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1. Introduction 

Congenital heart disease (CHD) is the most common type of birth defect, affecting 1% of all 
live births, and is the leading non-infectious cause of death in the first year of life [1,2]. CHD 
is a multifactorial complex disease, with environmental and genetic factors playing 
important roles. It has been recognized that environmental factors/insults during fetal 
development increase the risk of CHD, including viral infections with rubella [3], exposure 
to chemical teratogens such as retinoic acid ,  lithium, dilantin [4]and halogenated  
hydrocarbon [5]and maternal diseases including diabetes and systemic lupus erythematosus 
[1, 6]. Epidemiologic studies of CHD have demonstrated an increased recurrence risk for 
cardiac malformations in sequent pregnancies, supporting the existence of gene 
predispositions. 
Great progress in molecular genetics and developmental biology has been made. Current 
genetic techniques for evaluation of congenital heart defects include cytogenetic techniques, 
fluorescence in situ hybridization (FISH) and DNA mutation analysis. Most methods 
employ polymerase chain reaction–based assays. Indirect screening methods, such as 
denaturing high-performance liquid chromatography or single-strand conformation 
polymorphism have been used extensively. More expensive exon-by-exon sequencing of 
genomic DNA has recently emerged [7, 8]. It has been accepted that the intricate process of 
cardiac morphogenesis is controlled by a network of highly conserved genetic and 
molecular pathways. The origins of CHD are diverse, such as abnormal chromosome 
structure (eg. duplication or deletion), gene mutations, single nucleotide polymorphisms, 
abnormal RNA, epigenetics and so on, and they are summarized in Figure 1. 
In humans, heart development begins at 15 to 16 days of gestation with the migration of 
precardiac stem cells, in five steps:(1)migration of precardiac cells from the primitive streak 
and assembly of the paired cardiac crescents at the myocardial plate, (2) coalescence of the 
cardiac crescents to form the primitive heart tube, establishing the definitive heart, (3) 
cardiac looping, assurance of proper alignment of the future cardiac chambers, (4) septation 
and heart chambers formation, and (5) development of the cardiac conduction system and 
coronary vasculature [9-11]. The establishment of left-right asymmetry is very important to 
the normal development of heart [12, 13]. Secreted  FGF, BMP, Nodal, and Wnt act as input 
signal of symmetric cardiac morphogenesis, BMP2, FGF8, Shh/Ihh, and Nodal function as 
positive regulators, whereas Wnt and Ser are negative regulators [14-16]. The cardiogenic 
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plate-specific expressed genes NKX2.5, SRF, GATA4, TBX5, and HAND2, compose the core 
regulatory network of cardiac morphogenesis, controlling  heart looping, left-right 
symmetry and chambers formation. SRF regulates the differentiation of coronary vascular 
smooth muscle cells [17, 18]. Genes that involved in epicardial development include FOG-2, 
vascular cell adhesion molecule 1, integrins, erythropoietin, and erythropoietin receptor. 
Specific genes such as the NOTCH receptor, Jagged (JAG), WNT, transforming growth 
factor beta 2 (TGF ß2) and bone morphogenic proteins have been implicated in cardiac 
neural crest development in the mouse[12, 19-21]. Retinoic acid signal pathway is involved 
in the regulation of cardiac looping. Complex signal pathways are implicated in the 
crosstalk between endocardium and myocardium to form endocardial cushion and heart 
valves, including VEGF, NFATc1, Notch, Wnt/ß-catenin, BMP/TGF-ß, EGF, erbB, NF1 
signal pathways [10, 22-24]. 
 

 

Fig. 1. Eteology of CHD 

2. Molecular mechanisms of congenital heart disease 

2.1.1 Causative genes of CHD  

The etiological factors of many genetic syndromes and familial CHD have been identified, 
but the genetic basis of majority of “sporadic” CHD remains unknown. With the progress in 
molecular genetics and developmental biology, many genes associated heart development 
have been identified. When searching computer databases such as NCBI Gene Bank for 
“cardiac or heart”, we can indentify 1154 loci in human. Search for“(heart or cardiac)and 
development”, limited to human, 630 genes were found. A number of selected congenital 
heart defects and genetic syndromes have been found to be associated with mutations in a 
variety of single genes. The mutations were found only in affected individuals, were not 
present in control samples, and were demonstrated to change protein structure or function. 
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Disease genes of CHD identified to date are summarized in Table 1, and the functions of 
these causative genes are summarized as following [25]. 

 

disorder Causative genes Chromosome Location 

Congenital heart defects   

Familial congenital heart 

diseas(ASD, 

atrioventricular block) 

NKX2.5 

 
5q34-q35 

D-TGA, DORV CFC1 2q21 

D-TGA  PROSIT240 12q24 

Tetralogy of Fallot ZFPM2 

NKX2.5 

JAG1 

8q23 

5q34-q35 

20p12 

Atrioventricular septal 

defect 

CRELD1 3p21 

ASD/VSD GATA4 8p23 

Heterotaxy ZIC3 

CFC1 

ACVR2B 

LEFTYA 

Xq26 

2q21 

3p21.3-p221q42.1 

Supravalvar aortic 

stenosis Syndromes 

ELN 7q11 

   

Holt-Oram Syndromes TBX5 12q24 

Alagille Syndromes JAG1 20p12 

Char Syndromes (PDA) TFAP2B 6p12 

Noonan Syndromes PTPN11 

KRAS 

SOS1 

12q24 

2p1.21 

2p21 

CHARGE Syndromes CHD7 8q12 

Ellis-van Creveld EVC, EVC2 4p16 

Marfan Syndromes FBN1 15q21.1 

Marfan-like Syndromes TGFBR2 3p22 

Cardiofaciocutaneous 

Syndromes 

KRAS 

BRAF 

MEK1 

MEK2 

12p12.1 

7q34 

15q21 

7q32 

Costello Syndromes HRAS 11p15.5 

Table 1. Causative genes of CHD 

For example, NKX2-5, Homeobox-containing genes play critical roles in regulating tissue-
specific gene expression essential for tissue differentiation, as well as determining the 
temporal and spatial patterns of development. It has been demonstrated that a Drosophila 
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homeobox-containing gene called 'tinman' is expressed in the developing dorsal vessel and 
in the equivalent of the vertebrate heart. Mutations in tinman result in loss of heart 
formation in the embryo, suggesting that tinman is essential for Drosophila heart formation. 
Furthermore, abundant expression of Csx, the presumptive mouse homolog of tinman, is 
observed only in the heart from the time of cardiac differentiation. CSX, the human homolog 
of murine Csx, has a homeodomain sequence identical to that of Csx and is expressed only 
in the heart, again suggesting that CSX plays an important role in human heart formation. 
Studies have recently shown that nonsyndromic CHD can result from single-gene defects. 
Schott et al identified mutations in NKX2.5 in 4 kindreds with atrial septal defects and 
atrioventricular conduction delay without other apparent syndromic features. The 
mutations were found only in affected individuals, were not present in control samples, and 
were demonstrated to change protein structure or function [26-28]. 
Noonan Syndrome is a genetic multiple malformation disorder that includes short stature, 
typical facial dysmorphism, webbed neck, chest deformity, and cardiovascular 
abnormalities. The cardiac involvement is observed in 80% to 90% of affected individuals, 
with valvar pulmonic stenosis and hypertrophic cardiomyopathy being the most common. 
Other congenital heart defects observed in Noonan Syndrome are secundum atrial septal 
defect, atrioventricular septal defect, mitral valve abnormalities, aortic coarctation, and 
tetralogy of Fallot. Noonan Syndrome is genetically heterogeneous, which means that there 
are at least 3 Noonan Syndrome disease genes, PTPN11, SOS1, and KRAS [29]. It is PTPN11, 
which encodes a protein tyrosine phosphatase called SHP-2. SHP-2 plays an important role 
in signal transduction for a wide variety of biological processes, including the formation of 
the semilunar valves. Mutations in the PTPN11 gene are observed in 40% to 50% of Noonan 
Syndrome patients [25, 30]. 

2.1.2 Functions of the causative genes of CHD 

Table2 shows the functions of the causative genes of CHD. 

 
Genes affected   

Transcription factors Signaling proteins Vascular extracellular matrix 
GATA4 
TBX1 
TBX5 
NKX2.5 
dHAND 
TFAP2 
ZFPM2 
 

PTPN11 
Jagged 1 
DMPK 
CFC1 
SOS1 
TGFBR2 
KRAS 
BRAF 
MEK1 
MEK2 
HRAS 
ACVR2B 
CRELD1 
LEFTYA 

FBN-1 
Elastin 

NKX2-5, NK2 transcription factor related, locus 5 

Table 2. Inborn Errors Causing CHD 
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Homeobox-containing genes play critical roles in regulating tissue-specific gene expression 

essential for tissue differentiation, as well as determining the temporal and spatial patterns 

of development. Mutations in NKX2-5 result in loss of heart formation in the embryo, 

suggesting that NKX2-5 is essential for heart formation [31, 32].  

CFC1, cripto, FRL-1, cryptic family 1 

This gene encodes a member of the epidermal growth factor (EGF)- Cripto, Frl-1, and 

Cryptic (CFC) family. These proteins play key roles in intercellular signaling pathways 

during vertebrate embryogenesis. Mutations in this gene can cause autosomal visceral 

heterotaxy. This protein is involved in left-right asymmetric morphogenesis during organ 

development [33, 34]. 

PROSIT240, MED13L, mediator complex subunit 13-like 

Also known as THRAP2, The evolutionarily conserved THRAP genes encode a family of 

proteins that regulate embryonic development. THRAP2 is involved in early development 

of the heart and brain [35]. 

ZFPM2, zinc finger protein, multitype 2 

The zinc finger protein encoded by this gene is a widely expressed member of the FOG 

family of transcription factors. The family members modulate the activity of GATA family 

proteins, which are important regulators of hematopoiesis and cardiogenesis in mammals 

[36]. 

Jagged 1, jagged 1 (Alagille syndrome) 

The jagged 1 protein encoded by JAG1 is the human homolog of the Drosophilia jagged 

protein. Human jagged 1 is the ligand for the receptor notch 1. Mutations that alter the 

jagged 1 protein cause Alagille syndrome [37]. 

CRELD1, cysteine-rich with EGF-like domains 1 

Epidermal growth factor-like repeats are a class of cysteine-rich domains that mediate 

interactions between proteins of diverse function. CRELD1 is the founding member of a 

family of matricellular proteins [38]. 

GATA4, GATA binding protein 4 

This gene encodes a member of the GATA family of zinc-finger transcription factors. This 

protein is thought to regulate genes involved in embryogenesis and in myocardial 

differentiation and function. Mutations in this gene have been associated with cardiac septal 

defects [39]. 

ZIC3, Zic family member 3 heterotaxy 1 

This gene encodes a member of the ZIC family of C2H2-type zinc finger proteins. Mutations 

in this gene cause X-linked visceral heterotaxy [40]. 

ACVR2B, activin A receptor, type 2, beta 

Activins are dimeric growth and differentiation factors which belong to the transforming 

growth factor-beta superfamily of structurally related signaling proteins. These receptors 

are all transmembrane proteins [41]. 
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LEFTYA, left-right determination factor 2 

This gene encodes a member of the TGF-beta family of proteins. The encoded protein is 

secreted and plays a role in left-right asymmetry determination of organ systems during 

development.Mutations in this gene have been associated with left-right axis malformations, 

particularly in the heart and lungs [42]. 

ELN, Elastin 

This gene encodes a protein that is one of the two components of elastic fibers. Deletions 
and mutations in this gene are associated with supravalvular aortic stenosis (SVAS) and 
autosomal dominant cutis laxa [43]. 

TBX5, T-box 5 

This gene is a member of a phylogenetically conserved family of genes that share a common 
DNA-binding domain, the T-box. The encoded protein may play a role in heart 
development and specification of limb identity. Mutations in this gene have been associated 
with Holt-Oram syndrome [44]. 

TFAP2B, transcription factor AP-2 beta 

This gene encodes a member of the AP-2 family of transcription factors. This protein 
functions as both a transcriptional activator and repressor. Mutations in this gene result in 
autosomal dominant Char syndrome, suggesting that this gene functions in the 
differentiation of neural crest cell derivatives [45]. 

PTPN11, protein tyrosine phosphatase, non-receptor type 11  

The protein encoded by this gene is a member of the protein tyrosine phosphatase (PTP) 
family. PTPs are known to be signaling molecules that regulate a variety of cellular processes 
including cell growth, differentiation, mitotic cycle, and oncogenic transformation. Mutations 
in this gene are a cause of Noonan syndrome as well as acute myeloid leukemia [46]. 

SOS1, son of sevenless homolog 1 

This gene encodes a protein that is a guanine nucleotide exchange factor for RAS proteins, 
membrane proteins that bind guanine nucleotides and participate in signal transduction 
pathways. Mutations in this gene are associated with gingival fibromatosis 1 and Noonan 
syndrome type 4 [47]. 

CHD7, chromodomain helicase DNA binding protein 7 

This gene encodes a protein that contains several helicase family domains. Mutations in this 

gene have been found in some patients with the CHARGE syndrome [48, 49]. 

EVC, Ellis van Creveld syndrome 

This gene encodes a protein containing a leucine zipper and a transmembrane domain. This 
gene has been implicated in both Ellis-van Creveld syndrome (EvC) and Weyers acrodental 
dysostosis [50]. 

FBN1, fibrillin 1 

This gene encodes a member of the fibrillin family. Mutations in this gene are associated 

with Marfan syndrome, isolated ectopia lentis, autosomal dominant Weill-Marchesani 

syndrome, MASS syndrome, and Shprintzen-Goldberg craniosynostosis syndrome [51]. 
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TGFBR2, transforming growth factor receptor 2 

This gene encodes a member of the Ser/Thr protein kinase family and the TGFB receptor 

subfamily. Mutations in this gene have been associated with Marfan Syndrome, Loeys-Deitz 

Aortic Aneurysm Syndrome, and the development of various types of tumors [52]. 

KRAS, v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog 

This gene, encodes a protein that is a member of the small GTPase superfamily. The 

transforming protein that results is implicated in various malignancies, including lung 

adenocarcinoma, mucinous adenoma, ductal carcinoma of the pancreas and colorectal 

carcinoma [53]. 

BRAF, v-raf murine sarcoma viral oncogene homolog B1 

This gene encodes a protein belonging to the raf/mil family of serine/threonine protein 

kinases. This protein plays a role in regulating the MAP kinase/ERKs signaling pathway, 

which affects cell division, differentiation, and secretion. Mutations in this gene are 

associated with cardiofaciocutaneous syndrome [53]. 

MEK1, MAP2K1, mitogen-activated protein kinase 1 

The protein encoded by this gene is a member of the dual specificity protein kinase family, 

which acts as a mitogen-activated protein (MAP) kinase kinase. This kinase is involved in 

many cellular processes such as proliferation, differentiation, transcription regulation and 

development [54]. 

MEK2, MAP2K2, mitogen-activated protein kinase 2 

The protein encoded by this gene is a dual specificity protein kinase that belongs to the 

MAP kinase kinase family. This kinase is known to play a critical role in mitogen growth 

factor signal transduction. Mutations in this gene cause cardiofaciocutaneous syndrome 

(CFC syndrome) [55]. 

HRAS, v-Ha-ras Harvey rat sarcoma viral oncogene homolog 

This gene belongs to the Ras oncogene family. The products encoded by these genes 

function in signal transduction pathways. Mutations in this gene cause Costello syndrome. 

Defects in this gene are implicated in a variety of cancers [56]. 

2.2 Pathogenic mechanisms of congenital heart disease 

Phenotypes of CHD vary from small ASD and VSD, which may go undetected throughout 
life, to large ASD and VSD, which are significantly symptomatic. Clinically significant 
anomalies range from persistence of fetal circulation (eg, patent ductus arteriosus) to 
complex defects such as transposition of the great vessels, single ventricle anomaly, 
hypoplastic left heart syndrome, and complex variants of heterotaxy. The etiological factors 
of many genetic syndromes and familial CHD have been identified, but the genetic basis of 
majority of “sporadic” CHD remains unknown. It is hypothesized that susceptibility 
resulted from single nucleotide polymorphisms or key gene(s), with the interaction of 
environmental factors, which disturb normal cardiac development, result in cardiac defects. 
There are six causative mechanisms according to pathogenetic classification of congenital 
cardiovascular malformations: ectomesenchymal tissue migration abnormalities (causing 
conotruncal malformations and aortic arch anomalies); intracardiac blood flow defects 
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(causing septal defects and left or right heart obstructive malformations); cell death 
abnormalities (causing septal defects and valve abnormalities); extra cellular matrix 
abnormalities (causing atrioventricular canal defects); abnormal targeted growth (causing 
partial or total anomalous pulmonary venous return and cor triatriatum); and abnormal 
situs and looping (causing left–right positioning problems) [57, 58]. 

2.2.1 Mutations in components of the cardiac gene network cause CHD 

Heart development is controlled by a highly conserved network of transcription factors 
that connect signaling pathways with genes of muscle growth, patterning, and 
contractility. The core transcription factor network consists of NKX2, MEF2, GATA, TBX, 
and Hand. Dozens of other transcription factors contribute to cardiogenesis, in many cases 
by serving as accessory factors for these core regulators. Autoregulatory and cross 
regulatory of the cardiac gene network maintain the cardiac phenotype once the network 
has been activated by upstream inductive signals. Mutations in components of the cardiac 
gene Network cause CHD [59, 60]. 
Mutations in NKX2.5 cause a spectrum of congenital heart defects, including atrial-septal 
defects (ASDs), ventricular-septal defects (VSDs), and cardiac conduction abnormalities. 
Mutations in TBX5 cause the congenital disease Holt–Oram syndrome, which is 
characterized by truncations of the upper limbs and heart malformations [61, 62]. Mutations 
in GATA4, some of which disrupt its interaction with TBX5, cause ASDs and VSDs. In 
mouse models, haploinsufficiency for Nkx2-5 or Tbx5 resulted in an increased incidence of 
structural heart disease, confirming that normal heart development is sensitive to small 
changes in expression levels of Nkx2-5 and Tbx5. GATA4 also is an essential, dosage-
dependent regulator of cardiac morphogenesis. The missense mutation in Gata4 specifically 
disrupted the Gata4-Tbx5 interaction while maintaining its ability to interact with Nkx2.5. In 
previous studies, Tbx5 had been shown to interact with Nkx2.5, demonstrating that all three 
transcription factors could physically interact in vitro.  In summary, a mutation in any of 
these three genes can result in human CSD and suggests that these three genes may work to 
direct common molecular pathways critical for cardiac septum formation. [63, 64]. 
Consistent with this, mutations in MYH6, a downstream transcriptional target of GATA4 
and TBX5, was implicated as a cause of human atrial septal defects .TBX5, GATA4 and 
NKX2-5 function together only to activate genes. The overlapping expression patterns and 
complex interactions of these transcription factors allow fine regulation of cardiac gene 
expression and morphogenesis [20, 65-67] (Figure 2). 

2.2.2 Regulatory pathway of cardiac genes 

Several types of congenital heart disease involve valve defects of varying severity. Notch 
signaling is an ancient intercellular signaling mechanism that plays an important role during 
valve development. Mutations affecting signaling proteins and downstream pathways can 
lead to valve disease.  In mammals, four Notch family receptors have been described: 
NOTCH1 through to NOTCH4 [20, 68]. The Notch ligands are encoded by the Jagged (JAG1 
and JAG2) and Delta-like (DLL1, DLL3 and DLL4) gene families. The Notch signaling pathway 
is an evolutionarily conserved mechanism used by metazoans to control cell fate decisions 
through local cell interactions. The notch gene encodes a single-pass transmembrane protein 
receptor that interacts with its ligands, Delta and Serrate/Jagged. Upon binding of the ligand, 
the intracellular domain of Notch (NIC) undergoes proteolytic cleavage, and is translocated to 
the nucleus. In the nucleus, NIC binds to its major downstream effector, Suppressor-of-
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Hairless (Su(H)). Su(H) binds to the regulatory sequences of the Enhancer-of-Split locus, 
upregulating the expression of basic helix-loop-helix proteins, which in turn regulate the 
expression of downstream target genes. Upon ligand binding, a signal is transmitted 
intracellularly by a process involving the proteolytic cleavage of the receptor and the 
subsequent nuclear translocation of the Notch intracellular domain (NICD)ȐFigure 3ȑ. 

Alagille syndrome is an autosomal dominant disorder characterized by developmental 
abnormalities of the liver, heart, eye, skeleton and, at lower penetrance, several other organs. 
Most cases of Alagille syndrome are caused by JAG1 mutations, although a small number of 
Alagille syndrome patients with NOTCH2 mutations have been identified. The cardiac defects 
associated with Alagille syndrome include pulmonary artery stenosis and hypoplasia, 
pulmonic valve stenosis, and tetralogy of Fallot. These defects are likely to be due to a 
requirement for Notch signaling-mediated differentiation of cardiac neural crest cells into 
smooth muscle cells, which has been demonstrated in a mouse model. Bicuspid aortic valve 
affects 1-2% of the population, making it the most common congenital cardiac malformation. 
Bicuspid aortic valve predisposes one to aortic valve calcification. Aortic valve calcification 
was linked to Notch regulation of the transcription factor RUNX2.Heterozygous mutations in 
the NOTCH1 gene were found in two families with autosomal-dominant aortic valve disease. 
NOTCH1 mutations are also found in 4% of sporadic bicuspid aortic valve patients. The 
formation of bicuspid aortic valve might reflect the role of Notch signaling in regulating the 
epithelial-mesenchymal transition required for the generation of the heart valves [20, 69, 70]. 
Recently, mutations in Notch1 in humans have been shown to cause aortic valve defects and 
activation of Notch1 in mouse leads to abnormal cardiogenesis characterized by deformities of 
the ventricles and atrioventricular canal. Additionally, mutations in various Notch signaling 
pathway genes, including Jagged1, mind bomb 1, Hesr1/Hey1, and Hesr2/Hey2, result in 
cardiac defects, such as pericardial edema, atrial and ventricular septal defects, cardiac 
cushion, and valve defects [71-74]. 
 

 

Fig. 2. Interaction of NKX2.5,TBX5 and GATA4 
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Fig. 3. Notch pathway 

2.2.3 Altered haemodynamics 

Haemodynamic forces have been demonstrated to play an important role in cardiac 

development. When these forces are impaired or when genes involved in growth and 

differentiation are not functioning correctly, malformations may arise. Shear stress is one of 

those haemodynamic forces, and the expression of many genes, including those of the 

endothelin pathway, changes in response to alterations in shear stress. For example, ligating 

the right lateral vitelline vein of chicken embryos results in cardiovascular malformations 

similar to those observed in knockout mice studies of components of the endothelin-

1/endothelin-converting enzyme-1/ endothelin-A receptor pathway. In zebrafish, altering 

haemodynamics mechanically or genetically has profound consequences on heart 

morphology. In mice, a recent study pinpointed altered haemodynamics as a key 

intermediate between altered outflow tract morphogenesis and signaling events in 

branchial-arch artery remodeling. In human, complex congenital heart diseases with an 

outflow tract defect, such as tetralogy of Fallot, can be accompanied by ‘accessory’ 

congenital heart diseases, such as persistent right-sided aortic arch. Because the heart 

functions during its morphogenesis, haemodynamic forces might participate in cardiac 

morphogenesis [20, 71, 74] (Figure 4). 
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Fig. 4. Altered haemodynamics leads to CHD 

2.2.4 MicroRNA dysfunction 

MicroRNAs are natural, single-stranded, non–protein-coding small RNA molecules (～22 

nucleotides) that regulate gene expression by binding to target mRNAs and suppress its 

translation or initiate its degradation. Mature miRNAs are processed from -70 nucleotides 

long precursor miRNA (pre-miRNAs) that form hairpin secondary structures and that are 

often evolutionarily conserved. Pre-miRNAs are transcribed from miRNA genes. 

Although the specific biological roles of most miRNAs are still unknown, functional 

characterizations of a few of them suggest that these small RNA molecules are involved in 

many processes of animal development and physiology[75-77] .For example, miR-1 and 

miR-133 control cardiac and skeletal muscle development [78, 79]. Both genes are under 

the control of serum response factor, indicating that they are part of a developmental 

programme regulated by cardiac transcription factors. It has been shown that miR-1 

targets the cardiac transcription factor HAND2. Deletion of miR-1-2 results in heart 

defects that include VSDs; surviving mice have conduction system defects and increased 

cardiomyocyte proliferation. Dysregulation of miRNAs might result in congenital heart 

disease in human [80, 81](Figure 5). 

 
 

 
 

Fig. 5. MicroRNA dysfunction results in CHD 

2.2.5 Epignetics 

Epigenetics refers to DNA and chromatin modifications that play a critical role in 
regulation of various genomic functions, and it was then redefined as the study of 
heritable traits that are not dependent on the primary sequence of DNA. Although the 
genotype of most cells of a given organism is the same (with the exception of gametes and 
the cells of the immune system), cellular phenotypes and functions differ radically, and 
this can be (at least to some extent) controlled by differential epigenetic regulation that is 
set up during cell differentiation and embryonic morphogenesis [82,83]. Once the cellular 
phenotype is established, genomes of somatic cells are ‘locked’ in tissue-specific patterns 
of gene expression, generation after generation. This heritability of epigenetic information 
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in somatic cells has been called an ‘epigenetic inheritance system’ [84]. Even after the 
epigenomic profiles are established, a substantial degree of epigenetic variation can be 
generated during the mitotic divisions of a cell in the absence of any specific 
environmental factors. Such variation is most likely to be the outcome of stochastic events 
in the somatic inheritance of epigenetic profiles. From the epigenetic point of view, 
phenotypic differences in monozygous twins could result, in part, from their epigenetic 
differences. It has recently become clear that epigenetic regulators play crucial roles in the 
global shaping and maintenance of developmental patterning. This involves dynamic 
tissue and cell type-specific changes during patterning, as well as the maintenance of the 
cellular memory that is required for developmental stability.BAF60C (also known as 
SMARCD3), a subunit of the Swi/Snf-like chromatin-remodelling complex BAF, 
physically links cardiac transcription factors to the BAF complex. Loss of BAF60C results 
in severe defects in cardiac morphogenesis and impaired activation of a subset of cardiac 
genes. The muscle-restricted histone methyltransferase SMYD1 (also known as BOP) is a 
crucial regulator of cardiac chamber growth and differentiation. Histone deacetylases 
have mostly been characterized as having an important role in heart hypertrophy and 
development [20] (Figure 6). 
 

 
 

 

Fig. 6. Dysfunctions of epignetics leads to CHD 

2.2.6 Adult congenital heart diseases 

Individuals with congenital heart disease can suffer from secondary heart disease later in 

life, possibly as a result of corrective surgery during infancy. The sequelae are sometimes 

severe; for example, after closure of a septal defect, some patients can progress to heart 

failure. With improved surgical outcomes for those with congenital heart disease, the 

number of adults with such diseases now exceeds the number of children. The population of 

patients with adult congenital heart disease is approximately 800,000 in the U.S.A majority 

faces a lifetime of problems including arrhythmias, ventricular dysfunction, and one or 

more re-operations. Thus, it has become imperative to understand the postnatal 

consequences of congenital heart diseases [85]. Recent results suggest that these might be 

caused, at least in part, by the direct effects of mutations associated with congenital heart 

disease on postnatal heart morphology and function. For example, in a family with GATA4 

mutations, apart from having heart structural defects, some individuals developed dilated 

cardiomyopathy later in life. Indeed, data from mouse models support a connection 

between GATA4 mutations and adult cardiomyopathy [86]. Similarly, mutations in TBX20 

were identified in patients with cardiomyopathy as well as in those with structural 

congenital heart diseases. Mouse studies have also revealed roles for other congenital-heart- 

disease-associated genes in cardiac function. Studies of mice in which Nkx2-5 had been 

deleted only in the ventricles suggest a role for this gene in the function of the postnatal 

conduction system and in myocardial structure, and examination of patients with NKX2-5 
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mutations revealed that some had aspects of cardiomyopathy, as predicted from the mouse 

data. Thus, embryonic patterning genes control structural components of the heart and can 

also have a separate role in heart function, for example by regulating Serca2.These genes can 

thus modulate important aspects of heart function that cause pathology in the postnatal 

heart when dysregulated. This concept has important implications for the clinical 

management of adults with congenital heart disease [20,87]. 

3. Strategies and future perspectives 

The molecular mechanisms of congenital heart defects are so complex that we have to use 

diverse strategies to explore them. Animal Models Biomedical models have been defined as 

‘‘surrogates for a human being, or a human biologic system, that can be used to understand 

normal and abnormal function from gene to phenotype and to provide a basis for 

preventive or therapeutic intervention in human diseases’’ . Because of the striking 

homology between mammalian genomes and the many similarities in anatomy, cell biology, 

and physiology, rat is an excellent animal model for studying of cardiac development and 

identifying novel genes that could contribute to human disease. The Human Genome 

Initiative is providing genetic information not only from humans, but also from animals 

traditionally used as models. In addition, related enabling technologies in transgenesis and 

animal cloning provide new approaches for designing and performing experiments to 

dissect complex biological systems. Because of these new technologies (e.g., transgenesis), 

scientists are no longer limited to the traditional methods of choosing naturally occurring 

models. Researchers can utilize genomic knowledge and available tools to create 

appropriate animal models. This approach is referred to as reverse genetics. In contrast to 

forward genetics in which the gene or genes responsible for a particular phenotype are 

identified by positional cloning (phenotype to genotype), the reverse genetics approach 

determines the function of a gene and predicts the phenotype of a cell, tissue, or organism 

(genotype to phenotype). Genome-Wide Studies Considerable progress has been made in 

understanding the pathophysiology of perioperative stress responses and their impact on 

the cardiovascular system; however, researchers are just beginning to unravel genetic and 

molecular determinants that predispose to increased risk for CHD. Recent improvements in 

genotyping technology and in our knowledge of human genetic variation have made it 

possible to carry out genome-wide genetic association studies to identify susceptibility 

genes for common disease. Multistage designs involving large numbers of coding sequence 

variants (300,000) and relatively large samples sizes (several hundred cases and control 

subjects) will be essential to reliably detect alleles with appreciable effect sizes (2-fold 

increase in relative risk). Direct sequencing of candidate genes in cases and control subjects 

provides an alternative approach that can reveal low-frequency alleles that influence disease 

susceptibility [88,89]. Gene Expression (Microarrays) Microarray analysis is a useful tool to 

obtain a gene expression profile of CHD. However, current estimates suggest that greater 

than 60% of human genes have more than one isoform. Alternatively, spliced isoforms from 

the same gene can produce proteins with different properties and distinct functions. The 

specific roles of gene expression and their splicing variants necessary for development need 

to be further delineated. MicroRNA Current research has revealed that the influence of 

RNA molecules on gene expression reaches beyond the realm of protein synthesis back into 

the nucleus, where it not only dictates the transcriptional activity of genes, but also shapes 
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the chromatin architecture of extensive regions of DNA. Non-coding RNA, in the context of 

this review, refers to transcripts expressed and processed in the nucleus much like any 

protein coding gene, but lacking an open reading frame and often transcribed antisense to 

bona fide protein coding genes. Dysregulation of miRNAs might result in congenital heart 

disease in humans. Further studies of miRNAs in CHD are required. Epigenetics There is 

increasing evidence that epigenetic modifications, arising primarily through DNA 

methylation and histone modifications may have as important a role as genetics in certain 

diseases, such as cancer, birth defects, developmental disorders, and psychiatric disorders. 

Bioinformatics Unprecedented growth in the interdisciplinary domain of biomedical 

informatics reflects the recent advancements in genomic sequence availability, high-content 

biotechnology screening systems, as well as the expectations of computational biology to 

command a leading role in drug discovery and disease characterization. These forces have 

moved much of life sciences research almost completely into the computational domain. 

Human genome project has succeeded, and postgenome era is following. Human genome 

comprises 30, 000-40, 000 genes, but their functions, relation, interaction, and regulation 

remain unknown. Bioinformatics is a powerful and indispensable tool in exploring the 

molecular mechanisms of CHD [90, 91]. 

4. Conclusions 

Congenital heart disease (CHD) is the most common type of birth defect. Despite of the 

many advances in our understanding of cardiac development and many genes related to 

cardiac development identified, the fundamental etiology for the majority of cases of 

congenital heart disease remains unknown. CHD is a multifactorial complex disease, with 

environmental and genetic factors playing important roles. A number of causative genes of 

selected congenital heart defects and genetic syndromes have been found. The molecular 

mechanisms of CHD may include mutations in components of the cardiac gene network, 

altered haemodynamics, regulatory pathway of cardiac genes , microRNA dysfunction , 

epignetics, adult congenital heart diseases and so on. The molecular basis of CHD is an 

exciting and rapidly evolving field. The continuing advances in the understanding of the 

molecular mechanisms of CHD will hopefully result in improved genetic counseling and 

care of affected individuals and their families. 
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factor of activated T-cells, cytoplasmic, calcineurin-dependent 1; ß-catenin= catenin 
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(cadherin-associated protein), beta 1; TGF-ß= transforming growth factor, beta 1; EGF= 

epidermal growth factor (beta-urogastrone) ; erbB= v-erb-b2 erythroblastic leukemia viral 

oncogene homolog 2, neuro/glioblastoma derived oncogene homolog; NF1= neurofibromin 

1;MEF2= myocyte enhancing factor 2; Hand= transcription factor protein; RUNX2= runt-

related transcription factor 2; NOTCH= Notch homolog; Hesr1/Hey1= hairy/enhancer-of-

split related with YRPW motif 1; BAF60C= a subunit of chromatin-remodelling complex 

BAF; SMYD1= histone methyltransferase. 
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