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1. Introduction 

It is well recognized that main energy source for myocardium is fatty acids (Wisneski et 
al.,1987, Lopaschuk et al.,2010). However, in failing heart or in hypertrophied heart, fatty 
acid oxidation ability was reported to be impaired and, on the contrary, carbohydrates were 
preferred to use for provision of energy demand (Stanle et al.,2005,Lopaschuk et al.,1992). 
The fetal heart is exposed to relatively high lactate concentrations. Immediately after birth, 
plasma lactate concentrations decrease. In the immature heart, lactate dehydrogenase (LDH) is 
predominated by the M type isozyme, as higher activity, resulting in greater lactate 
production from pyruvate (Brooks et al., 1985). This requires greater NADH levels than seen 
in the adult heart. The dominance of glycolytic flux in immature hearts leads to 
accumulation of lactate to a greater extent than is seen in adult hearts during profoundly 
hypoxic states (Brooks et al., 1985).  
It has been shown that, in the isolated perfused rat heart, lactate significantly contributes to 
acetyl-CoA formation more than glucose. When fatty acid oxidation is activated, pyruvate 
dehydrogenase (PDH) activity is suppressed by increase of the NADH/NAD+ ratio 
followed by an enhancement of lactate production from accumulated pyruvate. As a result, 
lactate is released from myocardium even under aerobic status (Brooks et al., 1985). 
Immediately after birth, fatty acids are not the major energy substrate in newborn hearts, 
although the capacity of the heart for oxidization of fatty acids rapidly increases. Of interest, 
lactate is also important ATP provider in newborn heart (Lopaschuk et al. 1991).  
Patho-physiology of congenital heart defects (CHD) is very wide ranging from the right 
ventricular (RV) volume overload and/or pressure overload to the left ventricular (LV) 
volume overload and/or pressure overload. CHD with left-to-right shunt is basically a non-
cyanotic status. However, the myocardial cells may be in the milieu of relatively low oxygen 
because of relative decreased of coronary circulation from hypertrophy. Despite the 
evidence that lactate may be an important fuel for myocardial energy metabolism, there is 
remarkably little information on the lactate utilization in immature hearts especially in 
CHD. Lactate plays the other important role as a regulator of cellular redox state. The redox 
state described in this chapter is defined as the balance of NADH/NAD+ in the myocardium. The 
cytosolic NADH/NAD+ ratio in most tissues is enhanced by activation of glycolysis. If 
lactate dehydrogenase (LDH) activity is high such as in heart, the lactate/pyruvate (L/P) 
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ratio of a given cell is regarded to reflect the cytosolic NADH/NAD+ ratio. The lactate and 
pyruvate are thought to provide for a redox coupling between organs through blood since 
plasma level of these metabolites equilibrate with cytosolic concentrations of cells. In view 
of ”lactate shuttle theory” by Brooks (Brooks, 2002), lactate released into the coronary 
venous circulation and taken up by distal tissue that is to say myocardium via coronary 
artery circulation may affect redox state in the myocardial cells .  
The energy substrates use in CHD had been focused on cyanotic disease (Scheuer et al.,1970, 
1972, Rudolph et al.,1971, Fridli et al.,1977). As such, the studies of myocardial metabolism 
have long history but are very limited (Scheuer et al.,1970, 1972, Fridli et al.,1977, Åmark et 
al., 2007). In recent years, advancement of intensive care before and after surgical treatment, 
and carrying out of the long-term care of the circulation are getting to require precise 
understanding of myocardial metabolism in CHD. 
In this article, we focused on myocardial use of energy substrates, especially lactate, in 
young patients with RV volume overload (represented in the atrial septal defect, ASD) or with 
both RV pressrure load and LV volume load (represented in the ventricular septal defect, 
VSD). The author will also consider the myocardial redox state of non-cyanotic CHD in 
young patients with reviewing of myocardial substrate use.  

2. Patients and methods 

Twenty one patients were enrolled into this study. Their ages range from ten-month to 11 
years: patient details are summarized in Table 1. The patients were divided into three 
groups; Seven patients of Kawasaki disease without coronary lesions over 6 months after 
healing (KD group), seven patients of ASD as a representative of RV volume overload (ASD 
group), (ASD group), seven patients of VSD or patent ductus arteriosus (PDA) as a 
representative of RV pressure overload in addition to LV volume overload (PH group). (PH 
group). All the patients in the PH group were received diuretics.  
All patients were not fed for at least four hours. Conbination of ketamine-HCl and diazepan were 
used for general anesthesia with spontaneous respiration. Heparin (100U/kg) was administered 
after insertion of arterial sheath. Intravenous infusion including 4.3% glucose and 20 mEq/l 
lactate maintained during the protocol. A coronary sinus catheter was inserted into the mid-
to-anterior region of the coronary sinus via the inferior vena cava under fluoroscopy 
(Hamaoka et al., 1989). Blood sample collection was done at least 10 min after the end of all 
catheterization and angiography for the diagnosis because the influence of contrast medium 
to myocardial metabolism was reported to maintain 10-20 minutes by Wisneski et al 
(Wisneski et al., 1982). The verification of appropriate catheter position was determined by 
measuring oxygen saturation.  
Oxygen saturation was measured by Oxygen Saturation Monitor system (Erma). Blood 
samples were obtained simultaneously from coronary sinus and femoral artery for the 
chemical analysis of concentrations of glucose, lactate and free fatty acids and oxygen 
concentration. Blood samples for glucose were mixed with titrate and, for lactate and 
pyruvate with 6% perchloric acid. This protocol was performed by the guideline of the 
Committee on Research of Kyoto Prefectural University of Medicine and informed consents 
were obtained from parents.  

Calculations on energy substrate metabolism: 

Pulmonary blood flow to systemic blood flow ratio (Qp/Qs) was calculated by means of 
Fick's method. Blood oxygen concentration was calculated as the product of Hb 
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concentration, oxygen saturation, and an oxygen-binding capacity of 1.34 ml/g. The oxygen 
extraction rate (OER) for each substrate was calculated using the following formula: 
- OER = (AVDsubstrate/AVDoxygen) x substrate factor 
- AVD; arteriovenous concentration difference 
The substrate factor for glucose or lactate is 0.75 and 5.7 for free fatty acids (FFA). FFA 
concentration of whole blood was calculated by multiplying plasma concentration with 
(100-hematocrit)/100. 
Redox potential (Eh) = -204+30.7x log([pyruvate]/[lactate]) (Gudbjarnason & Bing, 1962). 
ΔEh = Ehcv – Ehao (Ehcv and Ehao represent Eh of coronary venous blood and of aortic blood, 
respectivelty) 

Statistical analysis 

Values are expressed as mean ± standard deviation. All statistical tests were performed 
using JMP (ver.6, SAS Institute Japan, Co). We used Kruskal-Wallis one way analysis of 
variance on ranks to compare overall differences among three groups. We compared 
median value of all groups using two tailed Mann-Whitney U tests. Because three pairwise 
planed comparisons were made we considered P<0.016 as significant. In case of comparison 
of paired samples, Wilcoxon signed-rank test was applied and P<0.05 was considered as 
significant. 

3. Results 

3.1 Patients profiles (Table 1) 

There was no significant difference among the groups on age. Heart rates (HR) and left 
ventricular systolic pressure (LVSP) were similar among groups, so the double products 
(LVSP x HR) of the left ventricle in PH group was same to those in ASD group. The ratio of 
the right ventricular systolic pressure (RVSP) to the LVSP was higher in PH group than in 
ASD group (0.35 ± 0.13 mmHg vs 0.79 ± 0.17 mmHg ) . Qp/Qs of 1.7 ± 0.5 in PH group was 
also the same level in comparison with that of 1.8 ± 0.2 in ASD group.  

3.2 Oxygen uptake 

The arterial-coronary vein oxygen concentration differences were similar among three 
groups; 11.1 ± 0.7 Vol% for KD, 11.1 ± 2.3 Vol% for ASD group, and 10.9 ± 0.9 for PH group. 
However, this does not mean that the myocardial oxygen consumption of each group was 
similar, because we could not measure coronary flow in each group. Among three groups, 
however, the similar LV double products value may suggest the same levels of the LV 
oxygen consumption. On the other hand, the RV double products of the PH group were the 
highest level. These results suggested that the myocardial oxygen consumption in PH group 
may be the highest level among the groups.  

3.3 Myocardial substrate uptake 

The concentrations of glucose, lactate, and FFA in the artery were same levels among the 
groups (Table 2). Plasma FFA concentrations were thought to be higher levels in all groups 
than normal values due to heparinization, although blood FFA was not measured before 
heparin injection. Concerning substrate concentrations in the coronary vein, lactate levels of 
PH group was significantly higher than other groups. Pyruvate concentrations of PH group 
showed no significant difference in comparison with values of other groups. Continuous 
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infusion of low dose lactate and glucose did not influence the concentrations of both lactate 
and glucose since blood levels of those substrates were within the normal values.  
We calculated myocardial OER of each substrate since, in this study, coronary sinus blood 
flow could not be measured. Figure 1 shows OER of each substrate in each group. Glucose 
OER in each patient was quite variable so that there was no significant difference on the 
mean value; 2.0±13.0% for KD group, 8.4±11.0% for ASD group, and 15.5±20.4% for PH 
group. Mean arterio-venous difference of lactate in PH group was negative resulting in -
5.3±11.2% of calculated lactate OER. This value was significantly lower than both of KD 
group (7.8±9.2 %, p=0.013) and of ASD group (19.7±9.5, p=0.004). On the other hand, the 
lactate OER of ASD group showed higher trend than both KD group and PH group. There 
were no significant difference on FFA OER in each group; 62.8±28.2% for KD group, 
63.6±9.8% for ASD group, and 62.8±28.0% for PH group. Sum of each glucose, lactate, and 
FFA OER was calculated as a total OER of heart.  

3.4 Myocardial redox state or anaerobic metabolism (Table 3) 

The lactate/pyruvate (L/P) ratios in coronary vein were similar among the groups. 
However, the L/P ratios of both ASD group and PH group were relatively higher values 
than those of KD group. Each values of redox potential (Eh) calculated from blood lactate 
and pyruvate showed no significant difference among groups. The ΔEh also showed no 
significant difference among the groups but the ΔEh of PH group was relatively lower value 
than other groups.  

3.5 The effects of oxygen inhalation 

As some patients in PH group were supposed myocardial relative ischemia or hypoxic state, 
we measured the major energy substrates under administration of oxygen for CHD patients. 
Figure 2 demonstrates the change of lactate OER both from ASD group and PH group. 
Lactate OER of ASD group did not change with oxygen inhalation. On the other hand, its 
PH group increased from -6.3±10.9% to 3.0±9.9%. However, of interest, both the CS L/P 
ratio and ΔEh of each group showed no remarkable changes even after inhale of oxygen 
(Table 3). 

4. Discussion 

4.1 Characteristics of methodology on myocardial energy metabolism study 

In humans, the coronary sinus, which empties into the right atrium, receives blood from 
96% of veins from the left ventricular free wall and septum (Sethna et al., 1986). The 
coronary sinus system drains approximately three fourths of the blood entering the left 
coronary artery and only 10 to 20 % of the inflow of the right coronary artery. The rate of 
tissue metabolism (uptake or release) can only be measured by multiplying the artery-
coronary vein difference by the blood flow if the flow, the arterial concentration, and the 
rate of tissue metabolism are all constant. We did not measure coronary sinus blood flow in 
this study because of technical difficulties for infants. Then, we calculated oxygen extraction 
ratio for standardizing and comparing the substrate use in the heart.  
This kind of studies to adult patients carried without heparinization but with frequent wash 
of catheter for prevention of thrombus formation, since it is well known that heparin 
induces the production of free fatty acids from lipoprotein by activation of lipoprotein 
lipase. We used, in this study, heparin for anti-coagulation and obtained blood samples 
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under heprinized state because of two reasons; 1) for preservation of veins and arteries from 
obstruction in younger children and 2) for our aim of studying myocardial metabolism in 
patients under critical states as in pediatric intensive care unit or in surgical intervention 
where many patients were heparinized.  
In spite of these limitation, this method we applied here is still useful for clinical study on 
myocardial metabolism (Vánky et al. 2006) because data obtained are supposed not far from 
animal model study (Lopaschuk et al., 1992), computer simulation study and isotopical 
study in human. 

4.2 Myocardial use of lactate and other substrates in non-cyanotic CHD 

It is very important to know the myocardial energy substrate use during the management of 
heart failure or cardiac surgery of children with CHD. However, myocardial metabolism even 
in the normal immature heart has not been fully elucidated. Although data we can refer on 
myocardial energy substrate use in normal children are limited, myocardial fatty acids 
uptake of KD group resembles the results that Rudolph demonstrated (Rudorph et al., 1971). For 
this reason, we considered that results from KD group represented normal myocardial 
substrate use in children. Table 4 shows the comparison among some previous reports on 
the substrates use in hearts in young including cyanotic CHD. Myocardial FFA uptake in 
children shows very similar levels among the reports. The very variable glucose uptake 
shown in other reports including adults suggested that glucose may not play an important 
role for myocardial energy supply for children at rest. (Vánky et al. 2006,Lopaschuk et al., 
1992).  
It has been demonstrated that adult hypertrophied hearts prefer to oxidize glucose. Increase 
of glucose oxidation may be beneficial for hypertrophied heart on production of ATP with 
less myocardial oxygen consumption than fatty acid oxidation. Allard et al reported that the 
steady-state palmitate oxidation rates were decreased in the hypertrophied hearts compared 
with control hearts (Allard et al., 1994). Although the uptake of glucose of CHD hearts, in 
our study, was quite variable, both hearts with the volume overloaded RV (ASD group) and 
with the pressure overloaded RV (PH group) showed tendency of increase of glucose 
uptake. (Figure 1, Table 4). These suggest that a myocardial potential of glucose use in 
children with CHD may not be an inferior level in comparison with adult hearts against 
overload. However, one should note in our results that FFA use was high levels even in PH 
group and that lactate was dominant energy supplier more than glucose in ASD group. 
Gertz et al have reported that in subjects with high blood free fatty acids, myocardial lactate 
extraction may be low (Gertz et al., 1980). However, this is not the case at least in children 
with CHD (Table 4). The lactate use including of cyanotic CHD is relatively high even under 
the high levels of fatty acid use. From another point of view, it is speculated that fatty acid 
use in children with CHD have reached to near maximum levels and, as a result, lactate 
regulated the energy supply against additional loads on the heart. Some studies have 
clarified that fatty acids oxidation increased with elevation of ventricular workload in 
immature hearts (Itoi et al., 1993a,Ascuitto et al., 1999). The lactate oxidation rates of the 
immature hearts were also increased by the addition of preload to the RV without 
significant change of glucose oxidation (Itoi et al., 1993b). The ASD group in our study 
showed the very same result of this experimental model on change of the lactate oxidation 
(Figure 1). Recently, Vánky et al revealed that no significant uptake of glucose was detected 
before or after surgery for aortic stenosis but the uptake of lactate was significant before 
surgery (Vánky et al. 2006).  
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The blood lactate levels in the resting state are low, in the range of 0.5-1 mM, in human 
adults. Results of our study showed that, even in children with CHD, arterial lactate levels 
were the same as in adults (Table 2). Then, the lactate use changes in hearts of children with 
non-cyanotic CHD might not be influenced by blood lactate levels. Lactate oxidation occurs 
because the lactate dehydrogenase (LDH) isozyme found in heart has a low affinity for 
pyruvate, although the equilibrium constant for the LDH is in the direction of lactate 
formation. In addition, the hydrogen ion, pyruvate, and NADH formed by the LDH reaction 
are rapidly removed in the aerobic heart, forcing the reaction in the direction of the 
formation of pyruvate (Drake-Holland, 1983). Furthermore, in the setting of a fully activated 
FFA oxidation, glycolysis flux and the pyruvate dehydrogenase complex (PDC) activity are 
supressed with increased NADH from β-oxidation. This phenomenon may result in not only 
deceleration of glucose oxidation but also acceleration of lactate oxidation (Figure 3). This 
scenario may happen in mildly overloaded hearts as in ASD group. 
The very characteristic finding in our study was the efflux of lactate under the stable fatty 
acids use in PH group (Figure 1). In RVH, there is a mitochondrial metabolic switch from 
glucose oxidation to glycolysis due to myocardial ischemia (Pio et al., 2010, Gomez et al., 
2001). Positron emission tomography studies in patients with RVH suggested that there is 
increased RV glucose uptake, which is thought to reflect enhanced glycolysis. The less 
efficient production of ATP by glycolysis in RVH meant the formation of lactate, rather than 
pyruvate (Oikawa et al., 2005). In the immature heart, lactate dehydrogenase (LDH), which 
is predominated by the M type isozyme, as higher activity, resulting in greater lactate 
production from pyruvate (Brooks et al., 2002). This requires greater NADH levels than seen 
in the adult heart. The dominance of glycolytic flux in immature hearts leads to 
accumulation of lactate to a greater extent than is seen in adult hearts during profoundly 
hypoxic states (Brooks et al., 2002). Now, does the spillover of lactate from hearts of PH 
group indicate the existence of profound myocardial ischemia of the right ventricle?  

4.3 Redox-potential of the lactate-pyruvate system in CHD 

The redox-potential of the coronary sinus blood approaches that of cardiac tissues, and the 
redox-potential of the coronary venous blood becomes more negative than that of arterial 
blood. When ΔEh is positive there is active cellular oxidation and the energy required is 
supplied by oxidative phosphorylation. When ΔEh is negative there is glycolysis and 
anaerobic phosphorylation becomes an important energy source (Gudbjarnason & Bing, 
1962). The RV overloaded heart, especially PH group, showed a tendency of decrease of ΔEh 
(Table 3). Since some hearts of CHD were supposed to be under hypoxic state, we 
administered oxygen to patients. The results that oxygen inhalation increased influx of 
lactate (Figure 2) without changes of both the L/P ratio and ΔEh (Table 3) suggested that 
myocardial hypoxic state may not be only one cause of the lactate efflux from hearts of the 
PH group. 
Kobayashi et al demonstrated that, in isolated perfused heart, both the intracellular and the 
perfusate L/P ratio increases at higher cardiac workloads (Kobayashi & Neely, 1979). The 
L/P ratio of a given cell is thought to reflect the cytosolic NADH/NAD ratio (Rassmussen et 
al., 2009). Since the coronary venous L/P ratio at rest has been reported around 10 (Friedli 
1977), our results suggested that the cytosolic NADH/NAD ratio may be higher in the CHD 
groups, although statistically not significant, than in KD group at rest (Table 3).  
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Our results suggested that, under the high potential of fatty acids oxidation, 1) the low level 
of acceleration of oxidative metabolism as in ASD group resulted in increasing of lactate 
oxidation for filling NADH because of limitation of glycolysis activity by fatty acids 
oxidation, 2) the higher level of cardiac work as in PH group results in the faster rates of 
glycolysis by cellular hypoxia and/or adrenaline (Brooks et al., 2002, Massie et al., 1995), 
which were also accompanied by increased conversion of pyruvate to lactate by over-
production of NADH (Figure 3).  
 
 

 
 
 

 
 
 

KD, Kawasaki disease; ASD, atrial septal defect; PH, pulmonary hypertension;  
*, significantly different from KD; **, significantly different from ASD. 

Fig. 1. Myocardial oxygen extraction rate (OER) of glucose, lactate, and fatty acids 
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ASD, atrial septal defect; PH, pulmonary hypertension. 
*, significantly different from ASD; **, significantly different from oxygen - 

Fig. 2. Effects of oxygen administration of myocardial lactate use 

 

 
 

LDH, lactate dehydrogenase; PDC, pyruvate dehydrogenase complex. 
NADH produced by glycolysis or conversion of lactate to pyruvate is carried into the mitochondrial 
matrix via NADH shuttle. In mitochondrial matrix, NADH is produced from conversion of pyruvate to 
acetyl-CoA catalyzed by PDC. 

Fig. 3. Relationship between myocardial energy substrate use and pathways for oxidation of 
NADH 
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 KD ASD PH ANOVA P 

Age (year) 3.5±2.3 6.9±3.0 2.1±0.8† 0.005 

HR (bpm) 123±24 118±1 129±27 NS 

RVPsys (mmHg) 24±4 40±12* 80±22**, † <0.001 

LVPsys (mmHg) 112±15 116±9 100±10 NS 

RVP/LVP 0.22±0.05 0.35±0.13 0.79±0.17**,† <0.001 

LV DP (x1000) 13.63±2.06 13.61±1.7 12.95±2.82 NS 

RV DP (x1000)  2.94±0.65 4.80±1.94 10.32±3.28**,† 0.001 

Qp/Qs 1 1.8±0.2 1.7±0.5 - 

Hb(g/dl) 12.5±0.7 13.3±0.7 12.9±0.9 NS 

 

HR, heart rate; RVPsys, systolic right ventricular pressure; LVPsys, systolic left ventricular pressure; 
DP, double products (=ventricular systolic pressure x heart rate); Qp/Qs, pulmonary-sysytolic flow 
ratio; Hb, hemoglobin  
*, significantly different between KD vs ASD; **, significantly different between KD vs VSD; †, 
significantly different between ASD vs VSD 

Table 1. Patients profiles 

 
 

 KD ASD PH ANOVA p 

Aorta     

O2 sat (%) 97.7±0.5 97.1±0.8 95.1±3.3 NS 

Glucose (mmol/L) 4.95±1.07 5.48±0.33 5.17±0.88 NS 

lactate (mmol/L) 0.72±0.19 0.83±0.44 0.86±0.36 NS 

pyruvate (mmol/L) 0.045±0.023 0.048±0.015 0.092±0.093 NS 

FFA (mmol/L) 1.28±0.33 1.41±0.44 1.34±0.3 NS 

Coronary sinus     

O2 sat (%) 31.5±4.3 35.2±12.5 32.2±5.6 NS 

Glucose (mmol/L) 4.93±1.07 5.46±0.28 5.18±0.95 NS 

lactate (mmol/L) 0.53±0.16 0.53±0.3 0.95±0.47**,† 0.033 

pyruvate (mmol/L) 0.052±0.027 0.037±0.01 0.1±0.081 NS 

FFA (mmol/L) 1.08±0.34 1.2±0.46 1.15±0.3 NS 

 

**, significantly different from ASD group; †, significantly different from ASD group 

Table 2. Myocardial substrate uptake 
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 O2 KD ASD PH ANOVA p 

CV L/P 
- 11.8±3.3 15.1±8.7 15.6±13.0 NS 

+ 11.6±4.3 15.8±6.0 14.0±8.8 NS 

Redox potential 

Ehcv 
(mV) 

- -236.2±4.7 -238.3±7.7 -237.7±8.8 NS 

+ -235.6±6.7 -239.9±5.4 -237.2±7.5 NS 

Ehao 
(mV) 

- -241.9±7.2 -241.6±5.4 -238.9±9.7 NS 

+ -240.5±6.8 -245.6±4.8 -239.6±6.4 NS 

ΔEh 
(mV) 

- 5.7±4.7 3.3±5.9 1.2±4.7 NS 

+ 5.0±3.7 5.7±2.7 2.3±4.9 NS 

CV, coronary vein; Eh, redox potential, ΔEh, difference of redox potential between artery and coronary 
vein 

Table 3. Anaerobic Metabolism 

5. Conclusion 

Myocardial energy metabolism in non-cyanotic CHD was basically sustained by fatty acids 
oxidation whether or not with increasing workloads. The glucose use was accelerated with 
overload with cellular hypoxia although very variable. Lactate seemed to play an important 
role to maintain lactate-pyruvate redox potential. When myocardial workloads were mild as 
in ASD group, the NADH demand was complemented by lactate oxidation. On the other 
hand, when workloads were as strong as producing a myocardial hypoxic state as in PH 
group, lactate production was accelerated to maintain the cellular redox state.  
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