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1. Introduction 

The ubiquitin proteasome system is responsible for the degradation of proteins involved in 
a wide range of cellular processes such as the cell cycle, apoptosis, transcription, cell 
signalling, immune response and antigen presentation. Protein homeostasis is essential for 
normal cell growth and inhibition of proteasome function has emerged as a viable strategy 
for anti-cancer treatment. The first proteasome inhibitor to enter clinical practice, 
bortezomib, was approved by the Food and Drug Administration as a single agent to treat 
relapsed/refractory Multiple Myeloma in 2003 and expanded to first-line treatment in 
combination with melphalan and prednisone in 2008. It is now a routine component of 
Multiple Myeloma therapy and has had a major impact on expanding treatment options in 
the last few years. Bortezomib exhibits novel action against Multiple Myeloma by targeting 
both intracellular mechanisms and interactions within the bone marrow environment. 
Although it demonstrates significant anti-Myeloma activity when used alone, it has been 
shown to have even greater benefits when used in combination with conventional and novel 
chemotherapeutic agents. There are currently over 200 clinical trials ongoing or recently 
completed examining bortezomib alone and in combination in various stages of disease and 
treatment. The clinical success of bortezomib has prompted the development of a number of 
second generation proteasome inhibitors with improved pharmacological properties. In this 
chapter, we review the development of bortezomib as a novel therapeutic agent in Multiple 
Myeloma and summarize the key observations from recently completed and ongoing 
studies on the effect of bortezomib both as a single agent and in combination therapies in 
the setting of newly diagnosed Multiple Myeloma and for relapsed disease. We also discuss 
the progress of next generation proteasome inhibitors in the clinic. 

2. The ubiquitin proteasome system 

The ubiquitin proteasome pathway represents the major pathway for intracellular protein 
degradation. It is responsible for the degradation of approximately 80% of cellular proteins, 
including misfolded and mutated proteins as well as those involved in the regulation of 
development, differentiation, cell proliferation, signal transduction, apoptosis and antigen 
presentation. Proteins are degraded by the ubiquitin proteasome pathway via two distinct 
and successive steps: the covalent attachment of multiple monomers of ubiquitin molecules 
to a protein substrate and degradation of the tagged protein by the 26S proteasome. Tagging 
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of a protein by ubiquitin requires the action of three classes of enzymes – ubiquitin 
activating enzyme (E1), ubiquitin conjugating enzyme (E2) and ubiquitin ligase (E3). A 
single E1 enzyme activates ubiquitin by forming a thiol ester bond between E1 and ubiquitin 
in an ATP-dependent step. Following activation, ubiquitin is then transferred to an active 
site residue within an E2 enzyme which shuttles ubiquitin either directly or in concert with 
an E3 enzyme to a lysine residue in the target protein. There are more than 30 different E2 
and over 500 E3 enzymes, which work in cooperation to confer exquisite substrate 
specificity to the ubiquitin proteasome pathway. The successive conjugation of ubiquitin 
moieties generates a polyubiquitin chain that acts as a signal to target the protein for 
degradation by the 26S proteasome (Figure 1a). 

The 26S or constitutive proteasome is found in the nucleus and cytoplasm of all eukaryotic 
cells. It is composed of a core 20S particle capped with a 19S structure at each end. The 20S 
catalytic core is made up of 28 subunits arranged into four stacked rings, creating a central 
chamber where proteolysis occurs. The two outer rings are composed of 7 different ǂ 
subunits, which are predominantly structural and the two inner rings are composed of 7 
different ǃ subunits, at least three of which contain catalytic sites (Groll et al., 1997). 
Catalytic activities of the proteasome are classified into three major categories, based upon 
preference to cleave a peptide bond after a particular amino acid residue. These activities are 
referred to as chymotrypsin-like, trypsin-like and caspase-like and are associated with ǃ5, ǃ2 
and ǃ1 subunits respectively. The chymotrypsin-like activity cleaves after hydrophobic 
residues, the trypsin-like activity cleaves after basic residues and the caspase-like activity 
cleaves after acidic residues (Groll et al., 1999; Heinemeyer et al., 1997). Substrates gain 
access to the proteolytic chamber by binding to the 19S regulatory particle at either end of 
the 20S proteasome. Polyubiquitin-tagged proteins are recognised by the 19S particle, where 
ubiquitin is cleaved off and recycled and the target protein is unfolded and fed into the 20S 
catalytic chamber (Groll et al., 2000; Navon & Goldberg, 2001). An alternative proteasome 
isoform known as the immunoproteasome can be formed in response to cytokine signalling. 
Interferon-Ǆ and tumour necrosis factor – ǂ induce the expression of a different set of 
catalytic ǃ-subunits and regulatory cap to form the immunoproteasome. Subunits ǃ1i 
(LMP2), ǃ2i (MECL1) and ǃ5i (LMP7) replace constitutive subunits ǃ1, ǃ2 and ǃ5 and the 
19S regulatory cap is replaced with an 11S regulatory structure (Figure 1b). These 
modifications allow the immunoproteasome to generate antigenic peptides for presentation 
by the major histocompatability (MHC) class 1 mediated immune response (Rock & 
Goldberg, 1999). The expression of the immunoproteasome appears to be tissue specific and 
is particularly abundant in immune-related cells. Immunoproteasomes are highly expressed 
in haemopoietic tumours such as Multiple Myeloma. 

3. Proteasome inhibitors as drug candidates 

As the ubiquitin proteasome pathway plays a critical role in regulating many cellular 

processes, it is not surprising that defects within this pathway have been associated with a 

number of pathologies, including neurodegenerative diseases and cancer. Proteasome 

inhibitors were initially synthesized as in vitro probes to investigate the function of the 

proteasome’s catalytic activity. However, as the essential role of the proteasome in cell 

function was established, the proteasome emerged as an attractive target for cancer therapy. 

Early studies showed that proteasome inhibitors induced apoptosis in leukaemic cell lines 
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Fig. 1. a. Ubiquitin proteasome pathway mediated degradation. b. Proteasome composition. 

(Imajoh-Ohmi et al., 1995; Shinohara et al., 1996; Drexler, 1997) and were active in an in vivo 

model of Burkitt’s lymphoma (Orlowski et al., 1998). Further in vitro investigations 

demonstrated that proteasome inhibitors displayed a broad spectrum anti-proliferative and 

pro-apoptotic activity against haematological and solid tumours. While these studies 
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established the potential of proteasome inhibitors as anti-cancer agents, many of the 

compounds available were limited to laboratory studies due to a relative lack of potency, 

specificity or stability. This led to the development of a series of dipeptide boronic acids, 

which were more potent and selective than many previously available inhibitors. These 

inhibitors were screened in vitro against the National Cancer Institute’s panel of cancer cell 

lines and on the basis of its cytotoxicity, the compound bortezomib (PS-341, Velcade®) was 

brought forward for further testing.  

4. Mechanisms of action of bortezomib in multiple myeloma 

Bortezomib is a reversible proteasome inhibitor, primarily of the chymotrypsin-like activity of 
both the constitutive (ǃ5) and immunoproteasome (LMP7) (Lightcap et al., 2000; Crawford et 
al., 2006). Initial in vitro evaluation of bortezomib demonstrated that it induced an 
accumulation of intracellular proteins, leading to G2-M arrest and then apoptosis through dual 
activation of caspase – 8 and caspase - 9 (Adams et al., 1999, Mitsiades et al., 2002). 
Importantly, bortezomib was also demonstrated to be significantly more toxic to Multiple 
Myeloma tumour cells than to normal counterparts. Hideshima et al. (2001) demonstrated that 
Multiple Myeloma cell lines and primary patient cells were 20-40 times more sensitive to 
bortezomib-induced apoptosis than bone marrow or peripheral blood mononuclear cells from 
healthy donors. Another novel aspect for bortezomib in Multiple Myeloma was that it was 
found to act not only on the Multiple Myeloma cells themselves but also on the protective 
bone marrow microenvironment. In addition, inhibition of proteasome function was found to 
both sensitize tumour cells to conventional chemotherapy and to overcome chemotherapy 
resistance. Finally, studies in murine xenograft models demonstrated that bortezomib 
significantly inhibited Multiple Myeloma cell growth and angiogenesis and prolonged 
survival (Leblanc et al., 2002). The main mechanisms attributed to bortezomib-induced 
apoptosis in Multiple Myeloma are outlined below. 

4.1 NFκB 

One of the first mechanisms of action attributed to bortezomib in Multiple Myeloma was 
inhibition of the inflammation associated transcription factor NFκB. NFκB, is constitutively 
activated in Multiple Myeloma and plays an important role in cell survival, proliferation 
and resistance to cytotoxic agents. NFκB is bound to its inhibitor IκB in the cytoplasm and is 
activated by proteasomal degradation of IκB. When activated, this transcription factor 
induces the expression of cell adhesion molecules (e.g. vascular cell adhesion molecule) and 
anti-apoptotic proteins (e.g. Bcl-2 and XIAP) and increases interleukin-6 production in bone 
marrow stromal cells. There are two pathways which activate NFκB, known as the canonical 
(or classical) pathway and the alternative non-canonical pathway (Gilmore, 2006). Inhibition 
of proteasome activity was demonstrated to prevent degradation of IκB and subsequent 
activation and translocation of NFκB to the nucleus to activate downstream pathways 
(Hideshima et al., 2001; Russo et al., 2001; Sunwoo et al., 2001). However, recent studies are 
challenging the concept that proteasome inhibitors inhibit NFκB activation and suggest that 
bortezomib may actually activate upstream NFκB activating kinases via the canonical 
pathway and increase NFκB activity (Markovina et al., 2008; Hideshima et al., 2009). In 
contrast, Chauhan et al. (2011) recently assessed the action of the second generation 
proteasome inhibitor MLN2238 on NFκB and report that this compound inhibits both the 
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canonical and non-canonical pathways of activation. As MLN2238 is structurally distinct 
from bortezomib, this suggests that different proteasome inhibitors may exert differential 
effects on the NFκB pathway by blocking either one or both pathways of activation.  

4.2 Apoptosis 

Apoptosis is regulated by the opposing activities of pro-apoptotic and anti-apoptotic 
molecules. Cancer cells often have disregulated apoptotic signalling pathways with 
increased levels of anti-apoptotic proteins which provide a survival advantage and confer 
resistance to chemotherapeutic agents. Inhibition of proteasome activity by bortezomib is 
associated with an upregulation of pro-apoptotic factors such as p53, Bik, BIM and NOXA 
and a related decrease in anti-apoptotic proteins such as Bcl-XL and Bcl-2. Induction of 
NOXA has been reported to be a key mechanism in bortezomib-mediated apoptosis which 
is independent of p53 status but dependent on c-Myc (Qin et al., 2005; Gomez-Bougie et al., 
2007; Nikiforov et al., 2007; Fennell et al., 2008). Bortezomib-mediated apoptosis is 
accompanied by induction of c-Jun-NH2 terminal kinase, generation of reactive oxygen 
species, release of cytochrome c, second mitochondria-derived activator of caspases and 
apoptosis-inducing factor and activation of the intrinsic caspase-8 pathway and extrinsic 
caspase-9 pathway.  

4.3 Unfolded protein response 

The endoplasmic reticulum plays a central role in protein homeostasis. Proteins are 

processed and folded in the lumen of the endoplasmic reticulum and misfolded proteins are 

returned to the cytosol and degraded in the proteasome. Multiple Myeloma cells have a 

high rate of protein synthesis and this is inherently associated with a high level of misfolded 

proteins. Accumulation of misfolded proteins in the endoplasmic reticulum triggers the 

Unfolded Protein Response. This process is mediated through three endoplasmic reticulum 

transmembrane receptors: ATF6, IRE1 and PERK. In resting cells the endoplasmic reticulum 

chaperone BiP (GRP 78) maintains these receptors in a resting state; BiP becomes dissociated 

from the endoplasmic reticulum receptors when unfolded proteins accumulate and triggers 

the Unfolded Protein Response. 

It has been recognised for some time that bortezomib can induce the Unfolded Protein 
Response in Multiple Myeloma cells and that this contributes to its pro-apoptotic activity 
(Obeng et al., 2006; Meister et al., 2007). Numerous studies have now shown that treatment 
of Multiple Myeloma cell lines in vitro with bortezomib triggers activation of ATF6, IRE 1 
and PERK (Davenport et al., 2007; Gu et al., 2008; Dong et al., 2009). Caspase 2 is believed to 
act upstream of mitochondrial signalling in this bortezomib ER stress- induced apoptosis 
(Gu et al., 2008). Similar mechanisms have been implicated in mantle cell lymphoma cell 
lines (Rao et al., 2010; Roue et al., 2011). It is clear that a greater understanding of the 
Unfolded Protein Response is fundamental to allow the rational development of 
combination therapies (Kawaguchi et al., 2011). 

4.4 Bone marrow microenvironment 

Interactions between Multiple Myeloma cells and bone marrow stroma regulate the growth 
and survival of Myeloma cells and play a critical role in angiogenesis, bone disease and 
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drug resistance. The success of bortezomib in Multiple Myeloma has been attributed not 
only to direct effects on Myeloma cells but also its effect on the bone marrow 
microenvironment. Vascular cell adhesion molecule-1 is a major ligand on bone marrow 
stromal cells that mediates binding of Multiple Myeloma cells via the cell surface molecule 
very late antigen-4. Early studies on proteasome inhibitors demonstrated that they 
downregulate cytokine-induced expression of vascular cell adhesion molecule-1 (Read et al., 
1995). Hideshima et al., (2001) subsequently reported that treatment with bortezomib 
decreased binding of Myeloma cells to bone marrow stromal cells by 50% and consequently 
inhibited the related upregulation of interleukin-6 secretion and paracrine tumour growth.  

Bortezomib has also been demonstrated to have both direct and indirect effects on 
angiogenesis. Initial studies found that bortezomib treatment decreased the secretion of 
vascular endothelial growth factor from Myeloma cells, thereby decreasing vasculogenesis 
and angiogenesis (Nawrocki et al., 2002). More recent studies using functional assays 
including chemotaxis, adhesion to fibronectin and capillary formation demonstrated that 
bortezomib has direct anti-proliferative effects on vascular endothelial cells. Tamura et al. 
(2010) demonstrated that bortezomib potently inhibits cell growth of vascular endothelial 
cells by suppressing the G2/M transition of the cell cycle and increasing permeability, thus 
acting as a vascular targeting drug.  

A critical role of the bone marrow microenvironment in the efficacy of bortezomib in 
Multiple Myeloma was further established by Edwards et al. (2009). In vivo studies 
demonstrated that bortezomib had a greater effect on tumour burden when Myeloma cells 
were grown in the bone marrow of mice than when they were grown at sub-cutaneous sites. 

4.5 Bortezomib and bone formation 

Osteolytic lesions characterised with activated osteoclast activity accompanied with a 

reduction in osteoblast activity are a major feature of Multiple Myeloma. Bortezomib 

exhibits important effects on the development and progression of Myeloma-associated bone 

disease by reducing osteoclast activity and increasing osteoblast function, therefore 

reducing bone resorption and stimulating new bone formation. Both preclinical and clinical 

analysis have demonstrated that bortezomib exerts these effects in part by inhibiting 

dickkopf-1 and receptor activator of nuclear factor-kappa B ligand and increasing levels of 

alkaline phosphatase and osteocalcin (Terpos et al., 2006; Heider et al., 2006; Giuliani et al., 

2007). However, a recent study by Lund and colleagues (2010) found that the combination of 

a glucocorticoid such as dexamethasone with bortezomib could inhibit the positive effects of 

bortezomib on osteoblast proliferation and differentiation, suggesting that bortezomib may 

result in better healing of osteolytic lesions when used without a glucocorticoid.  

4.6 Gene expression studies 

While a number of mechanisms of action of bortezomib have been outlined above, the full 
mechanism of bortezomib-induced cytotoxicity remains to be elucidated. Gene expression 
studies have been employed to try and increase our understanding of the cytotoxic action of 
this compound in Multiple Myeloma. Mitsiades et al., (2002) performed gene expression 
profiling in a Multiple Myeloma cell line and demonstrated that bortezomib resulted in a 
downregulation of growth and survival signalling pathways and upregulation of molecules 
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implicated in pro-apoptotic cascades, as well as upregulation of heat shock proteins and 
ubiquitin proteasome pathway members. Chen et al. (2010) performed a genome-wide 
siRNA screen in malignant cell lines to evaluate the genetic determinants that confer 
sensitivity to bortezomib. They found that bortezomib promotes apoptosis primarily by 
disregulating Myc and polyamines, interfering with protein translation and disrupting DNA 
damage repair pathways. More recently, Takeda and colleagues (2011) investigated genes 
affecting the toxicity of bortezomib in the fission yeast S. pombe and identified factors 
involved in the ubiquitin proteasome pathway, chromatin silencing, nuclear/cytoplasmic 
transportation, amino acid metabolism and vesicular trafficking. Gene expression profiling 
of Multiple Myeloma patients found that treatment with bortezomib resulted in an 
upregulation of proteasome genes and that high levels of the proteasome subunit PSMD4 
was associated with an inferior prognosis (Shaughnessy et al., 2011). Further investigation 
into fully understanding the mechanism of action of bortezomib will help to identify 
therapeutic strategies to overcome resistance to bortezomib and to identify agents to 
enhance its efficacy.  

5. Clinical use of bortezomib in Multiple Myeloma 

5.1 Bortezomib therapy for relapsed or refractory Multiple Myeloma 

Following encouraging preclinical results bortezomib was introduced into clinical trials to 
test for safety and efficacy in relapsed and refractory Multiple Myeloma. These studies 
established that bortezomib was effective and well-tolerated in Multiple Myeloma and led 
to approval of bortezomib in patients that had undergone at least two prior therapies. The 
incorporation of bortezomib into the treatment options for Myeloma represented a 
significant milestone as being the first proteasome inhibitor to be implemented into clinical 
use and also as the first novel therapy for Multiple Myeloma in over a decade. The main 
findings of the trials are outlined below. 

Phase 1 

Orlowski et al. (2002) conducted a Phase 1 trial evaluating the pharmacodynamics of 

bortezomib, along with toxicity and clinical responses in 27 patients with advanced 

refractory haematological malignancies. This study demonstrated that bortezomib could be 

safely administered, with a tolerable side-effect profile. There was significant evidence of 

anti-tumour activity in patients with Multiple Myeloma, with all 9 evaluable Multiple 

Myeloma patients showing some evidence of clinical benefit, including one complete 

response. Taken together with preclinical data this provided the rationale for Phase 2 clinical 

trials with bortezomib for the treatment of relapsed, refractory Myeloma. 

Phase 2 

The activity of bortezomib in relapsed and refractory Multiple Myeloma was confirmed 
with two Phase 2 trials, SUMMIT and CREST. SUMMIT (Study of Uncontrolled Multiple 
Myeloma managed with proteasome Inhibition Therapy) was a large multi-centre trial that 
enrolled 202 heavily pre-treated patients (Richardson et al., 2003). An overall response rate 
of 35% was achieved, including 10% of patients who achieved a complete or near complete 
response. Median time to progression was 7 months compared with 3 months on previous 
therapy. Grade 3 toxicities included cyclical thrombocytopenia, fatigue, peripheral 
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neuropathy and neutropenia. Of these, the most clinically significant was peripheral 
neuropathy. The CREST (Clinical Response and Efficacy Study of PS-341 in the Treatment of 
relapsing Multiple Myeloma) trial was a smaller multicentre study that enrolled 54 patients 
with only one prior treatment (Jagannath et al., 2004). Patients were randomized to receive 
1.0 or 1.3 mg/m2 bortezomib. The overall response rates were 30% for patients receiving 1.0 
mg/m2 and 38% for patients receiving 1.3 mg/m2. Adverse effects were similar to those seen 
in SUMMIT, however, less peripheral neuropathy was seen with reduced dose used in 
CREST. These findings led to the approval of bortezomib by the Food and Drug 
Administration and European Medicines Agency for relapsed/refractory Multiple Myeloma 
patients that had at least 2 prior therapies (Kane et al., 2006). Bortezomib was the first new 
therapy approved for Multiple Myeloma for over a decade.  

Phase 3 

APEX (Assessment of Proteasome inhibition for EXtending remissions) was a Phase 3 study 
of 668 patients with relapsed and refractory Multiple Myeloma after one to three prior 
treatments, who were randomized to receive either bortezomib or high-dose dexamethasone 
(Richardson et al., 2005). Bortezomib induced a better overall response rate than 
dexamethasone (38% vs. 18%), including a 13% vs. 2% complete or near complete response. 
Median time to progression for bortezomib was 6.22 months vs. 3.49 months for 
dexamethasone and overall survival was 29.3 months vs. 23.7 months. The adverse events 
were similar to those observed previously, however the rates of adverse events were higher 
for bortezomib.  

5.2 Bortezomib-based combination therapy in relapsed or refractory Multiple Myeloma 

Early preclinical work demonstrated that bortezomib sensitized Myeloma cells to other 
chemotherapeutic agents and this prompted clinical investigation of bortezomib-based 
combination therapies in relapsed or refractory Multiple Myeloma. Dexamethasone was the 
first agent to be combined with bortezomib in the clinic and is the most common agent to be 
used in bortezomib-based combinations. Both preclinical data and clinical trials showed that 
the combination increased anti-Myeloma activity. Data from the SUMMIT and CREST trials 
demonstrated additional responses in 18% and 33% of patients who received both drugs, 
including patients who had previously been refractory to dexamethasone. Bortezomib has 
since been demonstrated to enhance the activity of many chemotherapeutic agents in 
Multiple Myeloma, demonstrating promising response rates in early clinical trials 
(summarized in Table 1). Larger Phase 3 trials will be required to confirm response and 
survival to these combinations.  

5.3 Bortezomib–based combinations with novel therapies 

The increased understanding of intracellular pathways that are involved in the proliferation 
and survival of Myeloma cells has led to the identification of novel targets for therapeutic 
intervention. Numerous small molecule inhibitors have been developed in recent years, 
targeted against key cellular proteins or signalling pathways that may enhance the anti-
tumour effect of bortezomib, or overcome resistance to bortezomib. These novel small 
molecule compounds include heat shock protein 90 inhibitors, histone deacetylase inhibitors, 
farnesyltransferase inhibitors, Bcl-2 inhibitors, monoclonal antibodies and a number  
of different kinase inhibitors. Many of these novel agents have demonstrated  
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Combination Study  Overall 
Response 

Reference 

Bortezomib & alvocidib Phase 1 44% Holkova et al., 2011 

Bortezomib & tanespimycin Phase 1 27% Richardson  
et al., 2011 

Bortezomib, doxorubicin & intermediate 
dose dexamethasone 

Phase 1  Takamatsu  
et al., 2010 

Bortezomib, cyclophosphamide, thalidomide 
& dexamethasone 

Phase 1 88% Kim et al., 2010 

Bortezomib & vorinostat Phase 1 42% Badros et al., 2009 

Bortezomib & samarium lexidronam Phase 1 21% Berenson et al., 
2009a 

Bortezomib & temsirolimus Phase 1/2 33% Ghobrial  
et al., 2011 

Bortezomib, low dose melphalan & 
dexamethasone 

Phase 1/2 76% Popat et al., 2009 

Bortezomib, arsenic trioxide & ascorbic acid Phase 1/2 27% Berenson  
et al., 2007 

Bortezomib, melphalan, prednisone & 
thalidomide 

Phase 1/2 67% Palumbo et al., 2007 

Bortezomib & melphalan Phase 1/2 68% Berenson  
et al., 2006 

Bortezomib, pegylated liposomal 
doxorubicin & thalidomide 

Phase 2 55% Chanan-Khan  
et al., 2009 

Bortezomib, thalidomide & dexamethasone Phase 2  Pineda-Roman  
et al., 2008 

Bortezomib, melphalan, dexamethasone & 
intermittent thalidomide 

Phase 2 66% Terpos et al., 2008 

Bortezomib, dexamethasone & 
cyclophosphamide 

Phase 2 90% Kropff et al., 2007 

Table 1. Bortezomib-based combination therapy for relapsed/refractory Multiple Myeloma. 

synergistic activity with bortezomib in preclinical studies and are under evaluation in early 
clinical trials in combination with bortezomib.  

5.3.1 Heat shock protein 90 inhibitors 

Heat shock protein 90 is a chaperone that stabilizes numerous proteins that contribute to 

tumour cell survival and proliferation. Inhibition of heat shock protein 90 in Myeloma cells 

results in decreased expression of insulin-like growth factor-1 and interleukin-6 receptors, 

with a related decrease in the PI3K/Akt signalling pathway. Preclinical studies with the 

heat shock protein 90 inhibitor tanespimycin in combination with bortezomib demonstrated 

a synergistic effect and resulted in enhanced accumulation of ubiquitinated proteins 

(Mitsiades et al., 2006). A Phase 1 clinical trial of bortezomib in combination with 

tanespimycin demonstrated significant and durable responses (Richardson et al., 2011) and 

a study of bortezomib in combination with KW-2478 is underway (NCT01063907). 

www.intechopen.com



 
Multiple Myeloma – An Overview 

 

12

5.3.2 Histone deactylase inhibitors 

Ubiquitinated and misfolded proteins are degraded not only by proteasomes but also by 
aggresomes. Aggresome formation, which is dependent on the histone deacetylase 
HDAC6, is increased in response to inhibition of proteasome function. Histone 
deacetylase inhibitors are a class of compounds that regulate gene expression by 
interfering with the function of histone deacetylases. Preclinical studies demonstrated that 
the combination of bortezomib with a HDAC inhibitor resulted in significant cytotoxicity 
and show a marked accumulation of polyubiquitinated proteins (Catley et al., 2006; 
Nawrocki et al., 2008). A Phase 1 trial of bortezomib and vorinostat in relapsed/refractory 
myeloma demonstrated encouraging results, with an overall response rate of 42%, 
including 3 responses among 9 bortezomib refractory patients (Badros et al., 2009). 
Further trials of bortezomib along with HDAC inhibitors vorinostat and panobinostat are 
currently being investigated. 

5.3.3 Farnesyltransferase inhibitors 

Farnesyltransferase inhibitors block activation of the Ras dependent MAPK signalling 
pathway to regulate signal transduction and proliferation. Combination of the 
farnesyltranserase inhibitors lonafarnib and tipifarnib with bortezomib induced synergistic 
cell death and overcame cell adhesion-mediated drug resistance in Multiple Myeloma cell 
lines and primary cells (David et al., 2005; Yanamandra et al., 2006). David and colleagues 
(2005) observed that this combination resulted in a down-regulation of Akt signalling, an 
effect which was absent when either drug was used alone. Early phase clinical trials 
evaluating bortezomib and tipifarnib combination therapy are ongoing (NCT00243035; 
NCT00972712). 

5.3.4 Bcl-2 inhibitors 

Bcl-2 family members play a critical role in mediating tumour cell survival and 
chemoresistance in Multiple Myeloma. There are a number of small molecule inhibitors 
available that interfere with the function of Bcl-2 proteins and induce apoptosis in Multiple 
Myeloma cells. In preclinical studies, three Bcl-2 inhibitors obatoclax, ABT-737 and ABT-263 
have shown synergistic activity with bortezomib (Chauhan et al., 2007; Trudel et al., 2007; 
Ackler et al., 2010). The combination of bortezomib with a Bcl-2 inhibitor resulted in 
enhanced NOXA-mediated activation of Bak and increased activation of the mitochondrial 
apoptotic pathways. Obatoclax is being investigated in combination with bortezomib in 
early clinical trials (NCT00719901).  

5.3.5 Monoclonal antibodies 

Monoclonal antibody therapy can selectively target specific molecules, proteins or receptors 

involved in disease processes. There are a number of antigens currently under investigation 

as potential targets in Multiple Myeloma in combination with bortezomib. Bevacizumab is a 

monoclonal antibody that is targeted towards vascular endothelial growth factor to disrupt 

angiogenensis (Brekken et al., 2000). The combination of bevacizumab and bortezomib is 

being evaluated in Phase 2 studies for relapsed Myeloma (NCT00464178). Interleukin-6, a 

key intermediate in Multiple Myeloma signalling pathways, is targeted by the chimeric 
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antibody siltuximab. Preclinical evaluation of siltuximab and bortezomib demonstrated 

enhanced cytotoxicity of bortezomib in Myeloma cell lines and primary cells in the presence 

of bone marrow stromal cells (Voorhees et al., 2007). A Phase 2 trial is evaluating this 

combination in relapsed Myeloma (NCT00401843). Elotuzumab is directed towards CS1, a 

cell surface glycoprotein expressed at high levels on Multiple Myeloma cells. This anti-CS1 

antibody demonstrated significantly enhanced anti-tumour activity in combination with 

bortezomib in in vitro and in vivo models of Myeloma (van Rhee et al., 2009) and Phase 1/2 

trials are underway (NCT00726869). AVE1642 is an anti-insulin-like growth factor 1 

antibody that demonstrated synergistic apoptosis in combination with bortezomib in 

preclinical studies (Descamps et al., 2009), however, response rates from a Phase 1 study 

were insufficient to warrant further investigation (Moreau et al., 2011). Early phase clinical 

trials combining bortezomib with anti-chemokine receptor 4 and anti-CD40 antibodies are 

also underway (NCT01359657 and NCT00664898).  

5.3.6 Mammalian target of rapamycin inhibitor 

Mammalian target of rapamycin (mTOR) inhibitors inhibit the mTOR kinase and related 

signalling pathways resulting in decreased expression of cyclins and c-Myc, increased 

expression of p27 and G1 arrest. In vitro studies have demonstrated synergistic action of the 

mTOR inhibitors NVP-BEZ235 and pp242 with bortezomib (Baumann et al., 2009; Hoang et 

al., 2010). A Phase 1/2 study of bortezomib in combination with mTOR inhibitor 

temsirolimus demonstrated a partial response rate of 33% in heavily pre-treated refractory 

Myeloma (Ghobrial et al., 2011). 

5.3.7 Cyclin-dependent kinase inhibitors 

Cyclin-dependent kinase inhibitors are small molecule inhibitors that induce cell cycle 

arrest. Cyclin dependent kinase inhibitors (seliciclib and alvocidib) were shown to be 

synergistic with proteasome inhibitors in leukaemic cell lines (Dai et al., 2003, 2004). A 

subsequent study demonstrated that the cyclin dependent kinase inhibitor PD0332991 

sensitizes an in vivo Multiple Myeloma model to bortezomib through enhanced induction of 

mitochondrial depolarization (Menu et al., 2008). A combination of bortezomib along with 

the cyclin dependent kinase inhibitor alvocidib (flavopiridol) was recently assessed in a 

Phase 1 trial for refractory B-cell malignancies and demonstrated an overall response rate of 

44% with manageable toxicities (Holkova et al., 2011). 

5.3.8 Akt inhibitors 

Perifosine is an alkylphospholipid that inhibits Akt activation and associated growth and 

drug resistance in Multiple Myeloma. As a single agent, perifosine demonstrated significant 

toxicity both in vivo and in vitro and it has also been shown to inhibit bortezomib-induced 

upregulation of survivin resulting in enhanced bortezomib cytotoxicity (Hideshima et al., 

2007). Perifosine is currently being evaluated in a Phase 1/2 study in combination with 

bortezomib with or without dexamethasone in relapsed Myeloma (NCT00401011) and a 

Phase 3 study of perifosine in combination with bortezomib and dexamethasone is currently 

recruiting (NCT01002248).  
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5.3.9 Multi-kinase inhibitors 

Sorafenib and dasatinib are multi-kinase inhibitors that have been shown to enhance anti-
Myeloma activity with bortezomib. Sorafenib inhibits RAF kinase, VEGF receptors, platelet-
derived growth factor ǃ, Flt-3, c-Kit and RET receptor tyrosine kinases. The combination of 
sorafenib and bortezomib produced synergistic apoptosis in a number of malignant cell 
lines and was dependent on Akt inhibition (Yu et al., 2006). This combination is currently 
being investigated in a Phase 1/2 trial in relapsed Myeloma (NCT00536575). Dasatinib is an 
inhibitor of c-abl, src family proteins, EphA2 and btk. The triple combination of dasatinib 
along with bortezomib and dexamethasone produced greater synergistic effects compared 
to single agents or double combinations in Multiple Myeloma cell line models and primary 
cells (de Queiroz Crusoe et al., 2011). A Phase 1 study combining all three agents in relapsed 
or refractory Myeloma has recently been completed (NCT00560352). 

5.3.10 Other combinations  

The combination of bortezomib with second generation immunomodulatory drug 
pomalidomide (NCT01212952), telomerase inhibitor GRN163L (NCT00718601), aurora A 
kinase inhibitor MLN8237 (Gorgun et al., 2010; NCT01034553), p38 mitogen-activated kinase 
inhibitor SCIO-469 (Navas et al., 2006; NCT00095680) and protease inhibitor nelfinavir 
mesylate (NCT01164709) are all being evaluated in early clinical trials. In addition there are 
numerous more novel targeted therapies under preclinical assessment in combination with 
proteasome inhibitors.  

5.4 Bortezomib in front-line therapy 

For over 40 years melphalan and prednisone was the standard therapy for patients with 

newly diagnosed Multiple Myeloma that were ineligible for high-dose therapy and 

autologous stem cell transplantation. Following encouraging activity of bortezomib 

combined with melphalan in patients with relapsed or refractory Myeloma, bortezomib plus 

melphalan and prednisone was evaluated in a Phase 1/2 trial for newly diagnosed Myeloma 

patients who were at least 65 years of age. The combination gave a response rate of 89% and 

a median time to progression of 27 months. This led to the Phase 3 trial VISTA (Velcade as 

Initial Standard Therapy in Multiple Myeloma), which compared bortezomib, melphalan 

and prednisone with melphalan and prednisone in newly diagnosed Myeloma patients who 

were ineligible for high-dose therapy. Results of this trial demonstrated that when 

bortezomib was included in the regimen the overall response rate increased from 30% to 

71% and the time to progression was 24 months compared with 16.6 months (San Miguel et 

al., 2008). There was also fewer bone disease events, improvement in bone remodelling and 

evidence of bone healing. These results suggested a benefit for bortezomib at earlier use and 

provided the framework for approval of bortezomib for use as front-line therapy. 

In newly diagnosed patients who were candidates for high-dose therapy with autologous 
stem cell transplantation, the combination of vincristine, doxorubicin and dexamethasone 
was the standard induction therapy. Four randomized trials evaluated the role of 
bortezomib–based combinations for induction therapy in transplant candidates. Bortezomib 
was combined with dexamethasone (Harousseau et al., 2010), with adriamycin and 
dexamethasone (Popat et al., 2008), with thalidomide and dexamethasone (Cavo et al., 2010) 
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and with thalidomide, dexamethasone and chemotherapy (Barlogie et al., 2007). The 
bortezomib-based combinations all demonstrated superior response rates than the regimens 
without bortezomib. A number of other combinations incorporating bortezomib for both 
transplant eligible and ineligible patients are in clinical trials and are achieving overall 
response rates of up to 100% (Table 2).  

 

Combination Study Phase Overall 
Response 

Reference 

Bortezomib, thalidomide & 
chemotherapy 

Phase 1 83% Badros et al., 2006 

Bortezomib, dexamethasone, 
cyclophosphamide & lenalidomide 

Phase 1 96% Kumar et al., 2010 

Bortezomib, doxorubicin & 
dexamethasone 

Phase 1/2 89/95% Popat et al., 2008 

Bortezomib, lenalidomide & 
dexamethasone 

Phase 1/2 100% Richardson et al., 2010 

Bortezomib, melphalan & prednisone Phase 1/2 95% Gasparetto et al., 2010 

Bortezomib & melphelan Phase 1/2 87% Lonial et al., 2010 

Bortezomib, lenanlidomide, 
pegylated liposomal doxorubicin & 
dexamethasone 

Phase 1/2 96% Jakubowiak et al., 2011 

Bortezomib & dexamethasone Phase 2 66% Harousseau et al., 2006 

Alternating bortezomib & 
dexamethasone 

Phase 2 68% Rosinol et al., 2007 

Bortezomib, cyclophosphamide & 
dexamethasone  

Phase 2 88% Reeder et al., 2009 

Bortezomib, ascorbic acid & 

melphalan 

Phase 2 74% Berenson et al., 2009b 

Bortezomib, pegylated liposomal 

doxorubicin & dexamethasone 

Phase 2 85% Jakubowaik et al., 2009 

Bortezomib & high dose melphalan Phase 2 70% Roussel et al., 2010 

Bortezomib, cyclophosphamide & 

dexamethasone 

Phase 2 95% Besinger et al., 2010 

Bortezomib & dexamethasone Phase 2 86% Corso et al., 2010 

Vincristine, adriamycin & 

dexamethasone followed by 

bortezomib, thalidomide & 

dexamethasone 

Phase 2 75% Kim et al., 2011 

Bortezomib & thalidomide Phase 2 82% Ghosh et al., 2011 

Bortezomib, pegylated liposomal 

doxorubicin & thalidomide 

Phase 2 78% Sher et al., 2011 

Bortezomib, thalidomide & 

dexamethasone 

Phase 3 31% Cavo et al., 2010 

Bortezomib & dexamethasone Phase 3 79% Harousseau et al., 2010 

Table 2. Bortezomib-based combinations for induction and front-line therapy. 
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6. Resistance to bortezomib 

Despite the clinical success of bortezomib, many patients with Multiple Myeloma are 
unresponsive and drug resistance can also develop (Dispenzieri et al., 2010). The 
mechanisms underlying this drug resistance, both intrinsic and acquired, are as yet poorly 
understood. 

Resistance to proteasome inhibitors may occur either at the level of the proteasome complex 
or in the downstream signalling pathways. Several researchers have approached this 
problem by growing cell lines in increasing concentration of bortezomib. Ri et al. (2010) 
found a unique point mutation in the proteasome ǃ5 subunit (PSMB5) in bortezomib 
resistant Multiple Myeloma cell lines. Using overexpression studies they demonstrated that 
the mutation may act by interfering with the Unfolded Protein Response pathway. 
Shaughnessy and colleagues have recently applied gene expression studies to a group of 142 
Multiple Myeloma patients and identified PSMD4 as associated with adverse response to 
bortezomib; PSMD4 is one of the non-ATPase subunits of the proteasome 19S regulator 
(Shaughnessy et al., 2011). 

The anti-tumour effects of bortezomib have been mainly attributed to its’ actions on the 
NFκB and Bcl-2 regulatory protein pathways. It is not therefore surprising that 
polymorphisms of the NFκB family genes have been associated with treatment outcome in 
Multiple Myeloma patients. Studies with lymphoid cell lines have recently shown 
Noxa/Bcl-2 interactions contribute to bortezomib resistance (Smith et al., 2011) and there 
have been similar reports in Mantle Cell Lymphoma cell lines (Weniger et al., 2011); there is 
no supporting clinical evidence as yet. Overexpression of apoptosis regulators REDD1 and 
survivin have also been associated with bortezomib resistance in cell line models (Decaux et 
al., 2010; Ling et al., 2010). 

In cases where drug resistance is directly associated with the proteasome enzymatic 
complex it may be possible to overcome resistance by using second generation inhibitors 
which act through a different mechanism to bortezomib (Ruschak et al., 2011; Arastu-Kapur 
et al., 2011; Chauhan et al., 2011). Knowledge of the resistance mechanism may also allow 
rational design of future combination therapies. 

7. Second generation inhibitors 

The success of bortezomib in the clinic prompted the development of a new generation of 

structurally distinct proteasome inhibitors. In addition to bortezomib, there are currently 

five proteasome inhibitors in clinical development, representing three different structural 

classes - peptide boronic acids, peptide epoxyketones and ǃ-lactones (Figure 2). These 

inhibitors bind either reversibly or irreversibly to catalytic sites within the proteasome. 

7.1 Carfilzomib 

Epoxomicin, a member of the epoxyketone family of natural peptide proteasome inhibitors, 
inhibits proteasome activity through a unique mechanism, by binding to both the hydroxyl 
and amino groups of the catalytic site threonine residue (Groll & Huber, 2004). Carfilzomib 
(formerly PR-171) is an epoxomicin-based proteasome inhibitor, with improved 
pharmaceutical properties. Unlike bortezomib, carfilzomib binds irreversibly to the 
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chymotrypsin-like (ǃ5 and LMP7) subunit, leading to more sustained proteasome inhibition. 
In preclinical studies carfilzomib was shown to exhibit equal potency but greater selectivity 
than bortezomib for the chymotrypsin-like activity. In vitro and in vivo studies demonstrated 
anti-tumour activity, tolerability and dosing flexibility in several xenograft models (Kuhn et 
al., 2007; Demo et al., 2007). Carfilzomib has also been shown to act synergistically with 
histone deacetylase inhibitors in vitro in lymphoma and leukaemia (Fuchs et al., 2009; 
Dasmahapatra et al., 2010; 2011). Results from Phase 1 studies in patients with 
haematological malignancies demonstrated that carfilzomib was well tolerated and may 
exhibit less peripheral neuropathy than bortezomib (O’Connor et al., 2009). Phase 2 trials of 
carfilzomib as a single agent in relapsed and refractory Multiple Myeloma demonstrated an 
overall response rate of 35.5% including patients with bortezomib-refractory disease. 
(Zangari et al., 2011) The main toxicities were fatigue and nausea, with limited peripheral 
neuropathy seen in less than 10% of patients. Carfilzomib is currently progressing in a 
number of trials for relapsed and newly diagnosed Multiple Myeloma and as both a single 
agent and in combination.  

7.2 Marizomib (NPI-0052) 

Marizomib, also known as Salinosporamide A, is a ǃ-lactone compound derived from the 

marine bacterium Salinospora tropica (Macherla et al., 2005) and is structurally related to the 

lactacystin-derived proteasome inhibitor Omuralide. In contrast to bortezomib which is a 

slowly reversible inhibitor of chymotrypsin-like activity, marizomib binds irreversibly to all 

three catalytic activities of the proteasome. While bortezomib is administered intravenously, 

marizomib has the advantage of being orally bioactive. Initial in vitro studies established the 

effectiveness of this compound in Multiple Myeloma cell lines, including those that were 

resistant to bortezomib (Chauhan et al., 2005). Animal tumour model studies demonstrated 

reduced tumour growth without significant toxicity (Chauhan et al., 2005; Singh et al., 2010). 

Preclinical studies demonstrated synergistic results when marizomib was combined with 

bortezomib or lenalidomide (Chauhan et al., 2008; 2010a). Phase 1 trials of marizomib in 

Myeloma are currently ongoing. Marizomib displays a broader, faster acting and more 

durable proteasome inhibition than bortezomib and treatment does not appear to induce the 

limiting toxicities associated with bortezomib, such as peripheral neuropathy and 

thrombocytopenia.  

7.3 MLN9708/MLN2238 

MLN9708 like bortezomib is also a boron containing peptide proteasome inhibitor and was 
selected from a panel of inhibitors based on having a biochemical profile distinct from that 
of bortezomib. MLN9708 hydrolyses immediately in plasma to its biologically active form 
MLN2238. MLN2238 displays similar potency and selectivity for the chymotrypsin-like 
proteasome subunit, however, it has a substantially shorter half-life than bortezomib which 
may improve tissue distribution. Cell viability studies revealed a strong anti-proliferative 
effect on a variety of tumour cell lines and in vivo studies have demonstrated efficacy in 
human prostate xenograft, colon cancer and lymphoma models where both intravenous and 
oral dosing were effective (Kupperman et al., 2010). MLN2238 has been demonstrated to 
induce apoptosis in cells resistant to both conventional therapies and to bortezomib. 
Synergistic activity is seen by combining this compound with lenelidomide, HDAC 
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inhibitors and dexamethasone in vitro. It is well tolerated in plasmacytoma xenograft mouse 
models and demonstrates significantly longer survival time than mice treated with 
bortezomib (Chauhan et al., 2011). This compound is currently being evaluated in Phase 1 
studies in patients with lymphoma and non-haematological malignancies and in Phase 1/2 
trials for Multiple Myeloma.  

7.4 CEP-18770 

CEP-18770 is a next-generation boronic acid-based proteasome inhibitor and in common 

with bortezomib it is a reversible inhibitor, primarily of the chymotrypsin-like activity. CEP-

18770 was demonstrated to induce apoptosis in Multiple Myeloma cell lines and primary 

Myeloma cells, while displaying a favourable cytotoxicity profile towards normal cells (Piva 

et al., 2008; Dorsey et al., 2008). Its anti-tumour activity was demonstrated in several animal 

tumour models and it has been shown to demonstrate marked anti-Myeloma effects in 

combination with bortezomib and melphalan (Sanchez et al., 2010). CEP-18770 has 

completed early Phase 1 trials for solid tumours and non-Hodgkin’s lymphoma and is 

currently being evaluated in Phase 1/2 trials for Multiple Myeloma. 

7.5 ONX0912 

ONX0912 (formerly PR-047) is a novel orally available analogue of the proteasome inhibitor 

carfilzomib. Carfilzomib, in common with bortezomib, is administered intravenously, 

however, proteasome inhibitor therapy requires twice weekly dosing and therefore an orally 

available inhibitor would be more advantageous. ONX0912 has demonstrated similar anti-

tumour activity to carfilzomib in vitro in cell lines and primary cells and enhanced the anti-

Myeloma activity of bortezomib, lenolidomide and histone deacetylase inhibitors; animal 

models of Multiple Myeloma, non-Hodgkin’s lymphoma and colorectal cancer 

demonstrated reduced tumour progression and prolonged survival (Zhou et al., 2009; 

Roccaro et al., 2010; Chauhan et al., 2010b). A Phase 1 trial of ONX0912 in advanced solid 

tumours is currently recruiting. 

7.6 Immunoproteasome Inhibitors 

A novel approach that is looking promising is the use of proteasome inhibitors that 
specifically inhibit catalytic activities of the immunoproteasome. Immunoproteasomes are 
constitutively expressed in immune tissues and expressed at a much lower level in other cell 
types. Thus targeting immunoproteasomes confers a certain amount of specificity and 
provides an opportunity to overcome toxicities associated with proteasome inhibition, such 
as peripheral neuropathy and gastrointestinal effects. A number of immunoproteasome 
specific inhibitors have recently been described and exhibit encouraging preclinical activity 
in haematological malignancies. PR-924 is a tripeptide epoxyketone related to carfilzomib. It 
exhibits 100-fold greater selectivity for the LMP7 subunit than carfilzomib and was 
demonstrated to inhibit the growth of Multiple Myeloma cell lines and primary tumour cells 
and inhibited tumour growth in animal models without significant toxicity (Singh et al., 
2010). The immunoproteasome inhibitor IPSI-101 is a peptide aldehyde which preferentially 
inhibits the LMP2 subunit. IPSI-101 induced accumulation of polyubiquitinated proteins 
and pro-apoptotic protein and inhibited proliferation in in vitro models of haematological 
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malignancies (Kuhn et al., 2009). At the time of writing this review there were no clinical 
trials of immunoproteasome inhibitors in progress, however, it is likely that the encouraging 
preclinical data on PR-924 and ISPS-101 will form the basis for future clinical evaluation of 
these compounds. 

 

Fig. 2. Structure and class of proteasome inhibitors in clinical trials. 

8. Conclusion 

Proteasome Inhibitors have provided a major new therapeutic strategy for the treatment of 
Multiple Myeloma. Bortezomib, the first-in-class of these inhibitors, has shown remarkable 
success since its introduction almost ten years ago. Second generation compounds are 
already demonstrating increased selectivity with a more acceptable therapeutic window. 
Researchers are turning to other parts of the Ubiquitin Proteasome Pathway to look for 
potential druggable targets which would confer greater specificity. The E3 ligases play a key 
role in substrate selection and the Pharma already have agents in their pipeline which show 
promise in modifying their action. Modulation of the Ubiquitin Proteasome Pathway with 
novel inhibitors offers a powerful approach to Myeloma therapy. 
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