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Institute of Mechanics, National Academy of  
Sciences of the Republic of Armenia, Erevan 
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1. Introduction 

There are numerous polycrystalline materials, including polycrystals whose crystals have a 
cubic symmetry. Polycrystals with cubic symmetry comprise minerals and metals such as 
cubic pyrites (FeS2), fluorite (CaF2), rock salt (NaCl), sylvite (KCl), iron (Fe), aluminum (Al), 
copper (Cu), and tungsten (W) (Love, 1927; Vainstein et al., 1981). 

It is assumed that many materials can be treated as a homogeneous and isotropic medium 
independently of the specific characteristics of their microstructure. It is clear that, in fact, this 
is impossible already because of the molecular structure of materials. For example, materials 
with polycrystalline structure, which consist of numerous chaotically located small crystals of 
different size and different orientation, cannot actually be homogeneous and isotropic. Each 
separate crystal of the metal is anisotropic. But if the volume contains very many chaotically 
located crystals, then the material as a whole can be treated as an isotropic material. Just in a 
similar way, if the geometric dimensions of a body are large compared with the dimensions of 
a single crystal, then, with a high degree of accuracy, one can assume that the material is 
homogeneous (Feodos’ev, 1979; Timoshenko & Goodyear, 1951). 

On the other hand, if the problem is considered in more detail, then the anisotropy both of 
the material and of separate crystals must be taken into account. For a body under the action 
of external forces, it is impossible to determine the stress-strain state theoretically with its 
polycrystalline structure taken into account. 

Assume that a body consists of crystals of the same material. Moreover, in general, the 
principal directions of elasticity of neighboring crystals do not coincide and are oriented 
arbitrarily. The following question arises: Can stress concentration exist near a corner point 
of the interface between neighboring crystals and near and edge of the interface?  

To answer this question, it is convenient to replace the problem under study by several 
simplified problems each of which can reflect separate situations in which several 
neighboring crystals may occur. 

A similar problem for two orthotropic crystals having the shape of wedges rigidly 
connected along their jointing plane was considered in (Belubekyan, 2000). They have a 
common vertex, and their external faces are free. Both of the wedges consist of the same 
material. The wedges have common principal direction of elasticity of the same name, and 
the other elastic-equivalent principal directions form a nonzero angle. We consider 
longitudinal shear (out-of-plane strain) along the common principal direction. 
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In (Belubekyan, 2000), it is shown that if the joined wedges consist of the same orthotropic 
material but have different orientations of the principal directions of elasticity with respect 
to their interface, then the compound wedge behaves as a homogeneous wedge. 

The behavior of the stress field near the corner point of the contour of the transverse cross-
section of the compound body formed by two prismatic bodies with different characteristics 
which are welded along their lateral surfaces was studied in the case of plane strain in 
(Chobanyan, 1987). It was assumed there that the compound parts of the body are 
homogeneous and isotropic and the corner point of the contour of the prism transverse 
cross-section lies at the edge of the contact surface of the two bodies. 

In (Chobanyan, 1987; Chobanyan & Gevorkyan 1971), the character of the stress distribution 
near the corner point of the contact surface is also studied for two prismatic bodies welded 
along part of their lateral surfaces. The plane strain of the compound prism is considered. 

There are numerous papers dealing with the mechanics of contact interaction between 

strained rigid bodies. The contact problems of elasticity are considered in the monographs 

(Alexandrov & Romalis, 1986; Alexandrov & Pozharskii 1998). In (Alexandrov & Romalis, 

1986), exact or approximate analytic solutions are obtained in the form convenient to be 

used directly to verify the contact strength and rigidity of machinery elements. The 

monograph (Alexandrov & Pozharskii 1998) presents numericalanalytical methods and the 

results of solving many nonclassical spatial problems of mechanics of contact interaction 

between elastic bodies. Isotropic bodies of semibounded dimensions (including the wedge 

and the cone) and the bodies of bounded dimensions were considered. The monograph 

presents a vast material developed in numerous publications. There are also many studies in 

this field, which were published in recent years (Ulitko & Kochalovskaya, 1995; Pozharskii 

& Chebakov, 1998; Alexandrov & Pozharskii, 1998, 2004; Alexandrov et al., 2000; Osrtrik & 

Ulitko, 2000; Alexandrov & Klindukhov, 2000, 2005; Pozharskii, 2000, 2004; Aleksandrov, 

2002, 2006; Alexandrov & Kalyakin, 2005). 

In the present paper, we study the problem of existence of stress concentrations near the 

corner point of the interface between two joined crystals with cubic symmetry made of the 

same material. 

2. Statement of the problem 

We assume that there are two crystals with rectilinear anisotropy and cubic symmetry, 

which are rigidly connected along their contact surface (Fig. 1). The crystal contact surface 

forms a dihedral angle with linear angle    whose trace is shown in the plane of the 

drawing. The contact surface edge passes through point O. The z -axis of the cylindrical 

coordinate system   , ,r z  coincides with the edge of the dihedral angle. The coordinate 

surfaces and 0  and  2        coincide with the faces of the dihedral angle. 

Thus, the first crystal (1) occupies the domain  0;   and the second crystal (2) occupies 

the domain  2 ; 0    . In this case 0 2    and  0 r  . 

For simplicity, we assume that the crystals have a single common principal direction of 

elasticity coinciding with the z - axis . The other two principal directions 1x  and 1y  of the 

first crystal make some nonzero angles with the principal directions 2x and 2y  of the 
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second crystal. By 1  we denote the angle between 1x and the polar axis 0  , and by 2 , 

the angle between 2x  and the axis 0  . In this case,  1 2, 2 ,      . If 1 2 0   , 

then we have a homogeneous medium, i.e., a monocrystal with cubic symmetry, one of 

whose principal directions 1 2x x x   coincides with the polar axis 0  . In this case, the 

equations of generalized Hooke’s law written in the principal axes of elasticity , ,x y z  have 

the form 

 

 
 

 

11 12 44

11 12 44

11 12 44

, ,

, ,

, ,

x x y z yz yz

y y z x zx zx

z z x y xy xy

a a a

a a a

a a a

     

     

     

   

   

   

 (1) 

where , , ... ,x y xy    are the strain components, , , ... ,x y xy    are the stress components, 

and 11 12 44, ,a a a  are the strain coefficients. 

Equations (1) can be obtained from the equations of generalized Hooke’s law for an 

orthotropic body written in the principal axes of elasticity , , ,x y z  using the method 

described in (Lekhnitskii, 1981). 

Rotating the coordinate system ( , , )x y z  about the common axis /z z  by the angle 

90   , we obtain a symmetric coordinate system  , ,x y z   . Since the directions of the 

axes , ,x y z  and / / /, ,x y z  of the same name are equivalent with respect to their elastic 

properties, the equations of generalized 

 

 

Fig. 1. 
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Hooke’s law for these coordinate systems have the same form. In this case, the values of the 

strain coefficients are the same in both systems: / / / /
11 12 13 6611 12 13 66, , , ... ,a a a a a a a a    . 

Using the formulas of transformation of strain coefficients under the rotation of the 

coordinate system about the axis /z z  (Lekhnitskii, 1981), we obtain their new values 

expressed in terms of the old values (before the rotation of the coordinate system ( , , )x y z ). 

Comparing the strain coefficients in the same coordinate system / / /( , , )x y z , we obtain, 

11 12 44 55, ,a a a a  13 23 16 45 26 36, 0a a a a a a     . 

Successively rotating the coordinate system ( , , )x y z  about the axes x  and y  by the angle 

90 and repeating the same procedure, we finally obtain (1). 

The transformation formulas for the strain coefficients under the rotation of the coordinate 

system about the x -and y -axes can also be obtained from the transformation formulas for 

the strain coefficients under the rotation of the coordinate system about the z -axis in the 

case of anisotropy of general form. 

For example, to obtain the transformation formulas under the rotation of the coordinate 

system about the x -axis, it is necessary to rename the principal directions of elasticity as 

follows: the x -axis becomes the z -axis, the y -axis becomes the x -axis, and the z -axis 

becomes the y -axis. In this case, in the equations of generalized Hooke’s law referred to the 

coordinate system ( , , )x y z , 22a  plays the role of 11a , 23a  plays the role of 12a , and 24a  

plays the role of 16a . In a similar way, in the equations of generalized Hooke’s law referred 

to the coordinate system / / /( , , )x y z , /
22a  plays the role of /

11 ,a /
23a  plays the role of /

12a , 

and /
24a  plays the role of /

16a . This implies that, in the case of an orthotropic body, 24 0a   

under rotation of  the coordinate system about the x -axis, but, in contrast to the case of 

rotation of the coordinate system about the z -axis, /
24a  is generally nonzero. 

In the case 1 2  , the equations of generalized Hooke’s law in the cylindrical coordinate 

system ( , , )r z  have the form 

 

               
               
       

         

         

 

2
11 12

2
11 12

11 12

44 11 12

44 11 12

( ) ( ) sin 2 sin 4 ,

( ) ( ) sin 2 sin 4 ,

( ),

2 4 ,

2 4 ,

i i i i i i i
r r z r i r i

i i i i i i i
z r r i r i

i i i i
z z r

i i i i
z z z z

i i i i
zr zr rz zr

i
r

a a a

a a a

a a

a a a a

a a a a

  

   



   



        

        

   

   

   



     

     

  

   

   

           
 

2
11 12

11 12 44

2 ( ) sin 4 4 cos 2 ,

4 2 , ,

i i i i
r r i r i

i i

a a a

a a a a

       

  

    

    

 (2) 
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where the above form of anisotropy is used. From now on, the first crystal is denoted by the 

index 1i , and the second, by 2i . 

In the case of cubic symmetry of the material, we have the following dependencies between 

the moduli of elasticity 11 12 44, ,    and the strain coefficients 11 12 44, , :a a a  

 
       

11 12 12
11 12 44

11 12 11 12 11 12 11 12 44

1
, ,

2 2

a a a

a a a a a a a a a


      

   
  

In the isotropic medium, we have  44 11 122a a a  and 44 11 122A    . For cubic 

crystals, the ratio  44 11 122     is called a parameter of elastic anisotropy in 

(Vainstein et al., 1981). In contrast to  , we call a  the coefficient of elastic anisotropy. 

For 0a  , we have an anisotropic medium in Eqs. (2). 

 We also note that for 0i   , Eqs. (2) correspond to generalized Hooke’s law written for 

monocrystals and referred to the principal axes of elasticity. 

3. Out-of-plane strain 

In the case of longitudinal shear along the direction of the axis z , we have the following 

components of the displacement vector:          0, 0, ,
i i i i

r z zu u u u r    . 

For small strains, the strain components  i
z and  i

zr , not identically zero, are related to 

 i
zu  by the Cauchy equations:        , .

i i i i
z z r z zu r u r         According to Hooke’s law 

(2), this implies that 

  
 

 
 

 

 

44 44

0,

1 1 1
, .

r z r

i i
i iz z
z rzi i

u u

r ra a

 



   

 


   

 
 

 

 (3) 

Substituting (3) into the differential equations of equilibrium, we obtain   0
i

zu  , where 

 is the Laplace operator. 

Since the crystals are rigidly joined, on the interface between the two crystals the 

displacements are continuous, 

                1 2 1 2
, 0 , 0 , , , 2 ,z z z zu r u r u r u r       

and the contact stresses are continuous, 

 
     

 

         

 

   1 2 1 21 1
z44 44

2 2
44 44

, 0 , 0 , u , 2
, .z z zu r u r u r ra a

a a

  
   

    
 

   
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Since    1 2
4444 44a a a   , this implies that, in the case of out-of-plane strain, the two-crystal 

composed of monocrystals of the same material behaves as a monocrystal corresponding to 

the case 1 2  . 

Thus, in the case of longitudinal shear in the direction of the z -axis , there is no stress 

concentration at the corner point of the interface between the two joined crystals regardless 

of the orientation of the principal directions 1x and 2x . 

4. Plane strain 

In this case, we have 

              , , , , 0.
i i i i i

r r zu u r u u r u       

Hence the following strain components are nonzero: 

  
 

 
   

 
   

 1
, , .

i ii ii
i i i ir rr

r r

u uu uu
r r u

r r r r

 
    

 
  

     
   

 (4) 

Hooke’s law (2) has the form 

 

 

           

           

           

2
1 2

2
2 1

i 2
11 12 r

2 2
12 12

1 11 2 12
11 11

( ) sin 2 sin 4 ,

( ) sin 2 sin 4 ,

2 ( ) sin 4 4 cos 2 ,

, .

i i i i i i
r r r i r i

i i i i i i
r r i r i

i i i i
r r r i i

b b a

b b a

a a a

a a
b a b a

a a

  

   

   

       

       

      

       
       
       

   

 (5) 

In the absence of mass forces, we satisfy the differential equations of equilibrium by 

expressing    ,
i i

r    and  i
r  via the Airy stress function i : 

  
2 2

( ) ( )
2 2 2

1 1 1
, , .

i i ii i ii
r r

r r r rr r
   



      
      

     
 (6) 

By substituting (5) into the strain consistency condition 

 
           2 2 2

2 2

1 1
2 0

i i i ii i
r rr rr

r r r r rr

       
 

    
     

     
  

after several simplifying transformations, according to (6), we obtain the basic equation of 

the problem: 
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   

 

4 4 4 3
2 2

4 4 4 2 2 2 3
1

3 2
2 2

3 2 2 2 3

2 4 4
2

4 2 3 3 3

3

2

1 1 1
sin 2 2

2 1 1
3sin 2 2 15sin 2 8

4 1 1
11sin 2 6 2

6

i i i i
i i

i i i
i i

i i i
i

a

b rr r r r r

rr r r r r

rr r r r

r


 

 



  

           
                    

     
          

     
       

 


3 2

2 4 3 3 4

2
2 2

2
2 2 2

3 14 12
sin 4 0,

1 1
.

i i i i
i

rr r r r

r rr r


  



    
         

   
       

 (7) 

The rigid connection of the crystals along their contact surface implies the continuity 

conditions for the displacements on this surface. 

 

               

               

1 21 2 2 2

2 2

1 21 2 2 2

2 2

, 0 , 0, 0 ,0
, ,

, , 2, , 2
, .

r r

r r

u r u ru r u r

r r r r

u r u ru r u r

r r r r

 

     

  
 

   

    
 

   

 (8) 

and the continuity conditions for the contact stresses, 

 

 

       

       

1 2
1 2

1 2
1 2

, 0 , 0
, 0 , 0 , ,

, , 2
, , 2 , .

r r
r r

r r
r r

 
  

  
 

 
   

 

  
    

 

 (9) 

If we set 0a  in problem (7)–(9), then we obtain a plane problem for the homogeneous 

isotropic body. 

According to (4), (5), and (6), we have 

 

 

  2 2

1 22 2 2

2 2 2
2i

2 2 2 2

1 1

1 1 1 1
sin 2 sin 4 ,

i
r i i i

i i i i
i i

u
b b

r r rr r

a
r r r rr r r
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                    

 (10) 
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 (11) 

Differentiating (10) with respect to   and (11) with respect to r  and eliminating the 

derivative  2 i
ru r    , we obtain 
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 (12) 

We use the expressions (10) and (12) to represent the continuity conditions (8) via the stress 

function . 

5. Solution method 

For 0a  , from (7) we derive the biharmonic equation and, solving it by separation of 

variables, obtain the following solution (Chobanyan, 1987; Chobanyan & Gevorkyan, 

1971): 

    1, ; ,i ir r F     (13) 

 
     

   
; sin 1 cos 1

sin 1 cos 1 .

i i i

i i

F

C D

     

   

     

   
 (14) 

where λ is a parameter and , ,i i iB C and iD  –are integration constants. 

For a sufficiently small in absolute value, we replace the solution of Eq. (7) by the solution of 

the biharmonic equation (13). By substituting (13) into (7), we obtain a fourth-order ordinary 

differential equation for  ;iF   : 
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 (15) 

whose general integral has the form (14) for 0a  . 

After the substitution of (13) into (10) and (12), we can write 
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 (16)  

 

 
         

          
            

2
2 2 / 2 2

2

// /// 2 ///
1

/
11 12 1 11 12 2 12 11

1
1 2 sin 4 3 1 5 8 1

2

1
cos 4 2 1 sin 4 1 cos 4

2

[ 1 1 2 .

i

i i i

i i ii i i

i

u
r a F F

r

F F r b F

F a a b a a b a a

 



       

      
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     


          

 (17) 

According to (13), (16), and (17), the continuity conditions (8) and (9) acquire the form 

    /
1 2 1 2( 1,2,...,8), 0 , 0 ,j j i i i iX X j X F X F     (18) 
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         

     
     

/// //
8

/ 2 2

2 ///
1

/
11 12 1

11 12 2 12 11

1 cos 4 4 1 sin 4

[3 1 5 8 1 cos 4

2 1 2 sin 4 2

2 1

1 2 .

i i i i ii i

i ii

i i i ii

ii

X a F F

F

F b F

F a a b

a a b a a

      

     

     

  



       

      

    

   

      

 

By substituting (14) into (18), we obtain a homogeneous system of linear algebraic equations 

for the constants , ,i i iB C  and iD . 

After some cumbersome calculations, from the existence condition for the nonzero solution 

of this system, we obtain the following characteristic equation for  , which determines the 

stress concentration degree (6) see in (Galptshyan, 2008): 

 11 12 1 2( ; , , , , , ) 0f a a a      (19) 

Equation (19) contains six independent parameters 11 12 1 2, , , ,a a a   and  . 

 

 1a b   1a b  

Nb − 0. 6423463 MgO 0. 2276457 

CaF2 − 0.4838456 Si 0. 2498694 
FeS2 − 0. 4066341 Ge 0. 275492 
KCl − 0. 2682469 Ta 0. 2874998 

NaCl − 0. 2154233 LiF 0. 3094264 
V − 0. 2139906 Fe 0. 4637442 

Mo − 0. 1877868 Ni 0. 4804368 
TiC − 0. 0664576 Ag 0. 5856406 
W 0 Cu 0. 593247 
Au 0. 0556095 Pb 0. 7026827 
C 0. 0965294 Na 0. 8089901 
Al 0. 1403437   

Table 1. 

For certain specific values of these parameters, it follows from (6) and (13) that the stress 

components at the pole 0r   have an integrable singularity if 0 Re 1  . In this case, the 

order of the singularity is equal to Re 1  . 

Thus, studying the singularity of the stress state near the corner point of the interface 
between two crystals in the case of plane strain is reduced to finding the root of the 
transcendental equation (19) with the least positive real part. 

A structural analysis of Eq. (19) shows that its left-hand side is a polynomial of degree 18 in 

1a b . The absolute value of 1a b is sufficiently small. Therefore, preserving only terms up to 

the first or the second degree in (19), instead of a polynomial of degree 18, we obtain a 

www.intechopen.com



 
Strength of a Polycrystalline Material 

 

37 

polynomial of the first or the second degree, i.e., various approximations to Eq. (19). We also 

note that for 0a  , from the above system of algebraic equations, just as from Eq. (19), we 

obtain the equation  sin 1 0    determining the eigenvalues k k     kN  which 

correspond to the plane strain of a homogeneous isotropic body. 

Preserving only terms up to the first or second degree in 1a b  in Eq. (19), we finally obtain 
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   1 2 1sin 4 sin 4        , 

   2 2 1cos 4 cos 4        ,  3 2 1sin 4 sin 4 ,      4 2 1cos 4 cos 4 ,     

   1 2 cos sin sin cos        ,   2 2 cos cos ,     

   3 2 sin cos sin cos        ,       11 2sin cos 1          , 

         1 1 sin 1 1 sin 1 ,               2 2sin sin    , 

     22 2sin sin ,               3 2 sin cos sin cos        , 
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           31 1 sin 1 2 1 sin 1 ,                  

           44 1 sin 1 2 1 sin 1                 , 

     33 2 cos cos ,                12 2sin sin 1 ,            

           13 1 sin 1 1 sin 1 2 ,                  

           21 1 sin 1 2 1 sin 1                 ,  

     9 4 11 4 1 cos 4 ,         

           1 4 1 3 2 11 13 1 4 1 cos 4 ,                 

           
         

2 2 1 2

1 1 2

3 4cos 4 3 cos 4 1 1 sin 1 2

3 sin 4 3 sin 4 1 cos 1 2

           

         

              
             

 

           1 11 cos 4 1 sin 1 4 1 sin 4 cos 1 ,                     

     13 4 13 5 4 1 cos 4        , 

             
            

14 1 2

2
1 1

cos 4 1 cos 4 1 1 sin 1 2

1 cos 4 1 sin 1 1 cos 1 2 ,

           

         

              

          
 

            
          

16 1 2

1 1

1 cos 4 1 cos 4 cos 1 2

1 cos 4 cos 1 1 sin 1 2 ,

          

        

         
         

 

           
          

6 1 2

1 1

1 cos 4 1 cos 4 sin 1 2

1 cos 4 sin 1 1 cos 1 2 ,

          

        

         
         

 

             7 4 1 3 2 6 11 13 1 2 4 1 cos 4                   , 

           
         

8 1 2

1 1

cos 4 1 cos 4 1 cos 1 2

1 cos 4 cos 1 1 sin 1 2 ,

          

        

             
             

 

           
        

          

2
19 2 1 2

1 1 2

2
1 1

1 3 4cos 4 5cos 4 1 cos 1 2

3 sin 4 5sin 4 sin 1 2

1 cos 4 cos 1 4 1 sin 4 sin 1 ,

           

        

        

           

        

       
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           
          

            

2 1 2

1 1 2

1 1

3 4cos 4 3cos 4 1 1 cos 1 2

3 sin 4 3sin 4 1 sin 1 2

1 cos 4 1 cos 1 4 1 sin 4 sin 1 ,

           

         

         

          
         

        

 

                 2
0 3 3 4 2 1 121 3 1 2 4 1 1 cos 4 ,                        

           5 4 2 3 3 1 123 1 4 1 cos 4                , 

              

        
         

       

2
3 11 3 2 4 3 2

1 11 1

2
12 3 1 4 2

1 12 0

3 1 1 2

4 1 cos 4 1 1

3 1 1

4 1 1 cos 4 ,

             

      

         

     

    

     

   
    

 

                 
             

11 4 11 3 12 2 3 11 2

4 2
1 12 1 1 11 5 12

1 3 1

2 1 cos 4 sin ,

                 

             

        

    
 

        2
12 11 11 14 sin ,           

        2
15 7 11 114 sin ,           

            17 4 11 3 122 1 cos 1 6 1                  

               3 11 4 12 11 16 12 6sin 1 2 ,                     

              
               
           

2
18 11 1 1 13 3 2

2 2
14 13 1 13 1 3 2

21 1 12

4 2 2cos 4 1

2 4 1 cos4 sin 1 1

4 1 cos4 2 1 sin cos 1

             

              

         

      

      

       

 

 

           
         

15 17 12

17 11

2 1 sin cos 1

2 1 sin sin 1 ,

           

        

          
     

 

 

           
         

       

4 2 1 2

1 1 2 1

1

1 3 4cos 4 5cos 4 1 sin 1 2

3 sin 4 5sin 4 cos 1 2 4sin 4

cos 1 1 1 cos 4 sin 1

           

          

      

           
          

          
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                 
         

               

               

          

2 2
20 11 3 3 1 13 2

1 1 19

2 2 2
33 1 12 2 33

2 2
12 13 1 3 2 21 1

2
11 12 0

4 1 2 2cos 4 1

8 1 sin 4 2 1

2 1 cos4 1 sin 1 1

4 1 1 4 1 cos4 sin

2 1 4 sin 1 s

              

       

            

              

        

       

    

         

       

       in cos 1      

 

         

         
       

           
   

            

2
11 13 2 3 3

2
22 1 3 11

2
1

2
12 13 1 3 2

2
21 1

3 12 5

4 1

4 1 cos 4 sin 2 1

4 1 sin sin sin 1

4 1 1

4 1 cos 4 sin

2 1 1 sin cos 1 ,

         

        

       

          

   

           

  

     

     
   


  
           

 

             
       

22 3 1 2 1 9

8 33 1

5 3 1 2 2 cos 4

2 1 2 1 cos 4 ,

            

     

        
     

 

         
               
             

               

2
23

17 12 15

2
20 11 11 12 0

2
3 12 5

4 1 cos cos 1 cos cos

sin 1 sin cos 1 sin

8 1 1 4 sin

1 sin cos 1 cos 1

           

             

            

             

     

           
    

              

 

         

          
       

2
21

2
11 11 1

11 20

4 1 cos cos 1 cos cos

sin 1 sin 4 sin

cos 1 sin .

           

          

       

     

        
     

 

6. Study of the roots of the characteristic equation 

Table 1 shows the values of the dimensionless ratio 1a b for some cubic crystals at room 

temperature. Moreover for all the cosidered materials 1 0b  and with the exception of cubic 

pyrits  2FeS , for which 11 1
2 20,00365798 10 Pa , 0b b    . 

The least value of the ratio is attained for the niobium crystal (Nb) and the largest, for the 

sodium crystal (Na). In absolute value, 1/ 1.a b   

To study the roots of Eq. (19) in the interval l 0 Re 1,   in Table 1 we choose six real 

materials and two imaginary materials for which 5
1/ 10a b  . To investigate whether 

www.intechopen.com



 
Strength of a Polycrystalline Material 

 

41 

there is a singularity in the stress concentration at the corner point of the interface between 
the two joined crystals, for each of the materials, we choose seven versions of variations in 

the parameters 1,  and 2 , which are given in Tables 2 and 3. For example, the first 

 

 
1

a

b
 , МПа   

  2  

 1 4  

 2 0  

  4  

 1 4  

 2 0  

Mo 0.1877868  800 1200  0.647029  0.0174393  

     0.058343i  

    0.688156  

     

TiC  0.0664576  560  0.0153193  0.01012946  

   0.6899690   0.047990i  

    0.72254  

     

  510    67. 3815 10  0.996981  

   0. 987524   

     

W 0  1100  - - 

  1800 4150    

     

  510   0.994154  0.000786231  

    0.0107712i 0.9276061  

     0.1747073i  

     

Au 0.0556095  140 0.0497266  0.0809312  

   0.422350  0.2043483  

    0.4714287  

    0.9546085  

     0.216914i  

     

C 0.0965294   0.032592  0.5889015  

   0.5279915   

     

Al 0.1403437  50 0.0284796  0.0522492  

  115 0.560425   0.073474i  

    0.617351  
 

Table 2. 
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version, where 1 2/ 2, / 4, 0,        concerns the case in which the interface between 

two crystals is formed by the plane of elastic symmetry of the second crystal but not of the 

first crystal. In the fourth version  1 24 , 0, 4       , the part 1 1 0    of the 

interface is the plane of elastic symmetry of the first crystal, and the other part  2 4     

is the plane of elastic symmetry of the second crystal. 

For all materials given in Tables 2 and 3 and for all versions, we found, in general, all 
realand complex roots of Eq. (20) with 0 Re 1  , including all (without any exception) 

rootswith minimum positive real part. 

It follows from Tables 2 and 3 that, for all two-crystals except tungsten and for all the versions, 
there are stress concentrations near the corner point of the interface between the crystals. If we 

compare the two crystals of molybdenum  Mo and titanium carbide  TiC for which 1 0a b  , 

then it follows from the results obtained for seven versions that, in general, the stress 
concentration degree (the order of singularity) of molybdenum is less than that of titanium 

carbide. It is of interest to note that the ultimate strength of polycrystalline molybdenum   is 

larger than the ultimate strength of polycrystalline titanium carbide, which is an integral 
characteristic of strength. In Table 2, we present the ultimate strengths under tension at 
temperature 200C  for molybdenum and titanium carbide. 

For the two-crystal of tungsten  W , we have 1 0a b  and hence, according to (20), there is 

no singularity of stress concentration near the corner point of the interface between two 

crystals. This may be one of the causes of the fact that the polycrystalline tungsten materials 

have very high ultimate strength. 

In Table 2, we present the ultimate strengths under tension of the polycrystalline tungsten 

annealed wire (1100 МPа) and unannealed wire (from 1800 МPа to 4150 МPа, depending on 

the diameter). We draw the reader’s attention to the fact that the ultimate strength of the 

diamond monocrystal at temperature 20 C  is equal to 1800 МPа. 

Note that for the polycrystalline metals listed in Table 2 there is a correspondence between 

the ultimate strength   and the modulus of elasticity E  (here the quantity E is treated as 

an integral characteristic of elasticity of a metal). The moduli of elasticity of the 

polycrystalline metals , ,Mo W Au and Al  listed in Table 2 are, respectively, equal to (285-

300) GPа, (350-380) GPа, 79 GPa, and 70 GPa. The ultimate strength is larger for a metal with 

larger modulus of elasticity. 

All numerical values of strength limit brought in the table (2) as well as elastic modulus for 

the discussed materials considered to be a published data taken from various sources. For 

example, these data for tungsten (W) are taken from the book (Knuniants and etc. 1961). 

Strength limit of unannealed tungsten wire is depended from the diameter and could be 

explained by the existence defects of crystal lattice.  

Here we also note that there is no such correspondence if molybdenum and titanium 

carbide are compared. Although the ultimate strength of molybdenum is larger than the 

ultimate strength of titanium carbide, the modulus of elasticity of molybdenum is less than 
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the modulus of elasticity of titanium carbide, which is equal to 460 GPa. We note that the 

titanium carbide is a compound matter. 

 

   2         

 1 0

 2 4  

  4           

 1 0  

 2 4  

 3 4

 1 4

 2 0  

 3 4

 1 6   

 2 3  

  2

 1 6

 2 3  

Mo 0.710072  0.0775947  0.0411225  0.957018  0.0094110

 0.0739984i    

0.656204  

      
TiC 0.774834  0.0542824  0.0365724  0.95741  0.0071750

 0.064893i

0.702898  

      
 0.993177   47.87311 10

0.927667  

 0.1746807i

0.999978  

 0.0029137i

 

 48.82199 10

  0.9905998  

 0.1403189i

0.995236  

0.9906207

 0.1403553i

 0.995563  

0.9960624

 0.0057440i

 

W - - - - - 
      
  51.0567 10  0.9276334  0.9912171   0.0011696  0.0013220  

  0.9970875  

 0.00590i  

 0.174718i

0.997109  

 0.140329i     

0.99971  

  0.005039i  

  0.991197  

 0.1402922i

  0.999734  

 0.004690i

 

    0.993404  

Au  0.0644867    0.8730987  0.0779069    0.1780295    0.4007251  

 0.8890054  

 0.4002118i  

 0.236169i

 

   0.2491514  

    0.7677329  

  0.7444930   

      
C   0.1243433    0.8400085     0.0557915    0.332059  0.5246499  

   0.272280i

 

   0.4864447  

   0.7224011  

  0.6977614   

Al   0.215732    0.0206982  

 . 0.113575i

 

0.0512975  

   0.612502  

   0.65982  

  0.451447  

   0.655004  

0.0154580

 0.094053i     

0.56112  

Table 3. 
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Discussing the results obtained for two-crystals of gold  Au and aluminum  Al (Tables 2 

and 3), for which 1 0a b  , we conclude that, according to the root of Eq. (20) obtained for 

seven versions, the stress concentration degree (the order of singularity) near the corner 

point of the interface between two crystals is larger for the two-crystal of aluminum. Here 

we also note that the ultimate strength and the modulus of elasticity of polycrystalline gold 

are larger than those of polycrystalline aluminum. In Table 2, we present the ultimate 

strengths under tension for polycrystalline aluminum annealed wire (50 МPа) and cold-

rolled wire (115 МPа). 

For a two-crystal of diamond  C , the stress concentrations near the corner point of the 

interface between two crystals are rather large (see Tables 2 and 3). 

Depending on the choice of the coordinate axes, the modulus of elasticity of the diamond 

monocrystal varies from 1049.67 GPа to 1206.63 GPа, and, as was already noted, the 

ultimate strength is approximately equal to 1800 MPa. But for diamond polycrystalline 

formations (edge, aggregate), we did not found the corresponding integral characteristics of 

elasticity and strength in the literature. We assume that these characteristics, numerically, 

must be less than the modulus of elasticity and the ultimate strength of the diamond 

monocrystal, because there is no stress concentration in the interior of a polycrystalline 

body. 

As follows from Tables 2 and 3, for the imaginary materials with the ratios 5
1 10a b  , 

there are very strong stress concentrations for some of the versions. 

In Figs. 2–5, we present graphs of variation of the function Re 1
*r

  as *r  approaches the pole 

0r    

 

Fig. 2. 
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Fig. 3. 

( *r  is the ratio of the coordinate r  to the characteristic dimension of the two-crystal). 

Curves 3 and 4 correspond to the two-crystal of gold  Au and the two-crystal of aluminum 

 Al , respectively. Curves 1 and 2 correspond to a two-component piecewise homogeneous 

isotropic body with shear moduli ratio    2 1
1 2 44 44/ / 20G G a a     and Poisson ratios 

1 20.2, 0.4   and to the two-component piecewise homogeneous isotropic body with 

shear moduli ratio    2 1
1 2 44 44/ / 0.05G G a a     and the Poisson ratios 1 20.2, 0.3   , 

respectively. Moreover,    1 2
1 1 2 212 12, ,E a E a      

 

Fig. 4. 
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Fig. 5. 

where    1 2
12 12anda a are the strain coefficients of homogeneous isotropic parts and 1E and 

2E are the Young moduli of the same homogeneous isotropic parts. Figures 2-5 correspond 

to the first, second, fifth, and seventh versions given in Tables 2 and 3, respectively; curves 1 

and 2 in the same figures correspond to the four values of the linear angle   formed by the 

contact surfaces of homogeneous isotropic parts of the compound body. The values of the 

angle   in Figs. 2–5 are respectively equal to: / 2, / 4, 3 / 4     and / 2 . The values 

of the ratio   and the Poisson ratios 1 and 2 , and the corresponding values of the orders 

of singularities, are taken from Table 1 presented in (Chobanyan, 1987; Chobanyan & 

Gevorkyan, 1971). 

The graphs show that the order of singularity of the stresses at the corner point of the 

contact surface of aluminum crystals is larger than the order of singularity of stresses at the 

corner point of the contact surface of gold crystals. The graphs also show that, for the 

piecewise homogeneous isotropic bodies under study, the order of singularity of the stresses 

is much lower than that for two-crystals of aluminum and gold. 

7. Conclusion 

From the analysis performed in Section 6, we draw the following conclusions. 

Although we considered specific cases of stress state, namely, the out-of-plane strain and the 

plane strain of two-crystals whose separate crystals consist of one and the same material 

with cubic symmetry and with different orientations of the principal directions of elasticity, 

we can state that, in the general case of loading of a polycrystalline body, there are stress 

concentrations at the corner points of the interface between the joined crystals. 

It is well known that the structure of the crystal lattice of a given matter plays a definite role 

in the process of formation of its mechanical properties and characteristics, in particular, the 

strength of monocrystals. But in polycrystalline materials, along with this factor, the 
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strength of the joint of crystals and the fact that there are stress singularities at the corner 

points of the interface between the crystals totally play the decisive role in the process of 

formation of these characteristics. This can be observed in the process of mechanical 

fragmentation of polycrystalline materials. They split and form small crystals of certain 

shape. Of course, the separate crystals are also deformed in this process. The modulus of 

elasticity and the ultimate strength of a monocrystal with cubic symmetry for simple matters 

is larger than the corresponding characteristics of the polycrystalline material of the same 

matter. 

In the problem of plane strain, the existence of stress concentration (singularity) at the 

corner point of the interface between the two joined crystals with cubic symmetry made of 

the same material, just as the degree of stress concentration (the order of singularity), 

depends on the parameters 1 1, ,a b   , and 2 , which are determined in Sections 1–4. 

In the case of out-of-plane strain of the two-crystal under study, there is no stress 
concentration at the corner point of the interface between the two joined crystals. 

8. References 

Alexandrov V. M. and Romalis B. L., Contact Problems in Mechanical Engineering 
(Mashinostroenie, Moscow, 1986) [in Russian]. 

Alexandrov V. M. and Pozharskii D. A., Nonclassical Spatial Problems in Mechanics of Contact 
Interactions between Elastic Bodies (Faktorial,Moscow, 1998) [in Russian]. 

Alexandrov V. M. and Pozharskii D. A., “On the 3D Contact Problem for an Elastic Cone 
with Unknown Contact Area,” Izv. Akad.Nauk.Mekh. Tverd. Tela, No. 2, 36–41 
(1998) [Mech. Solids (Engl. Transl.) 33 (2), 29–34 (1998)]. 

Alexandrov V.M., Kalker D. D., and Pozharskii D. A., “Calculation of Stresses in the 
Axisymmetric Contact Problem for a Two-Layered Elastic Base,” Izv.Akad. 
Nauk.Mekh. Tverd. Tela,No. 5, 118–130 (2000) [Mech. Solids (Engl. Transl.) 35 (5), 
97–106 (2000)]. 

Alexandrov V. M. and Klindukhov V. V., “Contact Problems for a Two-Layer Elastic 
Foundation with a Nonideal Mechanical Constraint between the Layers,” Izv. 
Akad. Nauk. Mekh. Tverd. Tela, No. 3, 84–92 (2000) [Mech. Solids (Engl. Transl.) 35 
(3), 71–78 (2000)]. 

Aleksandrov V. M., “Doubly Periodic Contact Problems for an Elastic Layer,” Prikl. Mat. 
Mekh. 66 (2), 307–315 (2002) [J. Appl.Math. Mech. (Engl. Transl.) 66 (2), 297–305 
(2002)]. 

Aleksandrov V. M. and Pozharskii D. A., “Three-Dimensional Contact Problems Taking 
Friction and   Non-Linear Roughness into Account,” Prikl. Mat. Mekh. 68 (3), 516–
526 (2004) [J. Appl. Math. Mech. (Engl. Transl.) 68 (3), 463–472 (2004)]. 

Alexandrov V.M. and Kalyakin A. A., “Plane and Axisymmetric Contact Problems for a 
Three-Layer   Elastic Half-Space,” Izv. Akad. Nauk.Mekh. Tverd. Tela, No. 5, 30–38 
(2005) [Mech. Solids (Engl. Transl.) 40 (5), 20–26 (2005)]. 

Alexandrov V.M. and Klindukhov V. V., “An Axisymmetric Contact Problem for Half-Space   
Inhomogeneous in Depth,” Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 2, 55–60 
(2005) [Mech. Solids (Engl. Transl.) 40 (2), 46–50 (2005)]. 

www.intechopen.com



 
Polycrystalline Materials – Theoretical and Practical Aspects 

 

48

Alexandrov V. M., “Longitudinal Crack in an Orthotropic Elastic Strip with Free Faces,” Izv. 
Akad.   Nauk. Mekh. Tverd. Tela,No. 1, 115–124 (2006) [Mech. Solids (Engl. Transl.) 
41 (1), 88–94 (2006)]. 

Aleksandrov V.M., “Two Problems with Mixed Boundary Conditions for an Elastic 
Orthotropic Strip,” Prikl. Mat. Mekh. 70 (1), 139–149 (2006) [J. Appl.Math. Mech. 
(Engl. Transl.) 70 (1), 128–138 (2006)]. 

Belubekyan V. M., “Is there a Singularity at a Corner Point of Crystal Junction?” in 
Investigations of Contemporary Scientific Problems in Higher Educational Institutions 
(Aiastan, Erevan, 2000), pp. 139– 143. 

Chobanyan K. S. and Gevorkyan S. Kh., “Stress Field Behavior near a Corner Point of the 
Interface in the Problem of Plane Strain of a Compound Elastic Body,” Izv. Akad. 
Nauk Armyan. SSR. Ser. Mekh. 24 (5), 16–24 (1971). 

Chobanyan K. S., Stresses in Compound Elastic Bodies (Izd-vo Akad. Nauk Armyan. SSR, 
Erevan, 1987). 

Feodos’ev V. I., Strength of Materials (Nauka, Moscow, 1979) [in Russian]. 
Galptshyan P.V., “On the Existence of Stress Concentrations in Loaded Bodies Made of 

Polycrystalline Materials,” Izv. Akad. Nauk. Mekh. Tverd. Tela, No 6, 149-166 
(2008) [Mech. Solids (Engl. Transl.) 43(6), 967-981 (2008)]. 

Knuniants I. L. et al. (Editors), Short chemical encyclopedia, Vol. 1 (Sovietskaya 
encyclopedia, Moscow, 1961) [ in Russian]. 

Lekhnitskii S. G., Theory of Elasticity of an Anisotropic Body (Nauka, Moscow, 1977; Mir 
Publishers, Moscow, 1981). 

Love A. E. H., A Treatise on the Mathematical Theory of Elasticity, 4th ed. (Cambridge Univ. 
Press, Cambridge, 1927; ONTI,Moscow, 1935). 

Osrtrik V. I. and Ulitko A. F., “Contact between Two ElasticWedges with Friction,” Izv. 
Akad.   Nauk.Mekh.Tverd.Tela, No. 3, 93–100 (2000) [Mech. Solids (Engl. Transl.) 
35 (3), 79–85 (2000)]. 

Pozharskii D. A. and Chebakov M. I., “On Singularities of Contact Stresses in the Problem of 
a Wedge-Shaped Punch on an ElasticCone,” Izv. Akad. Nauk.Mekh. Tverd. Tela, 
No. 5, 72–77 (1998) [Mech.  Solids (Engl. Transl.) 33 (5), 57–61 (1998)]. 

Pozharskii D. A., “The Three-Dimensional Contact Problem for an Elastic Wedge Taking 
Friction Forces into Account,” Prikl. Mat. Mekh. 64 (1), 151–159 (2000) [J. Appl. 
Math. Mech. (Engl. Transl.) 64 (1), 147–154 (2000)]. 

Pozharskii D. A., “Contact with Adhesion between Flexible Plates and an ElasticWedge,” 
Izv. Akad. Nauk. Mekh. Tverd. Tela,No. 4, 58–68 (2004) [Mech. Solids (Engl. 
Transl.) 39 (4), 46–54 (2004)]. 

Timoshenko S. P. and Goodyear J. N., Theory of Elasticity (McGraw-Hill, New York, 1951; 
Nauka, Moscow, 1975). 

Ulitko A. F. and Kochalovskaya N. E., “Contact Interaction between a Rigid and Elastic 
Wedges at Initial Point Contact at Their Common Vertex,” Dokl. Nats. Akad. Nauk 
Ukrainy. Ser. Mat. Estestvozn., Tekhn.N., No. 1, 51–54 (1995). 

Vainstein B. K. et al. (Editors), Modern Crystallography, Vol. 4 (Nauka, Moscow, 1981) [in 
Russian]. 

www.intechopen.com



Polycrystalline Materials - Theoretical and Practical Aspects

Edited by Prof. Zaharii Zakhariev

ISBN 978-953-307-934-9

Hard cover, 164 pages

Publisher InTech

Published online 20, January, 2012

Published in print edition January, 2012

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

The book "Polycrystalline Materials - Theoretical and Practical Aspects" is focused on contemporary

investigations of plastic deformation, strength and grain-scale approaches, methods of synthesis, structurals,

properties, and application of some polycrystalline materials. It is intended for students, post-graduate

students, and scientists in the field of polycrystalline materials.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

P.V. Galptshyan (2012). Strength of a Polycrystalline Material, Polycrystalline Materials - Theoretical and

Practical Aspects, Prof. Zaharii Zakhariev (Ed.), ISBN: 978-953-307-934-9, InTech, Available from:

http://www.intechopen.com/books/polycrystalline-materials-theoretical-and-practical-aspects/strength-of-a-

polycrystalline-material



© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.


