). Here, we have adopted similar techniques for multi-beam Hydrosweep 

system at CIOB.  

Moreover, this work also presented backscatter image processing from pockmark 

dominated areas of the western continental margin of India. The technique associates 

bathymetry as well as backscatter data to provide pockmark morphology along with 

seepage details of the area as an interesting example for non-living resource related studies. 

However, no claim for completeness is being made in the present work. Nevertheless many 

issues of bathymetric systems are made, yielding a scope for future work on various aspects 

of the bathymetric systems. Certain issues such as bathymetry using phase measuring 

system (de Moustier, 1993) is not covered here, though, modern multi-beam systems possess 

hybrid techniques such as beam-forming as well as phase measuring system. The shallow 

water data presented throughout in this work have been acquired using such system e,g. 

EM 1002 multibeam system. 
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