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1. Introduction  

Atmospheric turbulence introduces optical aberration into wavefronts arriving at ground-
based telescopes. Current adaptive optics (AO) systems use vector-matrix-multiply (VMM) 
reconstructors to convert gradient measurements to wavefront phase estimates. Until 
recently, the problem of an efficient phase recoverer design has been implemented over PC 
or GPU platforms. As the number of actuators n increases, the time to compute the 
reconstruction by means of the VMM method scales as O(n2). The number of actuators 
involved in AO systems is expected to increase dramatically in the future. For instance, the 
increase in the field of astronomy is due to increasing telescope diameters and new higher-
resolution applications on existing systems. The size increase ranges from hundreds up to 
tens of thousands of actuators and requires faster methods to complete the AO correction 
within the specified atmospheric characteristic time. The next generation of extremely large 
telescopes (with diameters measuring from 50 up to 100 meters) will demand important 
technological advances to maintain telescope segment alignment (phasing of segmented 
mirrors) and posterior atmospheric aberrations corrections. Furthermore, an increase in 
telescope size requires significant computational power. Adaptive optics includes several 
steps: detection, wavefront phase recovery, information transmission to the actuators and 
their mechanical movements. A quicker wavefront phase reconstruction appears to be an 
extremely relevant step in its improvement.  For this reason other hardware technologies 
must be taken into account during the development of a specific processor. 

In recent years, programmable logic devices called FPGA (Field Programmable Gate Array) 
are seriously taken into account like a technological alternative in those fields where fast 
computations are required. The FPGA technology makes the sensor applications small-sized 
(portable), flexible, customizable, reconfigurable and reprogrammable with the advantages 
of good customization, cost-effectiveness, integration, accessibility and expandability. 
Moreover, an FPGA can accelerate the sensor calculations due to the architecture of this 
device. In this way, FPGA technology offers extremely high-performance signal processing 
and conditioning capabilities through parallelism based on slices and arithmetic circuits and 
highly flexible interconnection possibilities (Meyer-Baese, 2001 and Craven & Athanas 
2007). Furthermore, FPGA technology is an alternative to custom ICs (integrated circuits) for 
implementing logic. Custom integrated circuits (ASICS) are expensive to develop, while 
generating time-to-market delays because of the prohibitive design time (Deschamps 2006). 
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Thanks to computer-aided design tools, FPGA circuits can be implemented in a relatively 
short space of time. For these reasons, FPGA technology features are an important 
consideration in sensor applications nowadays. 

In particular, the algorithm of the phase recoverer is based on the estimation of Fast Fourier 
Transforms (FFT) (Roddier & Roddier, 1991). For this reason, we have to do a careful choice 
of the architecture of the FFT. An efficient design of this block can result in substantial 
benefits in speed in comparison with the GPU, DSP or CPU solution. 

This chapter presents the design of a fast enough wavefront phase reconstruction algorithm 
that is based on FPGA technology, paving the way to accomplish the extremely large 
telescope’s (ELT) number of actuators computational requirements within a 6 ms limit, 
which is the atmospheric response time. The design was programmed using the VHDL 
hardware description language and XST was used to synthesize into Virtex-6 and Virtex-7 
devices. The FPGA implementation results almost 30 times faster than using GPU 
technology for a 64x64 phase recoverer. The chapter presents a comparative analysis of used 
resources for several FPGAs and time analysis. 

2. A descriptive approach to the wavefront phase recovery 

The Shack-Hartmann wavefront sensor samples the signal Ψtelescope(u,v) (complex amplitude of 
the electromagnetic field) to obtain the wavefront phase map: Φ(u,v). This is only possible if 
the sampling is done by microlenses or subpupils with r0 dimension (that is, inside the phase 
coherence domain). An array of microlenses is used to sample the wavefront. This array is a 
rigid piece that fixes the sampling rate. Each (i,j) microlense produces a spot (figure 1):  

 
2

( , ) [ ( , )]ijij
telescopeI x y FFT u v  (1) 

 

Fig. 1. Diagram of the light travel across a Shack-Hartmann sensor to measure the phase of 
the wavefront in the telescope pupil 
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The displacements dij of the spots centroid with regard to the references centroid (associated 
with a plane wavefront phase), are a proportional estimation of the average subpupil phase 
gradient: 

 
ijsubp

ijd K
r


 


  (2) 

Where r


 is the position with components (u,v), and K is a constant. K depends on the 

wavelength and the focal distances of the telescope, reimaging lens and microlenses. From 
these gradients estimation, the wavefront phase Φ(u,v) can be recovered using an expansion 
over complex exponential polynomials (Poyneer et al., 2002): 

 

21 1 ( )

, 0 , 0

1
( , ) ( , ) ( )

iN N pu qv
N

pq pq pq pq
p q p q

u v a Z u v a e IFFT a
N




  

 
     (3) 

The gradient is then written: 

 
,

( , ) ( , ) pq pq
p q

S u v u v i j a Z
u v

   
     

  
   

 (4) 

Making a least squares fit over the F function:  

 2
, 1 ,

[ ( , ) ( )]
pq pqZ ZN

pq u vu v p q
F S u v a i j

 

    
  

 (5) 

where S


 are experimental data, the coefficients, apq, of the complex exponential expansion 
in a modal Fourier wavefront phase reconstructor (spatial filter), can be written as: 

 
   

2 2

( , ) ( , )yx

pq

ipFFT S u v iqFFT S u v
a

p q





 (6) 

The phase can then be recovered from the gradient data by transforming backward those 
coefficients: 

 1( , ) [ ]pqu v FFT a   (7) 

A filter composed of three Fourier transforms therefore must be calculated to recover the 
phase. In order to accelerate the process, an exhaustive study of the crucial FFT algorithm 
was carried out which allowed the FFT to be specifically adapted to the modal wavefront 
recovery pipeline and the FPGA architecture. 

3. A descriptive approach to the FPGA architecture 

A FPGA device is essentially a matrix of logic cells (called slices). These slices are connected 
among themselves and with input/output blocks (IOB) through routing channels. These 
channels are distributed in the FPGA in horizontal and vertical form and its connexions are 
fixed using a programmable switch matrix (figure 2). 
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Fig. 2. FPGA generic architecture 

Each slice is formed by look-up tables (LUT) and several flip-flops and programmable 
multiplexers (figure 3). The number and features of these elements depend on the FPGA 
family. Slices can implement memory (called distributed memory) or simple logic functions. 
Complex functions and parallel circuits are implemented when they are associated among 
themselves. Furthermore, FPGAs contain specific RAM blocks (BRAM) and arithmetic circuits. 

 

Fig. 3. Block diagram of a slice 

In particular, FPGAs allow a wide variety of computer arithmetic implementations for the 
desired digital signal processing algorithms like FFT, because of the physical bit-level 
programming architecture. FFT algorithm can be parallelized and we can implement a full 
pipeline architecture using FPGA. This feature contrasts with DSPs and GPUs, with the 
fixed multiply accumulator core. 

www.intechopen.com



Acceleration of Computation  
Speed for Wavefront Phase Recovery Using Programmable Logic 

 

211 

In addition, Xilinx Virtex FPGA devices incorporate DSP48 arithmetic modules. Each DSP48 
slice has a two-input multiplier followed by multiplexers and a three-input 
adder/subtracter. The multiplier accepts two 18-bit, two's complement operands producing 
a 36-bit, two's complement result. The result is sign extended to 48 bits and can optionally 
be fed to the adder/subtracter. The adder/subtracter accepts three 48-bit, two's complement 
operands, and produces a 48-bit two's complement result. Two DSP48 slices, a shared 48-bit 
C bus, and dedicated interconnect form a DSP48 tile (figure 4). 

The DSP48 slices support many independent functions, including multiplier, multiplier-
accumulator (MAC), multiplier followed by an adder, three-input adder, barrel shifter, wide 
bus multiplexers, magnitude comparator, or wide counter. The architecture also supports 
connecting multiple DSP48 slices to form wide math functions, DSP filters, and complex 
arithmetic without the use of general FPGA fabric (Hawkes, 2005). 

 

Fig. 4. Two DSP48 arithmetic modules with a shared 48-bit C bus 
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4. Design of an efficient one-dimensional FFT 

The discrete Fourier transform (DFT) of an N-point discrete-time complex sequence x(n), 
indexed by n=0, 1, N-1, is defined by 

 
1

0

( ) ( ) , 0,1, 1
N

kn
N

n

X k x n W k N



      (8) 

where 2 /j N
NW e   and is referred to as the twiddle factor. The number of complex 

multiply and add operations for the computation of an N-point DFT is of order N2 but the 
problem is alleviated with the development of special fast algorithms, collectively known as 
fast Fourier transforms (Cooley & Tukey, 1965). These algorithms reduce the number of 
calculations to Nlog2N. 

In the decimation-in frequency (DIF), the FFT algorithm starts with splitting the input data 
set X(k) into odd- and even-numbered points,  

 ( /2) 1 ( /2) 1
(2 1)2

0 0

( ) ( ) ( )

(2 ) (2 1)

kn kn
N N

n even n odd

N N
k mmk

N N
m m

X k x n W x n W

x m W x m W
 



 

    

    

 

 
 (9) 

So, the problem may be viewed as the DFT of N/2 point sequences, each of which may 
again be computed through two N/4 point DFTs and so on.  This is illustrated in the form of 
a signal flow graph as an example for N=8 in figure 5. 

 

Fig. 5. Computation of FFT by decimation in frequency for N=8 
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Finally, for the radix-2 FFT algorithm, the smallest transform or butterfly (basic 
computational unit) used is the 2-point DFT.  

Generally, each butterfly implies one complex multiplier and two complex adders. In 

particular, multipliers consume much silicon area of FPGA because they are implemented 

with adder trees. Various implementation proposals have been made to save area removing 

these multipliers (Zhou et al. 2007, Chang & Jen, 1998, Guo, 2000 and Chien et al., 2005). 

Instead, DSP48 circuits allow some internal calculations of the Fourier transform algorithm 

or the filter of the phase reconstruction to be parallel, such as in complex multiplications. In 

this way, the use of these components accelerates the FFT calculation in comparison with a 

sequential algorithm or adder trees solutions. A complex pipeline multiplier is implemented 

using only four DSP48 (figure 6) to calculate: 

 
real real real imag imag

imag imag real real imag

P A B A B

P A B A B

   

   
 (10) 

DSP48 4

DSP48 3

16

16

16

16

32

32

32

32

A_imag

B_imag

A_real

B_real

P_real

DSP48 2

DSP48 1

16

16

16

16

32

32

32

32

A_imag

B_real

A_real

B_imag

P_imag

The two input register to the left align operands with 
the first output register below and avoid fabric. The 

benefit is increased performance and lower power

0

0

 

Fig. 6. Pipeline, complex multiplier with four parallel real multipliers 
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The real and imaginary results use the same DSP48 slice configuration with the exception of 
the adder/subtracter. The adder/subtracter performs subtraction for the real result and 
addition for the imaginary one. This implementation only needs four clock cycles to calculate 
the complex multiplication with up to 550 MHz in XC4VSX35 Virtex-4 (Hawkes, 2005). 

The complete pipeline radix-2 butterfly can be easily implemented with this specialized 
multiplier. It is necessary to use a FPGA Look-Up Table (LUT) (configured as SRL16 3-bits 
shift register) to preserve the synchronism. The butterfly implemented is depicted in Figure 
7 and it needs only seven clock cycles to carry out the computation. 

 

Fig. 7. Pipeline radix-2 butterfly in FPGA 

A pipeline radix-2 FFT can be implemented using one butterfly in each stage. The twiddle 
coefficients used in each stage are stored in twiddle LUT ROMs in the FPGA. The logic 
resources and the clock cycles of the FFT module is reduced in our implementation using 
specific butterflies modules at the first and second stages. The first stage utilizes the feature 
of the twiddle factors related to the first stages of the pipeline. 

 /2 1N
NW   (11) 

So, the first stage can be implemented in a very simple way with an adder/subtracter. In the 
second stage, the next twiddle factors are 

 /4N
NW j  (12) 

This twiddle suggests a similar splitting structure in the second pipeline stage as in the first 
one; however, the imaginary unit imposes a special consideration: two additional 
multiplexers change real and imaginary data, and the pipeline adder/subtracter works 
according equation 13. 

 ( )a bj j aj b b aj       (13) 

Taking into account these features, the 1D-FFT architecture implementation is depicted in 
figure 8. The swap-blocks arrange the data flow (according figure 5) and preserve the 
pipeline feature. It consists of two multiplexers and two shift registers. These shift registers 
are implemented using look-up tables (LUT) in mode shift register (SRL16) for 
synchronization (figure 9). 
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Fig. 8. Architectural block diagram of a radix-2 pipeline FFT 

 

 

Fig. 9. Swap unit 

The system performs the calculation of the FFT with no scaling. The unscaled full-precision 
method was used to avoid error propagations. This option avoids overflow situations 
because output data have more bits than input data. Data precision at the output is: 

 2log 1output width input width points    (14) 

The number of bits on the output of the multipliers is much larger than the input and must 
be reduced to a manageable width. The output can be truncated by simply selecting the 
MSBs required from the filter. However, truncation introduces an undesirable DC data shift. 
Due to the nature of two's complement numbers, negative numbers become more negative 
and positive numbers also become more negative. The DC shift can be improved with the 
use of symmetric rounding stages (figure 8). The periodic signals of the swap units, op 
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signal, and the address generation for the twiddle memories are obtained through a counter 
module that acts like a control unit. 

The pipeline 1D-FFT architecture design is completely parametrisable and portable. The 

VHDL module has three generics in order to obtain a standard module: fwd_inv, data_width 

and lognpoints (the logarithm in base 2 of the number of elements that fit with the number of 

stages in the 1-D FFT calculation). These generics then select direct or inverse transform, 

data value precision and the transform length. 

4.1 Temporal analysis for the radix-2 pipeline FFT module and superior radix 

In Table 1 is depicted the latency for each stage of an 8-points FFT (figure 8). 

 

Stage Module Cycles 

0 

Swap 1 5 

Adder 1 2 

Swap 2 5 

1 

Multiplexers 1 

Swap 3 3 

Add/Sub 2 2 

Swap 4 3 

2 

Multiplier 4 

Round 1 

Swap 5 2 

Adder 3 2 

Swap 6 2 

 Total 32 

Table 1. Latency of each module in a pipeline 8-points FFT 

Taking into account the clock cycles of each block in table 1, the latency of the N-points FFT 

module (log2N stages) can be written as 

  
 

2log 1

21
2

2 1 2 1 2 1 2
2 4

7 2 1 , 2, 3, log 1
2

N

n
n

N N
latency

N
n N






             
   

          
 

 (15) 

where the two first stages are considered separately, and N and n are the number of points 

of the transform and the number of stages of the module respectively. Operating, 
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 (16) 

The last summand of this equation is a geometric series with common ratio equal to ½. This 

is a convergent series and the partial sum to r of the series is 

 
1

1 2 1

2 2

rr

r n r
n

S



   (17) 

Where in this case r=log2N-1, so 

  
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  
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Adding the geometrical series in equation 17 and grouping, finally  

 22 9log 11 , 8, 16, 32,latency N N N      (19) 

When the number of points of the FFT is a power of 4 is computationally more efficient to 

use a radix 4 algorithm instead of used radix 2. The reasoning is the same than radix 2 but 

subdividing iteratively a sequence of N data into four subsequences, and so on. The radix-4 

FFT algorithm consists of log4N stages, each one containing N/4 butterflies. As the first 

weight is 0 1NW  , each butterfly involves three complex multiplications and 12 complex 

sums. Performing the sum in two steps, according to Proakis & Manolakis (1996), it is 

possible to reduce the number of sums (12 to 8). Therefore, the number of complex sums to 

perform is the same (Nlog2N) than the algorithm in base 2, but the multipliers are reduced 

by 25% (of (N/2)log2N to (3N/8)log2N). Consequently, the number of circuits for use DSP48 is 

reduced proportionately. 

For number of point power of 4, the pipeline radix-4 FFT module has half of arithmetic 

stages, but the swap modules need twice clock cycles to arrange the data. Then, the latency 

is expressed as 
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 (20) 

Again, the series can be estimated for log4N-1 terms, and finally 

 4( 4) 2 9log 13,

16, 64, 256, 1024,

latency radix N N

N

  
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 (21) 

This time estimation has been realized for other radix, as shown in the following equations: 
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 (22) 

Generalizing 

 

 
1

2 9log 5 2 ,

, 1,2,3,

4,8,16,

i

n

latency radix i N N i

N i n

i



   

 





 (23) 

In Figure 10 is depicted the clock cycles of each algorithm and a proposed resolution with an 

orange line. All implementations are close to 2 when the number of points grows (figure 

10a). The improvement in terms of computing speed of the algorithm using other radix is 

relevant when the number of samples is small. For example, the improvement factor for a 

1024-point FFT is less than 7% using a radix-32 algorithm and less than 3% using a radix-4 

(Figure 10b). However, in our astronomical case the proposed size is relativity small and the 

improvement using superior radix is relevant. Examining figure 10b, we can observe that 

the improvement factor is about 20% using radix-8 and 30% using radix-16. Thus, we are 

considering implementing these algorithms in the future. 

4.2 Resources analysis 

Several FFTs were implemented over a XC6VLX240T Virtex-6 device and numerical results 
were satisfactorily compared with Matlab simulations. Resources in this FPGA include 
301440 flip-flops, 150720 6-LUTs, 416 BRAM and 768 DSP48s. The syntheses were achieved 
by changing the size of the FFT and the data precision. 

Figure 11 shows the resource utilization to implement a pipeline 1024-FFT when the input 
data precision is between 8 and 24 bits. The resource utilization is greater when the FFT has 
more precision due to the increase of the intrinsic complexity found when the precision is 
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increased. From 17 bits of precision, DSP48 circuits are increased and the maximum 
operating frequency is drastically smaller. It is due to high-precision complex multipliers 
need eight DSP48 circuits instead four in Figure 6. These high-precision multipliers are 
increased in each stage of the FFT from 17 bits data precision. 
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Fig. 10. (a) Normalized latency. (b) Relative improvement respect of radix-2 algorithm 

In figure 12 is depicted the resource utilization to implement one-dimension FFT when de 
number of points of the transform is increased in a power of 2.  
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Fig. 11. FPGA Resources and maximum operating frequency for 1024-FFT 
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Fig. 12. FPGA Resources and maximum operating frequency for N-FFT with N from 8 to 
4096 

4.3 Comparison with others implementations 

A comparison has been carried out between our design and others implementations. The 
combined use of the FPGA technology and the developed architecture achieves an 
improved performance compared to other alternatives. This is showed in figure 13 where 
our implementation executes an 1024-point FFT operation in 10.64 μs at 200 MHz.  

5. Wavefront phase recovery FPGA-implementation 

We will focus on the FPGA implementation from equations (6) and (7) to improve 
processing time. These equations can be implemented using different architectures. We 
could choose a sequential architecture with a unique 2D-FFT module where data values use 
this module three times in order to calculate the phase. This architecture represents an 
example of an implementation using minimal resources of the FPGA. However, we are 
looking for a fast implementation of the equations in order to stay within the 6 ms limit of 
the atmospheric turbulence. Given these considerations we chose a parallel and completely 
pipeline architecture to implement the algorithm. Although the resources of the device 
increase considerably, we can maintain time restrictions by using extremely high-
performance signal processing capability through parallelism. We therefore synthesize three 
2D-FFTs instead of one 2D-FFT. 
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Fig. 13. FPGA Resources and maximum operating frequency for N-FFT with N from 8 to 
4096 

The block diagram of the designed recoverer is depicted in figure 14 where Sx and Sy 

represent the image displacement into each subpupil. The bidimensional transforms of Sx 

and Sy have to be multiplied by ip/p2+q2 and iq/p2+q2 respectively according to equation 6. 

These two matrices are identical if we change rows by columns. We can therefore store a 

unique ROM. The results of the adders (apq coefficients) are rounded appropriately to obtain 

16 bits data precision according with the data input width of the inversed bidimensional 

transform that is executed at the next stage. 

An analysis of the equations and a parallel architecture of its implementation are taken into 
account. We then break down the design into the following steps or stages: 

1. Compute two real forward 2D FFT that compute FFT(Sx) and FFT(Sy). 
2. Compute the complex coefficients  
3. Carry out a complex inverse 2D FFT on apq. 
4. Flip data results. 
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Fig. 14. Architecture of the synthesized phase recovery  

5.1 2D-FFT on the Virtex-6 FPGA 

The fundamental operation in order to calculate the 2DFFT is equivalent to doing a 1D-FFT 
on the rows of the matrix and then doing a 1D-FFT on the columns of the result. 
Traditionally, the parallel and pipeline algorithm is then implemented in the following four 
steps. 

1. Compute the 1D-FFT for each row 
2. Transpose the matrix 
3. Compute the 1D-FFT for each row 
4. Transpose the matrix 

Figure 15 depicts the diagram of the implemented transform module. The operation of the 
developed system takes place when image data is received in serial form by rows. These 
data are introduced in a block that carries out a one dimensional FFT. As this module 
obtains the transformed data, the information is stored in two double-port memories (real 
and imaginary data). To complete the bidimensional FFT, the stored data is introduced in 
a second 1D-FFT in column format. The 2D-FFT is then obtained from the output of this 
block. 

Continuous data processing using a single dual-port memory (real and imaginary) is not 
possible. In that case, the new transformed data must wait for the old data to be 
introduced in the second FFT block. Otherwise data are overwritten. As a result, the 
pipeline property of the FFT architecture can not be used. This problem can be averted by 
using two memories instead of one, where memories are continuously commuting 
between write and read modes. When the odd memory is reading and introducing data 
values in the second FFT module, the even memory is writing data which arrives from the 
first FFT. So, data flow is continuous during all of the calculations in the bidimensional 
transform. The memory modes are always alternating and the function is selected by the 
counter. The same signal is used to commute the multiplexer that selects the data that 
enter the column transform unit. 
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Fig. 15. Block diagram of the implemented 2D-FFT 

It is worth mentioning that the transposition step defined in the above (step 2) is 
implemented simultaneously with the transfer of column data vector to the memory with no 
delay penalty. In this way, the counter acts as an address generation unit. The last 
transposition step (step 4) is not implemented in order to save resources and obtain a fast 
global system. So, the last transposition step is taken into account only at last of the 
algorithm described in eq. (4)-(5) and showed in figure 13 (Flip-RAM module). 

Row 1D-FFT block and column 1D-FFT block are not identical due to the unscaled data 
precision. For example, a 64x64 2D-FFT for the phase recoverer must meet certain 
requirements. If the precision of data input is 8 bits, the output data of 1D-FFT of the rows 
has to be 15 bits according equation 13. 1D-FFT of the columns accepts a 15 bits data format 
and 22 bits at the output.   

Taking into account the latency of the FFT (equation 18) and the pipeline operation of the 
memory modules, the latency of the 2D-FFT module can be written as 

 2
24 18log 22 , 8, 16, 32,latency N N N N       (24) 

In Figure 16 is depicted the latency for different sizes of 2D-FFT according to equation 18.   

Table 2 shows a performance comparison of existing 2D-FFTs implementations using FPGA 
and other technologies for matrix sizes 64x64 and 128x128. Rodríguez-Ramos et al. 2007 
implemented 2D-FFT on a CPU AMD XP 3500+, 2211 GHz, with 512 KB L2 cache and on a 
GPU nVidia GeForce 7800 GTX graphical engine with 256 MB RAM. Uzun et al. 2007 
implemented several algorithms on a Virtex-2000E FPGA chip where the fastest design is 
depicted in the table. It can be seen that our design shows improvements when compared to 
[3] and [15] in terms of frame rate performance. Magdaleno et al. 2010 implemented 2D-FFT 
in a XC4VSX35 Virtex-4 operating at 100 MHz. Virtex-6 family can operate twice faster and 
the time operation is decreased in this way. 

www.intechopen.com



 
Topics in Adaptive Optics 

 

224 

 

128 370 1220
4438

17000

66682

8x8 16x16 32x32 64x64 128x128 256x256

Clock cycles

 

Fig. 16. Estimation of latency for several 2D-FFT 

 

2D-FFT 
CPU 
Rodríguez-Ramos 
et al. [2007] 

GPU 
Rodríguez-Ramos 
et al. [2007] 

FPGA 
Uzun 
et al. [2007] 

FPGA 
Magdaleno 
et al. [2010] 

FPGA 
Proposed 

64x64 114.5 µs 1.58 ms - 44.4 µs 22.2 µs 

128x128 811.0 µs 1.68 ms 2.38 ms 170.8 µs 85.0 µs 

256x256 - - - - 333.4 µs 

Table 2. 2D-FFT performance comparison with other designs 

In figure 17 is depicted the resource utilization to implement 2D-FFT when de number of 
points of the transform is increased in a power of 2. The relevant resource is the Block-RAM. 
The 256x256 FFT occupies the 34% of BRAM for a XC6VLX240T Virtex-6 and the maximum 
operating frequency is only 297 MHz. 

5.2 An 64x64 phase recoverer implementation 

For a first prototype of the phase recoverer, we have selected a plenoptic sensor with 64x64 
pixels sampling each microlens. 

The first step is a direct use of the proposed 2D FFT. To accelerate the process, the two real 
transforms are executed simultaneously through a parallel implementation. Observe how 
the two 2D-FFT of phase gradients Sx and Sy are multiplied by some constant factors 
according to the formula of the phase recoverer (Figure 14). An adder is necessary in the 
following stage to calculate the frequency coefficients and achieve an inversed 2D-FFT. 
Phase values are then transposed, which require an intermediate memory to properly show 
output data (flip-ram module). The direct 2D-FFTs are real, so the imaginary components 
are zero. The inversed transform allows complex input data. 
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Fig. 17. Estimation of latency for several 2D-FFT 

The importance of the parallel execution of the Sx and Sy transforms in the algorithm needs 
mentioning. This feature allows both inputs to be simultaneously received and to obtain the 
calculation of both data just as in the previous case at the output of the 2-D FFT units.  

The bidimensional transforms of Sx and Sy have to be multiplied by ip/p2+q2 and iq/p2+q2 
respectively according to Equation 6. These two 64x64 points matrix are identical if we change 
rows by columns. We can therefore store a unique ROM (two 64x16 bits ROM, one ROM for 
the real component of the factor and the other for the imaginary part). The addresses of these 
ROMs are supplied by the 2D-FFT module through cnt_fil and cnt_col signals. These signals 
are obtained from a built-in counter in this module. The ROM module has two generics 
(data_width and addr_width) in order to synthesize a standard single-port memory of any size. 
However, every time we change these generics, we have to use mathematical software (Matlab 
in this case) in order to calculate the elements and initiate ROM memory. 

There are two complex multipliers. Each one performs the complex multiplication of the 
constant stored in the ROM by the 2-D FFT result (previously rounding to 18 bits). The 
complex multiplication needs four DSP48 circuits. Inside of this circuit, the complex 
multiplication uses multipliers, internal registers and adders/subtractors. These modules 
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are completely standard using the a_width and b_width generics that select the precisions of 
the signals to multiply. 

The sum of the outputs of the complex multipliers is implemented using slices exclusively. 
We implemented two adders, one for the real components and other for the imaginary ones. 
This module is also configured with a generic parameter that supplies data precision. The 
results of the adders (apq coefficients) are rounded appropriately to obtain 8 bits data 
precision according with the data input width of the inversed bidimensional transform that 
is executed at the next stage. 

The FLIP-RAM module synthesizes a double dual-port memory similar to the memories 
that were described in the 2D-FFT section. While a memory is in read mode, the other one is 
in write mode. With this consideration, the total implemented system continues being 
pipeline. The addressing of the memories is obtained in a similar form, through a counter 
that is included in the inversed 2D-FFT. In this case, the memories only store real data (data 
values of the recovered phase). This module is necessary because the phase data that the 
inversed 2D-FFT provides are disorderly. The implemented module is depicted in figure 18. 

RAM

odd

RAM

even

counter

done

M
U

X
 

2
 a

 1

sel

we

we

addr_col
addr_fil

k_index

phase_des phase

 

Fig. 18. Block diagram of the output stage of the wavefront recoverer (Flip-RAM) 

The design of a 64x64 phase recoverer was programmed using the VHDL hardware 
description language (IEEE, 2000) and XST (Xilinx, 2006b) was used to synthesize these 
modules into a XC6VLX240T Virtex-6 FPGA.  

The complete system was successfully tested in circuit using ChipScope Pro software (using 
phase gradients obtained in simulations) that directly inserts a logic analyzer and bus 
analyzer into the design, allowing any internal signal to be viewed. Signals are captured at 
operating system speed and brought out through the programming interface. Captured 
signals can then be analyzed with the PC that acts as a logic analyzer. The numeric results 
were also successfully compared with those obtained in Matlab. Figure 19 shows an 
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example of a wavefront reconstruction using a 64 × 64 subpupil recoverer. The two first 
images show the phase gradients (Sx, Sy) given to the module. The last picture is the 
recovered phase using the implemented module. 

 

Fig. 19. Phase gradients (Sx and Sy) and the recovered phase for a Shack-Hartmann sensor 
with 64x64 subpupils 

Table 3 shows the total time broken down into the stages of the total system (depicted in 
figure 13). 12980 clock cycles are necessary for phase recovery, starting with data reception 
to the activation of the ready signal. This value is the latency time for the phase recoverer. At 
a 200 MHz frequency clock, the system needs less than 65 μs to recover the phase.  

 

Module Cycles Duration (@ 200 MHz) 

2D-FFT 
(Sx and Sy) 

4438 22.19 µs 

Multipliers 4 0.02 µs 

Adder 1 0.005 µs 

IFFT2D 4438 22.19 µs 

Flip-RAM 4096 20.48 µs 

Rounding (3) 3 0.015 µs 

Total 12980 64.90 µs 

Table 3. Execution time (latency) for the different stages of the 64x64 phase recoverer   

Generalizing, the latency for a generic NxN phase recoverer is determined as follows: 

 
 2 2

2

2
2

2 4 18log 22 4 1 3

3 8 36log 36 , 8, 16, 32,

latency N N N N

N N N N

        

     
 (25) 

Table 4 shows XC6VLX240T Virtex-6 resource utilization and the maximum operating 
frequency (pre-synthesis). 

 

Slices FFs 6-LUT DSP48 BRAM Fmax [MHz] 

5819 (1%) 5000 (3%) 104 (13%) 58 (13%) 402.188 

Table 4. XC6VLX240T Virtex-6 resource utilization to implement the phase recoverer 
prototype.  
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The implemented architecture is pipeline. This architecture allows phase data to be obtained 
for each 4,096 clock cycles (this number coincides with the number of points of the 
transforms, that is, the number of subpupils, 64 × 64, of the Shack-Hartmann sensor). Using 
the 200 MHz clock, the prototype provides new phase data each 20.48 μs. 

These results can be compared with other works. Rodriguez-Ramos et al. (2007) 
implemented a 64 × 64 phase recoverer using GPU. In this technology, the wavefront 
reconstruction needs 3.531 ms. The FPGA implementation results almost 30 times faster. 
Baik et al. 2007 implemented a wave reconstruction with a 14 × 14 Shack-Hartmann array, an 
IBM PC and a Matrox Meteor-2 MC image processing board. The wavefront correction 
speed of the total system was 0.2 s. Although the system includes the gradient estimation, it 
can be seen that the execution times are slower than in the proposed implementation. Seifer 
et al. 2005 used a sensor with 16 × 12 subpupils and a Pentium M, 1.5 GHz. The wavefront 
reconstruction in this case was 50 ms using Zernike polynomials to adjust to the coefficients 
of the aperture function. Again, our implementation using FPGA technology is 
comparatively faster. 

6. Conclusion 

A wavefront phase can be recovered from a Shack-Hartmann sensor using FPGA as 
exclusive computational resource. Wavefront phase recovery in an FPGA is an even more 
satisfying computational technique because recovery times result faster than GPU or CPU 
implementations. 

A 64 × 64 wavefront recoverer prototype was synthesized with a Xilinx XC6VLX240T 
Virtex-6 as sole computational resource. This FPGA is provided in a ML605 evaluation 
platform. Our prototype was designed using ISE Foundation 13.1. The system has been 
successfully validated in the FPGA chip using simulated data. 

A two-dimensional FFT is implemented as nuclei algorithm of the recoverer: processing 
times are really short. The system can process data in much lower times than the 
atmospheric response. This feature allows more phases to be introduced in the adaptive 
optical process. Then, the viability of the FPGAs for AO in the ELTs is assured. 

Future work is expected to be focused on the optimization of the 2D-FFT using others 
algorithms (radix-8, radix-16). Finally, next-generation Virtex-7 devices provide enough 
DSP48 resources in order to implement all the butterflies in the 64-FFT algorithm. Using 
these devices, phases in the adaptive optic process could be estimated in much lower times. 
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