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1. Introduction

Wireless power transfer (WPT) has been studied for more than one hundred years since Nikola
Tesla proposed his WPT concept. As more and more portable electronic devices and consumer
electronics are developed and used, the need for WPT technology will continue to grow.
Recently, WPT via strongly coupled magnetic resonances in the near field has been reported
by Kurs et al. (2007). The basic principle of WPT based on magnetically coupled resonance
(MR-WPT) is that two self-resonators that have the same resonant frequency can transfer
energy efficiently over midrange distances. It was also reported that MR-WPT has several
valuable advantages, such as efficient midrange power transfer, non-radiative, and nearly
omnidirectional. It is certain that these properties will help to improve the performance
of current wireless power transfer systems and be utilized well for various wireless power
transfer applications such as electric vehicles, consumer electronics, smart mobile devices,
biomedical implants, robots, and so on.
Up to now, several important articles have been published. Karalis et al. (2008) reported
detailed physical phenomena of efficient wireless non-radiative mid-range energy transfer.
Sample et al. (2010) reported an equivalent model and analysis of an MR-WPT system
using circuit theory, and Hamam et al. (2009) introduced an MR-WPT system that used
an intermediate self-resonator coil to extend the coverage of wireless power transfer that is
coaxially arranged with both Tx and Rx self-resonant coils.
In Figure 1, a practical application model of wireless power charging of multiple portable
electronic devices using MR-WPT technology is illustrated. Multiple devices are placed on
the Rx self-resonator, which is built into the desk, and the Tx self-resonator is built into
the power plate wall. The Tx self-resonator is strongly coupled with the Rx one and then
both Tx and Rx self-resonators transfer energy efficiently even though the Tx self-resonator
is geometrically perpendicular to the Rx self-resonator. In order to create this system, it is
necessary to characterize power transfer efficiency and especially mutual inductance of the
MR-WPT system with two self-resonators arranged perpendicularly. However, there have
been few research reports published that analyze the characteristics of MR-WPT regarding
a geometrical arrangement between Tx and Rx self-resonators and between Tx or Rx and
intermediate self-resonators.
In this article, the characteristics of wireless power transfer between two self-resonators
arranged in off-axis positions are reported and the power transfer efficiency of an MR-WPT
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system with an intermediate self-resonator is analyzed. The intermediate self-resonator is
geometrically perpendicular or coaxial to the Tx and Rx self-resonators. To calculate the
power transfer efficiency, a modified coupled mode theory (CMT) is applied. In particular,
a calculation method and analysis results of mutual inductance between two self-resonators
arranged in off-axis positions are presented.

self-resonator 
built-in 

power plate

Tx self-resonator

self-resonator 

built-in desk

portable electronic 

devices

Rx self-resonator

coupling

Fig. 1. A practical application of a wireless power transfer system using MR-WPT.

The article is organized as follows. In Section 2, the configuration and modeling of
an MR-WPT system with an intermediate self-resonator is illustrated and the power
transfer efficiency of the system is derived. In Section 3, mutual inductance between two
self-resonators is derived for rectangular and circular coils. In Section 4, two MR-WPT
systems with intermediate self-resonators are fabricated and formula derivation, analysis
results, and design procedures are verified by experimental measurement.

2. Illustration and modeling of an MR-WPT system with an intermediate

self-resonator

Figure 2 shows the configuration of an MR-WPT system with multiple self-resonators. It
consists of three self-resonators (Tx, Rx, and intermediate), a source coil, and a load coil.
The centers of the Tx, Rx, and intermediate self-resonators are (0, 0,−D1m), (0, 0, D2m), and
(−Dh, 0, 0), respectively. Each coil is loaded with a series of high Q capacitors in order to adjust
the target resonant frequency and prevent change of the resonant frequency due to unknown
objects. It should be noted that the intermediate resonant coil is arranged perpendicularly
with both Tx and Rx self-resonators. By referring to Haus (1984) and Hamam et al. (2009), a
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Fig. 2. Configuration of an MR-WPT system with an intermediate self-resonator.

modified CMT equation in matrix form can be written as:
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(1)

ks1, kl2, km1, km2, and k12 are coupling coefficients between coils. The parameters are defined
as follows:

• ai(t) : mode amplitude of each self-resonator,

• ωi : angular resonant frequency of each self-resonator, 1/
√

LiCi,

• Γi : intrinsic decay rate of each self-resonator, Ri/2Li,

• Li and Ri : self-inductance and resistance of each self-resonator,

• Ci: capacitance of each self-resonator (self-capacitance + high-Q capacitor),

• kij : coupling coefficient between i and j self-resonators, ωMij/2
√

LiLj,

• Mij : mutual inductance between i and j self-resonators,

• S±1 : field amplitude of an incident field (+) and a reflected field (−) at the source,

• S±2 : field amplitude of an incident field (+) and a reflected field (−) at the load,

• i and j(= 1, 2, m, s, l) : 1 (Tx self-resonator), 2 (Rx self-resonator), m (intermediate
self-resonator), s (source coil), l (load coil).

To simplify Equation 1, it is assumed that k12 ≈ 0, Γ1 = Γ2 = Γ �= Γm, and km1 = km2 = km.
That is, Tx and Rx self-resonators are identical and the intermediate self-resonator is placed at
the center of the Tx and Rx self-resonators (D1m = D2m). Also, the coupling coefficient km is

53Magnetically Coupled Resonance Wireless Power
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much higher than k12. Then, the transmission coefficient (S21) from source to load is obtained
as:

S21 =
−2U2

mU0

[1 + U0 − iX1][̇1 + U0 − iX2][̇1 − iXm] + U2
m[2(1 + U0)− i(X1 + X2)]

, (2)

where X1 = X2 = (ω1,2 − ω0)/Γ, Xm = (ωm − ω0)/Γm, U0 = ks1/Γ = kl2/Γ, Um =
√

k2
m/ΓΓm, and ω0 is a target angular resonant frequency. Then, the power transfer efficiency

η is obtained as:
η = |S21|2. (3)

By assuming that the resonant frequency of each self-resonator is the same as the target
resonant frequency, that is, X1 = X2 = Xm = 0, the matching condition for maximum power
transfer efficiency in Equation 1 is obtained as:

U
opt
0 =

√

1 + 2U2
m .

The maximum power transfer efficiency using the condition is rewritten as follows:

η =
(k2

m/ΓΓm)2

(
√

1 + 2k2
m/ΓΓm + 1 + k2

m/ΓΓm)2
=

U4
m

(
√

1 + 2U2
m + 1 + U2

m)2
. (4)

To calculate Equation 4, three unknown parameters of km, Γ, and Γm should be determined.
The intrinsic decay rates of Γ and Γm are determined by the resistance and inductance of
each self-resonator. km is calculated by mutual inductance between two self-resonators and
the self-inductance of each self-resonator. It can also be noted that proper matching in an
MR-WPT system with km fixed can be accomplished by varying kl2 for maximum power
transfer.
In the next section, the calculation method of mutual inductance is presented for the case of
circular and rectangular types of self-resonators.

3. Derivation of mutual inductance

3.1 Mutual inductance between two circular self-resonators

3.1.1 Configuration and derivation

In Figure 3, two circular self-resonators are arranged coaxially and perpendicularly. D is the
distance between two coils. For the calculation of mutual inductance, it is assumed that the
coils are filamentary and current is uniformly distributed on the coils. Mutual inductance M12

between two coils is written as:

M12 =
N1 N2

I

∫

S2

�B · d�s2. (5)

By referring to Good (2001), the magnetic flux density, �B at arbitrary spatial points is written
as follows:

�B = ρ̂Bρ + ẑBz, (6a)
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where

Bz|ρ=0 =
µ0 Ir2

1

2(D2 + r2
1)

3/2
,
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µ0 I

2πρ
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m
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)
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)

,

(6b)

with

K(m) =
∫ π/2

0
(1 − m · sin2 θ)−1/2dθ,

E(m) =
∫ π/2

0
(1 − m · sin2 θ)1/2dθ,

m =
4r1ρ

(r1 + ρ)2 + D2
.

(6c)

Here, K and E are the complete elliptic integrals of the first and second kinds, respectively.
m is the variable of elliptic integrals. N1 and N2 are the number of turns of the first and
second coils, respectively. In the coaxially arranged system (see Figure 3a), mutual inductance
is determined by only z-directed fields (Bz). The magnetic flux density of a circular coil at
the points of the same ρ is identical and then the total magnetic flux linkage is obtained by
summing the flux of a central circular area and each circular subdivision as well. Therefore,
by assuming that Nd is sufficiently large, mutual inductance between two coaxially arranged
coils is written as follows:

Mcc =
2πd2N1N2

I

{Bz|n=0

4
+

Nd=r2/d

∑
n=1

nBz|n
}

≈ 2πd2 N1N2

I

Nd=r2/d

∑
n=1

nBz|n. (7)

Here, Nd is the total number of subdivisions of the Rx self-resonator.
For the case of two perpendicularly arranged circular coils (see Figure 3b), mutual inductance
is determined by only ρ-directed fields. Therefore, the mutual inductance is obtained as
follows:

Mpc =
N1N2

I

Nd=2r2/d

∑
n=1

Bρ|n · Sn, (8)

where Sn = 2nd2
√

2r2/nd − 1 and is the n-th rectangular area subdivided. For more general
cases, see Babic et al. (2010).

3.1.2 Calculation and measurement

For verification of the calculation method, two self-resonators were made as shown in
Figures 4 and 10. A target resonant frequency, f0 was 1.25 MHz. The Tx self-resonator was a
helical type (r = 252 mm, H = 90 mm, N1 = 9 turns, a = 2.2 mm). The Rx coil was a spiral
type (rin = 230 mm, rout = 300 mm, N2 = 10 turns, a = 3.2 mm). Both of the coils were
made of copper pipe (σ = 5.8 × 107). Using high-Q capacitors, the target resonant frequency
of each self-resonator was adjusted. The intrinsic decay rate using measured resistance
and inductance, capacitance of high-Q capacitors for each self-resonator, self-inductances,
and resonant frequencies of the self-resonators are shown in Table 1. To measure resonant
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Fig. 3. Configuration of two circular self-resonators for calculation of mutual inductance.

frequency, a vector network analyzer (Agilent 4395A) was used. To measure self-inductance
(L) and resistance (R) of each self-resonator, an LCR meter (GWInstek 8110G) was used.

Tx self-resonator

H

2r

a

Rx self-resonator

rin

rout

a

M12

High Q 

capcacitor

Fig. 4. Schematic drawing of Tx and Rx self-resonators.

To measure mutual inductance, both differential coupling inductance (Lm1 = L1 + L2 − 2M12)
and cumulative coupling inductance (Lm2 = L1 + L2 + 2M12) were measured and then the
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Γ High-Q capacitor self-inductance f0

Tx (helix) 8168.14 224.40 pF 67.00 uH 1.2525 MHz
Rx (spiral) 8325.22 221.00 pF 98.82 uH 1.2494 MHz

Table 1. Summary of measured parameters of each self-resonator.

mutual inductance was obtained as follows Hayes et al. (2003):

M12 =
|Lm1 − Lm2|

4
. (9)

Figure 5 shows the theoretical and experimental mutual inductance according to the distance
(D) between two self-resonators. In a perpendicular arrangement, the ρ−directed position is
fixed at ρ = 230 mm. For both coaxial and perpendicular arrangements, the calculated results
have good agreement with the measured ones. For the perpendicular case, there is a slight
difference between calculation and measurement, especially as the two coils become closer,
because the magnetic flux density at each subdivision is not uniform. It can be observed that
the mutual inductance for the coaxial case is higher than that for the perpendicular case.
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Fig. 5. Calculation and measurement of mutual inductance for both coaxial and
perpendicular arrangements.

3.2 Mutual inductance between two rectangular self-resonators

3.2.1 Configuration and derivation

Figure 6 shows a geometrical configuration used to calculate mutual inductance between two
rectangular self-resonators arranged in an off-axis position. The Tx coil is placed on the xy
plane and its center is (0, 0, 0). It has N1 turns. It is L1 in width and h1 in height, respectively.
The center of the Rx coil is P0(x0, y0, z0) and the coil is parallel to the y−axis. The Rx coil has
N2 turns. It is L2 in width and h2 in height, respectively. Tx and Rx coils are tilted θ degrees.
It is assumed that each coil is filamentary. To calculate mutual inductance between Tx and

57Magnetically Coupled Resonance Wireless Power
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Fig. 6. Configuration of two rectangular self-resonators for calculation of mutual inductance.

Rx self-resonators, the rectangular Tx self-resonator is divided into four lines (line a, line b,
line c, line d) and the Rx self-resonator is subdivided (see Figure 6). A subdivision (m, n) is
rectangular and its midpoint is Pa(x, y, z). The magnetic flux density at each point Pa(x, y, z)
of the subdivision in the Rx self-resonator can be obtained by combining the magnetic flux

densities made by the four lines of the Tx self-resonator. It is assumed that �Bmn is uniform
in each subdivision. Therefore, by referring to the case of the circular self-resonator in the
previous section, the mutual inductance Mrc is calculated as follows:

M12 = Mrc =
N1N2

I1

∫

S2

�B · d�s2 ≈ N1N2

I1

M

∑
m=1

N

∑
n=1

�Bmn ·�smn. (10)

�smn is the surface of the subdivision (m, n). The magnetic flux density at each subdivision �Bmn

is obtained using Bio-Savart’s law. The y−directed magnetic fields ŷBymn will not be affected

by the mutual inductance due to ŷBymn ·�smn = 0. Therefore, �Bmn is obtained as follows:

�Bmn =
µ0 I1

4π

∮

CTx

(
d�l ′ × �R

R3
)

=
µ0 I1

4π

{

∫

line a

d�la × �Ra

R3
a

+
∫

line b

d�lb × �Rb

R3
b

+
∫

line c

d�lc × �Rc

R3
c

+
∫

line d

d�ld × �Rd

R3
d

}

= x̂Bxmn + ẑBzmn ,

(11a)

where
Bxmn = Bx |line a + Bx |line c,

Bzmn = Bz|line a + Bz|line b + Bz|line c + Bz|line d,
(11b)
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with

Bx|line a =
µ0

4π

( −zI1

(x + h1/2)2 + z2

)[(

y + L1/2

Ra+

)

−
(

y − L1/2
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)

)]

,
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µ0

4π
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)

−
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,
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4π
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)[(
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)

−
(
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)]

,

Bz|line b =
µ0

4π

(

I1(y + L1/2)

(y + L1/2)2 + z2

)[(

x + h1/2

Rb+

)

−
(

x − h1/2

Rb−

)]

,

Bz|line c =
µ0

4π

( −I1(x − h1/2)

(x − h1/2)2 + z2

)[(

y + L1/2

Rc+

)

−
(

y − L1/2

Rc−

)]

,

Bz|line d =
µ0

4π

( −I1(y − L1/2)

(y − L1/2)2 + z2

)[(

x + h1/2

Rd+

)

−
(

x − h1/2

Rd−

)]

,

Ra+ = Rb+ =
√

(x + h1/2)2 + z2 + (y + L1/2)2,

Ra− = Rd+ =
√

(x + h1/2)2 + z2 + (y − L1/2)2,

Rc+ = Rb− =
√

(x − h1/2)2 + z2 + (y + L1/2)2,

Rc− = Rd− =
√

(x − h1/2)2 + z2 + (y − L1/2)2.

(11c)

Substituting Equation 11a into Equation 10 gives the mutual inductance

Mrc =
N1N2dLdh

I1

M=L2/dL

∑
m=1

N=h2/dh

∑
n=1

∣

∣

∣− Bxmn cos θ + Bzmn sin θ
∣

∣

∣. (12)

3.2.2 Calculation and measurement

To verify the calculation method, four different cases were studied. As shown in Figure 7, the
Rx coil was rotated while the Tx coil was fixed. Figure 7a shows that the Rx self-resonator
was coaxially arranged with the Tx self-resonator and the center of the Rx self-resonator was
P0(0, 0, Dz) while the center for the other cases was P0(−20 cm, 0, Dz). Figures 7b, 7c, and 7d
show that the Tx and Rx self-resonators were tilted 0◦, 90◦ , and 45◦ , respectively.

(a) (b)

Z

X

YTx

Rx

Z

X

Y

P0(0,0,Dz) P0(-20cm,0,Dz)

(c) (d)

Z

X

Y

Z

X

Y

P0(-20cm,0,Dz)
P0 

(-20cm,0,Dz)

Fig. 7. Schematic drawings of four measurement setups.

In Figure 8, a Tx rectangular self-resonator fabricated in a helical type is illustrated. The Tx
and Rx self-resonators were identical. The target resonant frequency was 250 kHz. 14 AWG
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high Q-

capacitor

Fig. 8. Photograph of a rectangular self-resonator.

litz wire was used for fabrication. The size of the Tx and Rx coils was 62 cm × 33 cm × 5 cm
and the number of turns N1 = N2 = 19. Some results of this study were also presented in
Kim et al. (2011).
The intrinsic decay rates, capacitances of high-Q capacitors, measured self-inductances, and
measured resonant frequencies of each self-resonator are shown in Table 2.

Γ high-Q capacitor self-inductance f0

Tx 1387.5 990.9 pF 407.2 uH 249.85 kHz
Rx 1389.2 984 pF 408.5 uH 250.13 kHz

Table 2. Summary of measured parameters of each rectangular self-resonator.

Figure 9 shows the calculation and measurement results of mutual inductance according to
the distance Dz between the Tx and Rx self-resonators. In calculation, the subdivisions were
set to be M = 2000 and N = 1000, that is, dL = 0.31 mm and dh = 0.33 mm.
As shown in Figure 9, it should be pointed out that the calculation had good agreement with
the measurement for each case. It is shown that with Dz smaller, the mutual inductance for
the coaxial arrangement was higher than the other three cases. It can also be observed that
with Dz larger, the mutual inductance for the coaxial arrangement was still the highest, while
the mutual inductance for the 0◦ arrangement was the lowest.

4. Calculation and experimental verification

In order to verify the analysis results and design procedures of an MR-WPT system with an
intermediate self-resonator, two MR-WPT systems (coaxial and perpendicular arrangements)
were setup as shown in Figure 10. The Tx circular helical self-resonator was the same as that in
Figure 4. The Rx self-resonator was identical with the Tx one. A spiral coil as an intermediate
circular self-resonator was fabricated to reduce the volume of the MR-WPT system. The
measured parameters were the same as those in Table 1. High-Q capacitors were also loaded
with each self-resonator in order to adjust the target resonant frequency of each self-resonator
and reduce variation of the target resonant frequency by external objects. It should be
noted that the intermediate self-resonator was placed at the center between the Tx and Rx
self-resonators, that is, the center of the spiral coil was (230 mm, 0, 0). Single loop coils were
used as a source coil and a load coil. The transmission coefficient was measured using a vector
network analyzer (Agilent 4395A). By varying the distance between the Tx self-resonator and
the source coil or the Rx self-resonator and the load coil, the proper impedance matching
condition for maximum power transfer efficiency was achieved. It was also found that when
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perpendicular arrangements.
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Fig. 10. Photograph of experimental measurement setup.

km was nearly five times higher than k12 or the distance (2D1m = D1m + D2m) was more than
80 cm, k12 can be negligible (see Kim et al. (2011)).
In Figure 11, the measured and calculated efficiencies of two MR-WPT systems with coaxial
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Fig. 11. Measured and calculated efficiencies of MR-WPT systems without an intermediate
self-resonator and with coaxially arranged and perpendicularly arranged intermediate
self-resonators vs. distance.
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Fig. 12. Efficiency measurement of the MR-WPT system with the coaxially arranged
intermediate self-resonator vs. frequency.
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Fig. 13. Efficiency measurement of the MR-WPT system with the perpendicularly arranged
intermediate self-resonator vs. frequency.

or perpendicular arrangements according to the distance between Tx and Rx self-resonators
are displayed. In addition, the efficiency of an MR-WPT system without the intermediate
self-resonator is displayed to make a comparison with the systems with the intermediate coil.
With the aid of Equation 4, the efficiencies of the systems were calculated, and the measured
parameters in Table 1 were used for calculation. As shown in Figure 11, the experimental
and theoretical results were very consistent. The efficiency for the coaxial arrangement case
was higher than that for the perpendicular arrangement, because the mutual inductance of
the coaxial arrangement was higher as shown in Figure 5. It should be noted that the system
with the intermediate self-resonator has higher efficiency than that without the intermediate
self-resonator. This means that using intermediate self-resonators with low losses can help
to improve power transfer efficiency and extend the coverage of wireless power transfer
effectively.
Figures 12 and 13 show the measured efficiencies of the coaxial and perpendicular
arrangement systems for different distances according to frequency, respectively. In the case of
the coaxial arrangement, the efficiencies were nearly symmetric according to frequency while
those for the case of the perpendicular arrangement were asymmetric according to frequency.
The reason for this was that with a shorter distance in the perpendicular arrangement case,
km was no higher than k12 and k12 was no longer negligible. It should also be pointed out
that using intermediate self-resonators can help to make the operating frequency bandwidth
broader.

5. Conclusion

In this article, the characteristics of an MR-WPT system with intermediate self-resonators were
analyzed. Its power transfer efficiency was derived and the matching condition for maximum
power transfer was also obtained. The calculation methods of mutual inductance between two
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circular or rectangular self-resonators were presented and some calculation results were also
explained. The analysis results, calculation methods, and design procedures were verified by
experimental measurement. The measurements and calculations show that if intermediate
self-resonators are properly used, an MR-WPT system with intermediate self-resonators
transfers wireless power efficiently up to several meters. In particular, it is shown that the
efficiency of an MR-WPT system with two self-resonators arranged perpendicularly is as
good as that of a coaxially arranged MR-WPT system within a certain area. Therefore, it is
expected that these analysis results and properties of an MR-WPT system with intermediate
self-resonators can be well applied to develop various applications.
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