
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

10

Acceleration of Computation
Speed for Wavefront Phase

Recovery Using Programmable Logic

Eduardo Magdaleno and Manuel Rodríguez
University of La Laguna

Spain

1. Introduction

Atmospheric turbulence introduces optical aberration into wavefronts arriving at ground-
based telescopes. Current adaptive optics (AO) systems use vector-matrix-multiply (VMM)
reconstructors to convert gradient measurements to wavefront phase estimates. Until
recently, the problem of an efficient phase recoverer design has been implemented over PC
or GPU platforms. As the number of actuators n increases, the time to compute the
reconstruction by means of the VMM method scales as O(n2). The number of actuators
involved in AO systems is expected to increase dramatically in the future. For instance, the
increase in the field of astronomy is due to increasing telescope diameters and new higher-
resolution applications on existing systems. The size increase ranges from hundreds up to
tens of thousands of actuators and requires faster methods to complete the AO correction
within the specified atmospheric characteristic time. The next generation of extremely large
telescopes (with diameters measuring from 50 up to 100 meters) will demand important
technological advances to maintain telescope segment alignment (phasing of segmented
mirrors) and posterior atmospheric aberrations corrections. Furthermore, an increase in
telescope size requires significant computational power. Adaptive optics includes several
steps: detection, wavefront phase recovery, information transmission to the actuators and
their mechanical movements. A quicker wavefront phase reconstruction appears to be an
extremely relevant step in its improvement. For this reason other hardware technologies
must be taken into account during the development of a specific processor.

In recent years, programmable logic devices called FPGA (Field Programmable Gate Array)
are seriously taken into account like a technological alternative in those fields where fast
computations are required. The FPGA technology makes the sensor applications small-sized
(portable), flexible, customizable, reconfigurable and reprogrammable with the advantages
of good customization, cost-effectiveness, integration, accessibility and expandability.
Moreover, an FPGA can accelerate the sensor calculations due to the architecture of this
device. In this way, FPGA technology offers extremely high-performance signal processing
and conditioning capabilities through parallelism based on slices and arithmetic circuits and
highly flexible interconnection possibilities (Meyer-Baese, 2001 and Craven & Athanas
2007). Furthermore, FPGA technology is an alternative to custom ICs (integrated circuits) for
implementing logic. Custom integrated circuits (ASICS) are expensive to develop, while
generating time-to-market delays because of the prohibitive design time (Deschamps 2006).

www.intechopen.com

Topics in Adaptive Optics

208

Thanks to computer-aided design tools, FPGA circuits can be implemented in a relatively
short space of time. For these reasons, FPGA technology features are an important
consideration in sensor applications nowadays.

In particular, the algorithm of the phase recoverer is based on the estimation of Fast Fourier
Transforms (FFT) (Roddier & Roddier, 1991). For this reason, we have to do a careful choice
of the architecture of the FFT. An efficient design of this block can result in substantial
benefits in speed in comparison with the GPU, DSP or CPU solution.

This chapter presents the design of a fast enough wavefront phase reconstruction algorithm
that is based on FPGA technology, paving the way to accomplish the extremely large
telescope’s (ELT) number of actuators computational requirements within a 6 ms limit,
which is the atmospheric response time. The design was programmed using the VHDL
hardware description language and XST was used to synthesize into Virtex-6 and Virtex-7
devices. The FPGA implementation results almost 30 times faster than using GPU
technology for a 64x64 phase recoverer. The chapter presents a comparative analysis of used
resources for several FPGAs and time analysis.

2. A descriptive approach to the wavefront phase recovery

The Shack-Hartmann wavefront sensor samples the signal Ψtelescope(u,v) (complex amplitude of
the electromagnetic field) to obtain the wavefront phase map: Φ(u,v). This is only possible if
the sampling is done by microlenses or subpupils with r0 dimension (that is, inside the phase
coherence domain). An array of microlenses is used to sample the wavefront. This array is a
rigid piece that fixes the sampling rate. Each (i,j) microlense produces a spot (figure 1):

2

(,) [(,)]ijij
telescopeI x y FFT u v (1)

Fig. 1. Diagram of the light travel across a Shack-Hartmann sensor to measure the phase of
the wavefront in the telescope pupil

www.intechopen.com

Acceleration of Computation
Speed for Wavefront Phase Recovery Using Programmable Logic

209

The displacements dij of the spots centroid with regard to the references centroid (associated
with a plane wavefront phase), are a proportional estimation of the average subpupil phase
gradient:

ijsubp

ijd K
r


 


 (2)

Where r


 is the position with components (u,v), and K is a constant. K depends on the

wavelength and the focal distances of the telescope, reimaging lens and microlenses. From
these gradients estimation, the wavefront phase Φ(u,v) can be recovered using an expansion
over complex exponential polynomials (Poyneer et al., 2002):

21 1 ()

, 0 , 0

1
(,) (,) ()

iN N pu qv
N

pq pq pq pq
p q p q

u v a Z u v a e IFFT a
N




  

 
    (3)

The gradient is then written:

,

(,) (,) pq pq
p q

S u v u v i j a Z
u v

   
     

  
   

 (4)

Making a least squares fit over the F function:

 2
, 1 ,

[(,) ()]
pq pqZ ZN

pq u vu v p q
F S u v a i j

 

    
  

 (5)

where S


 are experimental data, the coefficients, apq, of the complex exponential expansion
in a modal Fourier wavefront phase reconstructor (spatial filter), can be written as:

   

2 2

(,) (,)yx

pq

ipFFT S u v iqFFT S u v
a

p q





 (6)

The phase can then be recovered from the gradient data by transforming backward those
coefficients:

 1(,) []pqu v FFT a  (7)

A filter composed of three Fourier transforms therefore must be calculated to recover the
phase. In order to accelerate the process, an exhaustive study of the crucial FFT algorithm
was carried out which allowed the FFT to be specifically adapted to the modal wavefront
recovery pipeline and the FPGA architecture.

3. A descriptive approach to the FPGA architecture

A FPGA device is essentially a matrix of logic cells (called slices). These slices are connected
among themselves and with input/output blocks (IOB) through routing channels. These
channels are distributed in the FPGA in horizontal and vertical form and its connexions are
fixed using a programmable switch matrix (figure 2).

www.intechopen.com

Topics in Adaptive Optics

210

Fig. 2. FPGA generic architecture

Each slice is formed by look-up tables (LUT) and several flip-flops and programmable
multiplexers (figure 3). The number and features of these elements depend on the FPGA
family. Slices can implement memory (called distributed memory) or simple logic functions.
Complex functions and parallel circuits are implemented when they are associated among
themselves. Furthermore, FPGAs contain specific RAM blocks (BRAM) and arithmetic circuits.

Fig. 3. Block diagram of a slice

In particular, FPGAs allow a wide variety of computer arithmetic implementations for the
desired digital signal processing algorithms like FFT, because of the physical bit-level
programming architecture. FFT algorithm can be parallelized and we can implement a full
pipeline architecture using FPGA. This feature contrasts with DSPs and GPUs, with the
fixed multiply accumulator core.

www.intechopen.com

Acceleration of Computation
Speed for Wavefront Phase Recovery Using Programmable Logic

211

In addition, Xilinx Virtex FPGA devices incorporate DSP48 arithmetic modules. Each DSP48
slice has a two-input multiplier followed by multiplexers and a three-input
adder/subtracter. The multiplier accepts two 18-bit, two's complement operands producing
a 36-bit, two's complement result. The result is sign extended to 48 bits and can optionally
be fed to the adder/subtracter. The adder/subtracter accepts three 48-bit, two's complement
operands, and produces a 48-bit two's complement result. Two DSP48 slices, a shared 48-bit
C bus, and dedicated interconnect form a DSP48 tile (figure 4).

The DSP48 slices support many independent functions, including multiplier, multiplier-
accumulator (MAC), multiplier followed by an adder, three-input adder, barrel shifter, wide
bus multiplexers, magnitude comparator, or wide counter. The architecture also supports
connecting multiple DSP48 slices to form wide math functions, DSP filters, and complex
arithmetic without the use of general FPGA fabric (Hawkes, 2005).

Fig. 4. Two DSP48 arithmetic modules with a shared 48-bit C bus

www.intechopen.com

Topics in Adaptive Optics

212

4. Design of an efficient one-dimensional FFT

The discrete Fourier transform (DFT) of an N-point discrete-time complex sequence x(n),
indexed by n=0, 1, N-1, is defined by

1

0

() () , 0,1, 1
N

kn
N

n

X k x n W k N



     (8)

where 2 /j N
NW e  and is referred to as the twiddle factor. The number of complex

multiply and add operations for the computation of an N-point DFT is of order N2 but the
problem is alleviated with the development of special fast algorithms, collectively known as
fast Fourier transforms (Cooley & Tukey, 1965). These algorithms reduce the number of
calculations to Nlog2N.

In the decimation-in frequency (DIF), the FFT algorithm starts with splitting the input data
set X(k) into odd- and even-numbered points,

 (/2) 1 (/2) 1
(2 1)2

0 0

() () ()

(2) (2 1)

kn kn
N N

n even n odd

N N
k mmk

N N
m m

X k x n W x n W

x m W x m W
 



 

    

    

 

 
 (9)

So, the problem may be viewed as the DFT of N/2 point sequences, each of which may
again be computed through two N/4 point DFTs and so on. This is illustrated in the form of
a signal flow graph as an example for N=8 in figure 5.

Fig. 5. Computation of FFT by decimation in frequency for N=8

www.intechopen.com

Acceleration of Computation
Speed for Wavefront Phase Recovery Using Programmable Logic

213

Finally, for the radix-2 FFT algorithm, the smallest transform or butterfly (basic
computational unit) used is the 2-point DFT.

Generally, each butterfly implies one complex multiplier and two complex adders. In

particular, multipliers consume much silicon area of FPGA because they are implemented

with adder trees. Various implementation proposals have been made to save area removing

these multipliers (Zhou et al. 2007, Chang & Jen, 1998, Guo, 2000 and Chien et al., 2005).

Instead, DSP48 circuits allow some internal calculations of the Fourier transform algorithm

or the filter of the phase reconstruction to be parallel, such as in complex multiplications. In

this way, the use of these components accelerates the FFT calculation in comparison with a

sequential algorithm or adder trees solutions. A complex pipeline multiplier is implemented

using only four DSP48 (figure 6) to calculate:

real real real imag imag

imag imag real real imag

P A B A B

P A B A B

   

   
 (10)

DSP48 4

DSP48 3

16

16

16

16

32

32

32

32

A_imag

B_imag

A_real

B_real

P_real

DSP48 2

DSP48 1

16

16

16

16

32

32

32

32

A_imag

B_real

A_real

B_imag

P_imag

The two input register to the left align operands with
the first output register below and avoid fabric. The

benefit is increased performance and lower power

0

0

Fig. 6. Pipeline, complex multiplier with four parallel real multipliers

www.intechopen.com

Topics in Adaptive Optics

214

The real and imaginary results use the same DSP48 slice configuration with the exception of
the adder/subtracter. The adder/subtracter performs subtraction for the real result and
addition for the imaginary one. This implementation only needs four clock cycles to calculate
the complex multiplication with up to 550 MHz in XC4VSX35 Virtex-4 (Hawkes, 2005).

The complete pipeline radix-2 butterfly can be easily implemented with this specialized
multiplier. It is necessary to use a FPGA Look-Up Table (LUT) (configured as SRL16 3-bits
shift register) to preserve the synchronism. The butterfly implemented is depicted in Figure
7 and it needs only seven clock cycles to carry out the computation.

Fig. 7. Pipeline radix-2 butterfly in FPGA

A pipeline radix-2 FFT can be implemented using one butterfly in each stage. The twiddle
coefficients used in each stage are stored in twiddle LUT ROMs in the FPGA. The logic
resources and the clock cycles of the FFT module is reduced in our implementation using
specific butterflies modules at the first and second stages. The first stage utilizes the feature
of the twiddle factors related to the first stages of the pipeline.

 /2 1N
NW  (11)

So, the first stage can be implemented in a very simple way with an adder/subtracter. In the
second stage, the next twiddle factors are

 /4N
NW j (12)

This twiddle suggests a similar splitting structure in the second pipeline stage as in the first
one; however, the imaginary unit imposes a special consideration: two additional
multiplexers change real and imaginary data, and the pipeline adder/subtracter works
according equation 13.

 ()a bj j aj b b aj      (13)

Taking into account these features, the 1D-FFT architecture implementation is depicted in
figure 8. The swap-blocks arrange the data flow (according figure 5) and preserve the
pipeline feature. It consists of two multiplexers and two shift registers. These shift registers
are implemented using look-up tables (LUT) in mode shift register (SRL16) for
synchronization (figure 9).

www.intechopen.com

Acceleration of Computation
Speed for Wavefront Phase Recovery Using Programmable Logic

215

Fig. 8. Architectural block diagram of a radix-2 pipeline FFT

Fig. 9. Swap unit

The system performs the calculation of the FFT with no scaling. The unscaled full-precision
method was used to avoid error propagations. This option avoids overflow situations
because output data have more bits than input data. Data precision at the output is:

 2log 1output width input width points   (14)

The number of bits on the output of the multipliers is much larger than the input and must
be reduced to a manageable width. The output can be truncated by simply selecting the
MSBs required from the filter. However, truncation introduces an undesirable DC data shift.
Due to the nature of two's complement numbers, negative numbers become more negative
and positive numbers also become more negative. The DC shift can be improved with the
use of symmetric rounding stages (figure 8). The periodic signals of the swap units, op

www.intechopen.com

Topics in Adaptive Optics

216

signal, and the address generation for the twiddle memories are obtained through a counter
module that acts like a control unit.

The pipeline 1D-FFT architecture design is completely parametrisable and portable. The

VHDL module has three generics in order to obtain a standard module: fwd_inv, data_width

and lognpoints (the logarithm in base 2 of the number of elements that fit with the number of

stages in the 1-D FFT calculation). These generics then select direct or inverse transform,

data value precision and the transform length.

4.1 Temporal analysis for the radix-2 pipeline FFT module and superior radix

In Table 1 is depicted the latency for each stage of an 8-points FFT (figure 8).

Stage Module Cycles

0

Swap 1 5

Adder 1 2

Swap 2 5

1

Multiplexers 1

Swap 3 3

Add/Sub 2 2

Swap 4 3

2

Multiplier 4

Round 1

Swap 5 2

Adder 3 2

Swap 6 2

 Total 32

Table 1. Latency of each module in a pipeline 8-points FFT

Taking into account the clock cycles of each block in table 1, the latency of the N-points FFT

module (log2N stages) can be written as

  
 

2log 1

21
2

2 1 2 1 2 1 2
2 4

7 2 1 , 2, 3, log 1
2

N

n
n

N N
latency

N
n N






             
   

          
 

 (15)

where the two first stages are considered separately, and N and n are the number of points

of the transform and the number of stages of the module respectively. Operating,

www.intechopen.com

Acceleration of Computation
Speed for Wavefront Phase Recovery Using Programmable Logic

217

 

 
 

 

 

 

2

2

2

2

2

log 1

2

log 1

2
2

log 1

2
2

log 1

2
1

log 1

2
1

3
9 9

2 2

3
9 9 log 2

2 2

3 1
9log 9

2 2

3 1
9log 9

2 2 2

1
9log 9

2

N

n
n

N

n
n

N

n
n

N

n
n

N

n
n

N N
latency

N N
N

N
N N

N N
N N

N N N

















       

     

    

     

   











 (16)

The last summand of this equation is a geometric series with common ratio equal to ½. This

is a convergent series and the partial sum to r of the series is

1

1 2 1

2 2

rr

r n r
n

S



  (17)

Where in this case r=log2N-1, so

  
 

 

2 2

2 22

log 1 log 1

log 1 log 1log 1

1
2 1 2 2 1 22

2 22
2

N N

N NN

N
N

S
N N

 

 

  
    (18)

Adding the geometrical series in equation 17 and grouping, finally

 22 9log 11 , 8, 16, 32,latency N N N     (19)

When the number of points of the FFT is a power of 4 is computationally more efficient to

use a radix 4 algorithm instead of used radix 2. The reasoning is the same than radix 2 but

subdividing iteratively a sequence of N data into four subsequences, and so on. The radix-4

FFT algorithm consists of log4N stages, each one containing N/4 butterflies. As the first

weight is 0 1NW  , each butterfly involves three complex multiplications and 12 complex

sums. Performing the sum in two steps, according to Proakis & Manolakis (1996), it is

possible to reduce the number of sums (12 to 8). Therefore, the number of complex sums to

perform is the same (Nlog2N) than the algorithm in base 2, but the multipliers are reduced

by 25% (of (N/2)log2N to (3N/8)log2N). Consequently, the number of circuits for use DSP48 is

reduced proportionately.

For number of point power of 4, the pipeline radix-4 FFT module has half of arithmetic

stages, but the swap modules need twice clock cycles to arrange the data. Then, the latency

is expressed as

www.intechopen.com

Topics in Adaptive Optics

218

4

4

log 1

1
1

log 1

4
1

3
(4) 2 1 2

4

3
7 2 1

4

1
9log 5 6

4

N

n
n

N

n
n

latency radix N

N

N N










     
 

         

  





 (20)

Again, the series can be estimated for log4N-1 terms, and finally

 4(4) 2 9log 13,

16, 64, 256, 1024,

latency radix N N

N

  
 

 (21)

This time estimation has been realized for other radix, as shown in the following equations:

 

 

8

16

8 12

8 2 9log 21,

64, 512,

16 2 9log 37,

2 , 2 ,

latency radix N N

N

latency radix N N

N

  



  







 (22)

Generalizing

 
1

2 9log 5 2 ,

, 1,2,3,

4,8,16,

i

n

latency radix i N N i

N i n

i



   

 





 (23)

In Figure 10 is depicted the clock cycles of each algorithm and a proposed resolution with an

orange line. All implementations are close to 2 when the number of points grows (figure

10a). The improvement in terms of computing speed of the algorithm using other radix is

relevant when the number of samples is small. For example, the improvement factor for a

1024-point FFT is less than 7% using a radix-32 algorithm and less than 3% using a radix-4

(Figure 10b). However, in our astronomical case the proposed size is relativity small and the

improvement using superior radix is relevant. Examining figure 10b, we can observe that

the improvement factor is about 20% using radix-8 and 30% using radix-16. Thus, we are

considering implementing these algorithms in the future.

4.2 Resources analysis

Several FFTs were implemented over a XC6VLX240T Virtex-6 device and numerical results
were satisfactorily compared with Matlab simulations. Resources in this FPGA include
301440 flip-flops, 150720 6-LUTs, 416 BRAM and 768 DSP48s. The syntheses were achieved
by changing the size of the FFT and the data precision.

Figure 11 shows the resource utilization to implement a pipeline 1024-FFT when the input
data precision is between 8 and 24 bits. The resource utilization is greater when the FFT has
more precision due to the increase of the intrinsic complexity found when the precision is

www.intechopen.com

Acceleration of Computation
Speed for Wavefront Phase Recovery Using Programmable Logic

219

increased. From 17 bits of precision, DSP48 circuits are increased and the maximum
operating frequency is drastically smaller. It is due to high-precision complex multipliers
need eight DSP48 circuits instead four in Figure 6. These high-precision multipliers are
increased in each stage of the FFT from 17 bits data precision.

10
1

10
2

10
3

10
4

1.5

2

2.5

3

3.5

4

n
o
rm

a
liz

e
d
 l
a
te

n
c
y
 [

c
y
c
le

s
/p

o
in

ts
]

points

radix-2

radix-4

radix-8

radix-16

radix-32

10
2

10
3

10
4

0

5

10

15

20

25

30

35

points

re
la

ti
v
e
 i
m

p
ro

v
e
m

e
n
t[

%
]

radix-4

radix-8

radix-16

radix-32

Fig. 10. (a) Normalized latency. (b) Relative improvement respect of radix-2 algorithm

In figure 12 is depicted the resource utilization to implement one-dimension FFT when de
number of points of the transform is increased in a power of 2.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Data precision [bits]

G
en

er
ic

 r
es

o
u

rc
es

Slices f lip-flops 6-LUT

0

10

20

30

40

50

60

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Data precision [bits]

D
S

P
48

 c
ir

cu
it

s

0

50

100

150

200

250

300

350

400

450

F
m

ax
 [

M
H

z]

DSP48 circuits Fmax

Fig. 11. FPGA Resources and maximum operating frequency for 1024-FFT

www.intechopen.com

Topics in Adaptive Optics

220

0

200

400

600

800

1000

1200

1400

1600

1800

2000

8 16 32 64 128 256 512 1024 2048 4096

N-points FFT

G
en

er
ic

 r
es

o
u

rc
es

Slice f lip-flops 6-LUT

0

5

10

15

20

25

30

35

40

45

8 16 32 64 128 256 512 1024 2048 4096

N-points FFT

D
S

P
48

 c
ir

cu
it

s

0

100

200

300

400

500

600

700

F
m

ax
 [

M
H

z]

DSP48 circuits Fmax

Fig. 12. FPGA Resources and maximum operating frequency for N-FFT with N from 8 to
4096

4.3 Comparison with others implementations

A comparison has been carried out between our design and others implementations. The
combined use of the FPGA technology and the developed architecture achieves an
improved performance compared to other alternatives. This is showed in figure 13 where
our implementation executes an 1024-point FFT operation in 10.64 μs at 200 MHz.

5. Wavefront phase recovery FPGA-implementation

We will focus on the FPGA implementation from equations (6) and (7) to improve
processing time. These equations can be implemented using different architectures. We
could choose a sequential architecture with a unique 2D-FFT module where data values use
this module three times in order to calculate the phase. This architecture represents an
example of an implementation using minimal resources of the FPGA. However, we are
looking for a fast implementation of the equations in order to stay within the 6 ms limit of
the atmospheric turbulence. Given these considerations we chose a parallel and completely
pipeline architecture to implement the algorithm. Although the resources of the device
increase considerably, we can maintain time restrictions by using extremely high-
performance signal processing capability through parallelism. We therefore synthesize three
2D-FFTs instead of one 2D-FFT.

www.intechopen.com

Acceleration of Computation
Speed for Wavefront Phase Recovery Using Programmable Logic

221

1024-point FFT

343
330

267
210

184
160

153,84
151

137
121,6

108
104

89,8
89

80
75

68
40,96
36,59

32
17,09
12,73
12,49
10,64

0 50 100 150 200 250 300 350 400

FHT Virtex XCV2000E (Uzun et al., 2005)

VLSI FFT Processor (Bass, 1999)

Motorola-Pow er PC-266 MHz (Motorola, 2002)

Sun-UltraSPARC II-300 MHz (Motorola, 2002)

Core FFT (Mentor Graphics, 2002)

SRFFT XCV2000E (Uzun et al., 2005)

Radix-4 Spartan-3 (Vite et al., 2005)

ADSP-2192 (Analog Devices, 2003)

DSP56600 (Motorola, 2002)

Radix-2 XCV2000E (Uzun et al., 2005)

TMS320C67x (Texas Instruments, 2003)

TMS320C62x (Texas Instruments, 2003)

Core CS2410 XCV400E (Amphion, 2002)

FFT Megacore (Altera, 2002)

VLSI Processor (Wosnitza, 1999)

Intel PIV-1500 MHz (Frigo & Johnson, 1998)

Uzun Radix-4 XCV2000E (Uzun et al., 2005)

Sacet SCT2201 (Sukhsaw as & Benkrid, 2004)

Core Xilinx Radix-2 Virtex-4 Family (Xilinx, 2006)

Bahl Virtex-E (Sukhsaw as & Benkrid, 2004)

Core Radix-4 Virtex-4 Family (Xilinx, 2006a)

Core pipeline Virtex-4 Family (Xilinx, 2006a)

R4SDF Virtex-E (Sukhsaw as & Benkrid, 2004)

Pipeline Radix-2 Virtex-6 XC6VLX240T

Time [microseconds]

Fig. 13. FPGA Resources and maximum operating frequency for N-FFT with N from 8 to
4096

The block diagram of the designed recoverer is depicted in figure 14 where Sx and Sy

represent the image displacement into each subpupil. The bidimensional transforms of Sx

and Sy have to be multiplied by ip/p2+q2 and iq/p2+q2 respectively according to equation 6.

These two matrices are identical if we change rows by columns. We can therefore store a

unique ROM. The results of the adders (apq coefficients) are rounded appropriately to obtain

16 bits data precision according with the data input width of the inversed bidimensional

transform that is executed at the next stage.

An analysis of the equations and a parallel architecture of its implementation are taken into
account. We then break down the design into the following steps or stages:

1. Compute two real forward 2D FFT that compute FFT(Sx) and FFT(Sy).
2. Compute the complex coefficients
3. Carry out a complex inverse 2D FFT on apq.
4. Flip data results.

www.intechopen.com

Topics in Adaptive Optics

222

Fig. 14. Architecture of the synthesized phase recovery

5.1 2D-FFT on the Virtex-6 FPGA

The fundamental operation in order to calculate the 2DFFT is equivalent to doing a 1D-FFT
on the rows of the matrix and then doing a 1D-FFT on the columns of the result.
Traditionally, the parallel and pipeline algorithm is then implemented in the following four
steps.

1. Compute the 1D-FFT for each row
2. Transpose the matrix
3. Compute the 1D-FFT for each row
4. Transpose the matrix

Figure 15 depicts the diagram of the implemented transform module. The operation of the
developed system takes place when image data is received in serial form by rows. These
data are introduced in a block that carries out a one dimensional FFT. As this module
obtains the transformed data, the information is stored in two double-port memories (real
and imaginary data). To complete the bidimensional FFT, the stored data is introduced in
a second 1D-FFT in column format. The 2D-FFT is then obtained from the output of this
block.

Continuous data processing using a single dual-port memory (real and imaginary) is not
possible. In that case, the new transformed data must wait for the old data to be
introduced in the second FFT block. Otherwise data are overwritten. As a result, the
pipeline property of the FFT architecture can not be used. This problem can be averted by
using two memories instead of one, where memories are continuously commuting
between write and read modes. When the odd memory is reading and introducing data
values in the second FFT module, the even memory is writing data which arrives from the
first FFT. So, data flow is continuous during all of the calculations in the bidimensional
transform. The memory modes are always alternating and the function is selected by the
counter. The same signal is used to commute the multiplexer that selects the data that
enter the column transform unit.

www.intechopen.com

Acceleration of Computation
Speed for Wavefront Phase Recovery Using Programmable Logic

223

1D-FFT

RAM
odd

x

RAM

even

1D-FFT Xcounter

done

M
U

X

2
 a

 1

sel

we

we

addr_col
addr_fil

k_index

start1

start2

Fig. 15. Block diagram of the implemented 2D-FFT

It is worth mentioning that the transposition step defined in the above (step 2) is
implemented simultaneously with the transfer of column data vector to the memory with no
delay penalty. In this way, the counter acts as an address generation unit. The last
transposition step (step 4) is not implemented in order to save resources and obtain a fast
global system. So, the last transposition step is taken into account only at last of the
algorithm described in eq. (4)-(5) and showed in figure 13 (Flip-RAM module).

Row 1D-FFT block and column 1D-FFT block are not identical due to the unscaled data
precision. For example, a 64x64 2D-FFT for the phase recoverer must meet certain
requirements. If the precision of data input is 8 bits, the output data of 1D-FFT of the rows
has to be 15 bits according equation 13. 1D-FFT of the columns accepts a 15 bits data format
and 22 bits at the output.

Taking into account the latency of the FFT (equation 18) and the pipeline operation of the
memory modules, the latency of the 2D-FFT module can be written as

 2
24 18log 22 , 8, 16, 32,latency N N N N      (24)

In Figure 16 is depicted the latency for different sizes of 2D-FFT according to equation 18.

Table 2 shows a performance comparison of existing 2D-FFTs implementations using FPGA
and other technologies for matrix sizes 64x64 and 128x128. Rodríguez-Ramos et al. 2007
implemented 2D-FFT on a CPU AMD XP 3500+, 2211 GHz, with 512 KB L2 cache and on a
GPU nVidia GeForce 7800 GTX graphical engine with 256 MB RAM. Uzun et al. 2007
implemented several algorithms on a Virtex-2000E FPGA chip where the fastest design is
depicted in the table. It can be seen that our design shows improvements when compared to
[3] and [15] in terms of frame rate performance. Magdaleno et al. 2010 implemented 2D-FFT
in a XC4VSX35 Virtex-4 operating at 100 MHz. Virtex-6 family can operate twice faster and
the time operation is decreased in this way.

www.intechopen.com

Topics in Adaptive Optics

224

128 370 1220
4438

17000

66682

8x8 16x16 32x32 64x64 128x128 256x256

Clock cycles

Fig. 16. Estimation of latency for several 2D-FFT

2D-FFT
CPU
Rodríguez-Ramos
et al. [2007]

GPU
Rodríguez-Ramos
et al. [2007]

FPGA
Uzun
et al. [2007]

FPGA
Magdaleno
et al. [2010]

FPGA
Proposed

64x64 114.5 µs 1.58 ms - 44.4 µs 22.2 µs

128x128 811.0 µs 1.68 ms 2.38 ms 170.8 µs 85.0 µs

256x256 - - - - 333.4 µs

Table 2. 2D-FFT performance comparison with other designs

In figure 17 is depicted the resource utilization to implement 2D-FFT when de number of
points of the transform is increased in a power of 2. The relevant resource is the Block-RAM.
The 256x256 FFT occupies the 34% of BRAM for a XC6VLX240T Virtex-6 and the maximum
operating frequency is only 297 MHz.

5.2 An 64x64 phase recoverer implementation

For a first prototype of the phase recoverer, we have selected a plenoptic sensor with 64x64
pixels sampling each microlens.

The first step is a direct use of the proposed 2D FFT. To accelerate the process, the two real
transforms are executed simultaneously through a parallel implementation. Observe how
the two 2D-FFT of phase gradients Sx and Sy are multiplied by some constant factors
according to the formula of the phase recoverer (Figure 14). An adder is necessary in the
following stage to calculate the frequency coefficients and achieve an inversed 2D-FFT.
Phase values are then transposed, which require an intermediate memory to properly show
output data (flip-ram module). The direct 2D-FFTs are real, so the imaginary components
are zero. The inversed transform allows complex input data.

www.intechopen.com

Acceleration of Computation
Speed for Wavefront Phase Recovery Using Programmable Logic

225

0

500

1000

1500

2000

2500

3000

3500

8x8 16x16 32x32 64x64 128x128 256x256

Size

G
en

er
ic

 r
es

o
u

rc
es

Slice f lip-f lops 6-LUT

0

20

40

60

80

100

120

140

160

8x8 16x16 32x32 64x64 128x128 256x256

S
p

ec
if

ic
 r

es
o

u
rc

es

0

50

100

150

200

250

300

350

400

450

F
m

ax
 [

M
H

z]

DSP48 BRAM Fmax

Fig. 17. Estimation of latency for several 2D-FFT

The importance of the parallel execution of the Sx and Sy transforms in the algorithm needs
mentioning. This feature allows both inputs to be simultaneously received and to obtain the
calculation of both data just as in the previous case at the output of the 2-D FFT units.

The bidimensional transforms of Sx and Sy have to be multiplied by ip/p2+q2 and iq/p2+q2
respectively according to Equation 6. These two 64x64 points matrix are identical if we change
rows by columns. We can therefore store a unique ROM (two 64x16 bits ROM, one ROM for
the real component of the factor and the other for the imaginary part). The addresses of these
ROMs are supplied by the 2D-FFT module through cnt_fil and cnt_col signals. These signals
are obtained from a built-in counter in this module. The ROM module has two generics
(data_width and addr_width) in order to synthesize a standard single-port memory of any size.
However, every time we change these generics, we have to use mathematical software (Matlab
in this case) in order to calculate the elements and initiate ROM memory.

There are two complex multipliers. Each one performs the complex multiplication of the
constant stored in the ROM by the 2-D FFT result (previously rounding to 18 bits). The
complex multiplication needs four DSP48 circuits. Inside of this circuit, the complex
multiplication uses multipliers, internal registers and adders/subtractors. These modules

www.intechopen.com

Topics in Adaptive Optics

226

are completely standard using the a_width and b_width generics that select the precisions of
the signals to multiply.

The sum of the outputs of the complex multipliers is implemented using slices exclusively.
We implemented two adders, one for the real components and other for the imaginary ones.
This module is also configured with a generic parameter that supplies data precision. The
results of the adders (apq coefficients) are rounded appropriately to obtain 8 bits data
precision according with the data input width of the inversed bidimensional transform that
is executed at the next stage.

The FLIP-RAM module synthesizes a double dual-port memory similar to the memories
that were described in the 2D-FFT section. While a memory is in read mode, the other one is
in write mode. With this consideration, the total implemented system continues being
pipeline. The addressing of the memories is obtained in a similar form, through a counter
that is included in the inversed 2D-FFT. In this case, the memories only store real data (data
values of the recovered phase). This module is necessary because the phase data that the
inversed 2D-FFT provides are disorderly. The implemented module is depicted in figure 18.

RAM

odd

RAM

even

counter

done

M
U

X

2
 a

 1

sel

we

we

addr_col
addr_fil

k_index

phase_des phase

Fig. 18. Block diagram of the output stage of the wavefront recoverer (Flip-RAM)

The design of a 64x64 phase recoverer was programmed using the VHDL hardware
description language (IEEE, 2000) and XST (Xilinx, 2006b) was used to synthesize these
modules into a XC6VLX240T Virtex-6 FPGA.

The complete system was successfully tested in circuit using ChipScope Pro software (using
phase gradients obtained in simulations) that directly inserts a logic analyzer and bus
analyzer into the design, allowing any internal signal to be viewed. Signals are captured at
operating system speed and brought out through the programming interface. Captured
signals can then be analyzed with the PC that acts as a logic analyzer. The numeric results
were also successfully compared with those obtained in Matlab. Figure 19 shows an

www.intechopen.com

Acceleration of Computation
Speed for Wavefront Phase Recovery Using Programmable Logic

227

example of a wavefront reconstruction using a 64 × 64 subpupil recoverer. The two first
images show the phase gradients (Sx, Sy) given to the module. The last picture is the
recovered phase using the implemented module.

Fig. 19. Phase gradients (Sx and Sy) and the recovered phase for a Shack-Hartmann sensor
with 64x64 subpupils

Table 3 shows the total time broken down into the stages of the total system (depicted in
figure 13). 12980 clock cycles are necessary for phase recovery, starting with data reception
to the activation of the ready signal. This value is the latency time for the phase recoverer. At
a 200 MHz frequency clock, the system needs less than 65 μs to recover the phase.

Module Cycles Duration (@ 200 MHz)

2D-FFT
(Sx and Sy)

4438 22.19 µs

Multipliers 4 0.02 µs

Adder 1 0.005 µs

IFFT2D 4438 22.19 µs

Flip-RAM 4096 20.48 µs

Rounding (3) 3 0.015 µs

Total 12980 64.90 µs

Table 3. Execution time (latency) for the different stages of the 64x64 phase recoverer

Generalizing, the latency for a generic NxN phase recoverer is determined as follows:

 2 2

2

2
2

2 4 18log 22 4 1 3

3 8 36log 36 , 8, 16, 32,

latency N N N N

N N N N

        

     
 (25)

Table 4 shows XC6VLX240T Virtex-6 resource utilization and the maximum operating
frequency (pre-synthesis).

Slices FFs 6-LUT DSP48 BRAM Fmax [MHz]

5819 (1%) 5000 (3%) 104 (13%) 58 (13%) 402.188

Table 4. XC6VLX240T Virtex-6 resource utilization to implement the phase recoverer
prototype.

www.intechopen.com

Topics in Adaptive Optics

228

The implemented architecture is pipeline. This architecture allows phase data to be obtained
for each 4,096 clock cycles (this number coincides with the number of points of the
transforms, that is, the number of subpupils, 64 × 64, of the Shack-Hartmann sensor). Using
the 200 MHz clock, the prototype provides new phase data each 20.48 μs.

These results can be compared with other works. Rodriguez-Ramos et al. (2007)
implemented a 64 × 64 phase recoverer using GPU. In this technology, the wavefront
reconstruction needs 3.531 ms. The FPGA implementation results almost 30 times faster.
Baik et al. 2007 implemented a wave reconstruction with a 14 × 14 Shack-Hartmann array, an
IBM PC and a Matrox Meteor-2 MC image processing board. The wavefront correction
speed of the total system was 0.2 s. Although the system includes the gradient estimation, it
can be seen that the execution times are slower than in the proposed implementation. Seifer
et al. 2005 used a sensor with 16 × 12 subpupils and a Pentium M, 1.5 GHz. The wavefront
reconstruction in this case was 50 ms using Zernike polynomials to adjust to the coefficients
of the aperture function. Again, our implementation using FPGA technology is
comparatively faster.

6. Conclusion

A wavefront phase can be recovered from a Shack-Hartmann sensor using FPGA as
exclusive computational resource. Wavefront phase recovery in an FPGA is an even more
satisfying computational technique because recovery times result faster than GPU or CPU
implementations.

A 64 × 64 wavefront recoverer prototype was synthesized with a Xilinx XC6VLX240T
Virtex-6 as sole computational resource. This FPGA is provided in a ML605 evaluation
platform. Our prototype was designed using ISE Foundation 13.1. The system has been
successfully validated in the FPGA chip using simulated data.

A two-dimensional FFT is implemented as nuclei algorithm of the recoverer: processing
times are really short. The system can process data in much lower times than the
atmospheric response. This feature allows more phases to be introduced in the adaptive
optical process. Then, the viability of the FPGAs for AO in the ELTs is assured.

Future work is expected to be focused on the optimization of the 2D-FFT using others
algorithms (radix-8, radix-16). Finally, next-generation Virtex-7 devices provide enough
DSP48 resources in order to implement all the butterflies in the 64-FFT algorithm. Using
these devices, phases in the adaptive optic process could be estimated in much lower times.

7. References

Analog Devices (2003). Analog Devices DSP Selection Guide 2003 Edition, Analog Devices,
2003, Available from www.analog.com/processors.

Amphion (2002). CS248 FFT/IFFT Core Datasheet, Amphion Ltd., 2002. Available from
www. datasheetarchive.com/500—Amphion-datasheet.html

Altera (2002). FFT Megacore Function User Guide, 2002, Available from www.altera.com
Bass B. (1999). A low-power, high-performance 1024-point FFT processor, IEEE J. Solid-State

Circuits, 34, 380-387, ISSN 0018-9200.

www.intechopen.com

Acceleration of Computation
Speed for Wavefront Phase Recovery Using Programmable Logic

229

Baik, S. H.; Park, S. K.; Kim, C. J. & Cha, B. (2007). A center detection algorithm for Shack–
Hartmann wavefront sensor, Optics & Laser Technology, 39, 262-267, 2007, ISSN
0030-3992.

Chang T.S. & Jen C.W. (1998). Hardware efficient transform designs with cyclic formulation
and subexpression sharing, Proceedings of th 1998 IEEE ISCAS 1998, 2, 398-401, ISBN
0-7803-4455-3, Monterey, California, USA, May 31-Jun 3, 1998.

Chien C. D; Lin C. C.; Yang C. H. & Guo J. I. (2005). Design and realization of a new
hardware efficient IP core for the 1-D discrete Fourier transform IEE Proc. Circuits,
Devices and Systems, 152, 247-258, ISSN 1350-2409.

Cooley, J.W. & Tukey, J.W. (1965). An algorithm for the machine calculation of complex
Fourier series, Mathematics of Computation, 1965, 19, 297-301, ISSN 0025-5718.

Craven, S. & Athanas (2007), P. Examinig the Viability of FPGA Supercomputing, EURASIP
Journal on Embedded Systems, 2007, 8, ISSN 1687-3963.

Deschamps, J.; Bioul, G. & Sutter, G. (2006). Synthesis of Arithmetic Circuits. FPGA, ASIC and
Embedded Systems, Wiley-Interscience, 2006, ISBN 0-471-68783-9.

Frigo M. & Johnson S. (1998). FFTW: An adaptive software of the FFT, Proceedings of IEEE
International Conference On Acoustics, Speech, and Signal Processing 1998, 1381-1384,
ISBN 0-7803-4428-6, Seattle, Washington, USA, May 12-15.

Guo, J. I. (2000). An efficient parallel adder based design for one dimensional discrete
Fourier transform, Proc. Natl. Sci. Counc. ROC, 2000, 24, 195-204.

Hawkes G. C. (2005). DSP: Designing for Optimal Results. High-Performance DSP Using Virtex-
4 FPGAs, Xilinx, Available from www.xilinx.com.

IEEE (2000). Standard VHDL Language Reference Manual, IEEE-1076- 2000, IEEE, 2000, ISBN 0-
7381-3326-4.

Magdaleno, E., Rodríguez, M., Rodríguez-Ramos, J.M. (2010). An efficient pipeline
wavefront phase recovery for the CAFADIS camera for extremely large telescopes,
Sensors, ISSN 1424-8220.

Mentor Graphics (2002). FFT/WinFFT/Convolver Transforms Core Datasheet, 2002, Available
from www.mentor.com.

Meyer-Baese, U. (2001). Digital Signal Processing with Field Programmable Gate Arrays,
Springer-Berlag, 2001, ISBN 3-540-72612-8.

Motorola (2002). Motorota DSP 56600 16-bit DSP Family Datasheet, Motorola, 2002, Available
from www.digchip.com.

Rodríguez-Ramos, J. M.; Marichal-Hernández, J. G. & Rosa F. (2007). Modal Fourier
wavefront reconstruction using graphics processing units, Journal of Electronic
Imaging, 16, 123-134, ISSN 1017-9909.

Poyneer, L. A.; Gave, D. T. & Brase, J. M. (2002). Fast wave-front reconstruction in large
adaptive optics systems with use of the Fourier transforms, Journal of the Optical
Society of America A, 2002, 19, 2100-2111, ISSN 1084-7529.

Roddier, F. & Roddier, C (1991). Wavefront reconstruction using iterative Fourier
transforms, Applied Optics, 30, 1325-1327, ISSN 2155-3165.

Proakis, J.G. & Manolakis, D.K. (1996). Digital Signal Proccesing. Principles, Algorithms and
Applications, Prentice Hall, 1996, ISBN 0-13-187374-1.

Seifert, L.; Tiziani, H. J. & Osten W. (2005). Wavefront reconstruction with the adaptive
Shack–Hartmann sensor, Optics Communications, 245, 255-269, 2005, North Holland,
ISSN 0030-4018.

www.intechopen.com

Topics in Adaptive Optics

230

Sukhsawas S. & Benkrid K. (2004). A high-level implementation of a high performance
pipeline FFT on Virtex-E FPGAs, Proceedings of the IEEE Computer Annual
Symposium on VLSI Emerging Trends in VLSI Systems Design 2004, ISBN 0-7695-2097-
9, Lafayette, Louisiana, USA, February 19-20.

Texas Instruments (2003). Texas Instruments C62x and C67x DSP Benchmarks, Texas
Instruments, 2003, Available from www.ti.com.

Uzun I. S.; Amira, A & Bouridane, A. (2005). FPGA implementations of fast Fourier
transforms for real-time signal and image processing, IEE Proceedings - Vision Image
and Signal Processing, 152, 283-296, ISSN 1350-245X.

Vite J. A.; Romero R. & Ordaz A. (2005). VHDL Core for 1024-Point Radix-4 FFT
Computation, Proceedings of the 2005 International Conference on Reconfigurable
Computing and FPGAs, Puebla, Mexico, September 28-30, ISBN 0-7695-2456-7.

Wosnitza, M. (1999). High precision 1024-point FFT processor for 2-D object detection, PhD
thesis, Harung-Gorre Verlag, Germany, 1999.

Xilinx (2006a). Fast Fourier Transform v3.2, 2006, Available from www.xilinx.com.
Xilinx (2006b). XST User Guide, Xilinx, 2006, pp. 118-217, Available from www.xilinx.com.
Zhou Y.; Noras, J.M. & Shepherd S. J. (2007). Novel design of multiplier-less FFT processors,

Signal Processing, 87, 1402-1407, ISSN 0165-0684.

www.intechopen.com

Topics in Adaptive Optics

Edited by Dr. Bob Tyson

ISBN 978-953-307-949-3

Hard cover, 254 pages

Publisher InTech

Published online 20, January, 2012

Published in print edition January, 2012

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Advances in adaptive optics technology and applications move forward at a rapid pace. The basic idea of

wavefront compensation in real-time has been around since the mid 1970s. The first widely used application of

adaptive optics was for compensating atmospheric turbulence effects in astronomical imaging and laser beam

propagation. While some topics have been researched and reported for years, even decades, new

applications and advances in the supporting technologies occur almost daily. This book brings together 11

original chapters related to adaptive optics, written by an international group of invited authors. Topics include

atmospheric turbulence characterization, astronomy with large telescopes, image post-processing, high power

laser distortion compensation, adaptive optics and the human eye, wavefront sensors, and deformable

mirrors.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Eduardo Magdaleno and Manuel Rodríguez (2012). Acceleration of Computation Speed for Wavefront Phase

Recovery Using Programmable Logic, Topics in Adaptive Optics, Dr. Bob Tyson (Ed.), ISBN: 978-953-307-

949-3, InTech, Available from: http://www.intechopen.com/books/topics-in-adaptive-optics/acceleration-of-

computation-speed-for-wavefront-phase-recovery-using-programmable-logic

© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.

