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1. Introduction  

The Gram-positive bacterium, Bacillus subtilis and related species are widely used as hosts 
for the extracellular production of industrially worthy enzymes, such as amylases, 
proteases, xylanase, and lipases (Braun et al., 1999; Tjalsma et al., 2000; Westers et al., 2004). 
These species possess a very high capacity for secreting a variety of exoenzymes into the 
growth medium, thereby reducing downstream purification processes. In addition, many of 
these are generally regarded as safe (GRAS) microorganisms, and do not produce 
endotoxins. Therefore, the secretion system of these species presents many advantages in 
terms of production capacity, structural authenticity, product purification, and safety. 
Nevertheless, the secretion of heterologous proteins from eukaryotes by these species is 
frequently inefficient (Table1). Hence, these species are never selected as the best cell factory 
for pharmaceutical proteins (Westers et al., 2004).  

In pharmaceutical industry, the production of recombinant proteins in Escherichia coli is well 
established. In many cases, proteins are produced in cytoplasm of E. coli, and therefore, the 
production of recombinant proteins involves refolding and purification from inclusion 
bodies. However, the production of soluble recombinant proteins is relatively more cost-
effective and less time-consuming. In fact, many studies have been performed regarding 
methods to overcome the problem of inclusion bodies and to improve protein solubility for 
the expression of heterologous proteins (Kapust & Waugh, 1999; Baneyx & Mujacic, 2004; 
Sørensen & Mortensen, 2005; Rabhi-Essafi et al., 2007). Therefore, developing human protein 
producing hosts is a major challenge in the field of biotechnology and protein production in 
Bacilli.  

In B. subtilis, one long-standing major problem is the presence of high levels of extracellular 
protease for the production of heterologous proteins. In recent years, many proteases have 
been identified via the completed genome sequence of B. subtilis (Kunst et al., 1997; Westers 
et al., 2004), thereby allowing the construction of many protease-depleted strains for the 
production of heterologous proteins. 
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In addition, considerable efforts have been targeted at developing B. subtilis as a host for the 

production of heterologous proteins (Wu & Wong, 2002; Li et al., 2004; Westers et al., 2004; 

Kodama et al., 2007a, 2007b). However, many problems still remain for the secretion of 

human proteins, and these should be analyzed from the complementary perspectives of 

both the target protein and the secretion pathway, in order to improve human protein 

secretion. 

We have used human interferon-α and interferon-β as heterologous model proteins to 

investigate the effects of B. subtilis secretion.  

In this report, the knowledge which has become available in recent years aimed at 

improving heterologous protein secretion is discussed, and co-production of a Tat system is 

shown to provide a useful tool to enhance the secretion of heterologous proteins. 

 

 

 

Table 1. Protein products from B. subtilis  

2. Signal peptide and propeptide 

The major of Bacterial secreted proteins are translocated across the cytoplasmic membrane 

via the Sec pathway (Antelmann et. al. 2004). Secretory proteins are identified by a signal 

peptide at the protein’s N-terminus. A signal peptide consists of a positively charged N-

domain, a hydrophobic H domain, and a C domain containing a specific cleavage site. Most 

signal peptides are Sec dependent signal peptides, which are cleaved by a type I signal 

peptidase at the AXA cleavage site (Tjalsma et al., 2000), as an example, B. subtilis α-amlyase 

(AmyE) (Fig. 1). 

2.1 Signal peptide 

For the production of a heterologous protein in the culture medium of B. subtilis, it is 
necessary to use a signal peptide that directs the protein very efficiently to the translocase. 
However, heterologous protein secretion often results in inefficient and unsatisfyingly low 
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yields. The relationship between signal peptides and target proteins remains unknown. 
Accordingly, previous studies have indicated the need for individually optimal signal 
peptides for every heterologous secretion target.  

Recently, Brockmeier et al. (2006) established a new strategy for the optimization of 

heterologous protein secretion in B. subtilis, by screening a library of all natural signal 

peptides of the strain. Accordingly, the best signal peptide for the secretion of one target 

protein is not automatically the best, or even sufficient, for the secretion of a different target 

protein (Brockmeier et al., 2006).  

In our study, human interferon- (hIFN-) was used as a heterologous model protein, to 

investigate the secretion of the B. subtilis several major signal peptides. (Fig. 2). We found 

that for the secretion production of hIFN-α, the AmyE signal peptide is one of the best 

signal peptides (unpublished data).  

 

Fig. 1. The amino acid sequence of N-terminus-pre-pro AmyE. The putative SPase 
cleavage site is indicated by a closed arrowhead, and the post-secretory processing site is 
indicated by an open arrowhead, as described in the references (Takase et al., 1988; 
Sasamoto et al., 1989). Numbers above the AmyE amino acid sequence refer to the 
locations of the encoded amino acid residues of AmyE (adapted from Kakeshita et al., 
2011a).  

2.2 Propeptide 

Some secreted bacterial proteins have cleavage propeptides located between their signal 

peptide and the mature protein. The propeptide is processed after translocation. Long 

propeptides (60 to 200 residues) are present for most bacterial extracellular proteases, which 

are auto-catalytically cleaved and possess intramolecular chaperon activities, for example,  

B. subtilis AprE (Braun et al., 1996; Ikemura & Inouye, 1998; Wang et al., 1998; Yabuta et al., 

2001; Yabuta et al., 2002; Zhu et al., 1989). On the other hand, short propeptides (with fewer 

than 60 residues) are present for a few secreted proteins, including B. subtilis α-amylase 

(AmyE) (Davis et al., 1977; Mezes et al., 1983; Takase et al., 1998) (Fig. 1). In B. subtilis, the 

AmyE propeptide is cleaved by unknown proteins, and is dispensable for secretion, folding, 

and stability (Takase et al., 1998; Sasamoto et al., 1989).  

However, the secretion efficiency of the Staphylococcus aureus nuclease (Nuc) was found to 

be enhanced by a propeptide in E. coli (Suciu & Inouye 1996) and Lactococcus lactis (Le Loir et 

al., 1998). In addition, in L. lactis, the nine-residue synthetic propeptide, LEISSTCDA, which 

is fused immediately after the signal peptide cleavage site, is known to enhance 

heterologous protein secretion (Le Loir et al., 1998; Le Loir et al., 2005; Zhuang et al., 2008; 

Zhang et al., 2010). Therefore, we evaluated whether the fusion of the AmyE signal peptide 

and the propeptide could improve the secretion of hIFNα-2b, compared to that with only 

AmyE signal peptide.  
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Fig. 2. Construction of plasmids for production and secretion of heterologous proteins. The 

restriction sites used for each construction are indicated. PxylA, promoter of xylA; RBS, 

ribosome binding site; SP, signal peptide; Pro, propeptide. 

 

Fig. 3. Western blot analysis of hIFN-α production by B. subtilis Dpr8 with pHKK3101 

(AmyE SP-hIFN-α) or pHKK3201 (AmyE SP-Pro-hIFN-α). Samples were collected at 20 h 

after xylose induction, separated by 15% SDS-PAGE, and stained with Western blotting 

using anti hIFN-α2b polyclonal antibodies. Dpr8 with pHKK3101 (lanes 1 and 2); Dpr8 with 

pHKK3201 (lanes 3 and 4); 0.6% xylose induced (lanes 1 and 3), none induced (lanes 2 and 

4), and commercially purified hIFN-α 10 ng (lane 5). Arrowheads indicate the positions of 

the Pro-hIFN-α2b and hIFN-α2b. (adapted from Kakeshita et al., 2011a)  
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We showed that the secretion production and activity of hIFN-α2b with propeptide 

increased by more than 3-fold, compared to that without propeptide. The amount of 

secreted hIFN-α2b with propeptide was 15mg /L. This result indicated that the propeptide 

of AmyE enhanced the secretion of hIFNα-2b (Fig. 3, Kakeshita et al., 2011a).  

 

Fig. 4. Western blot analysis of hIFN-β production by B. subtilis Dpr8 with pHKK3111 

(AmyE SP-hIFN-β) or pHKK3211 (AmyE SP-Pro hIFN-β). Samples were collected at 20 h 

after xylose induction, separated by 15% SDS-PAGE, and stained with Western blotting 

using anti hIFN-β polyclonal antibodies. Dpr8 with pHKK3111 (lanes 1 and 2); Dpr8 with 

pHKK3211 (lanes 3 and 4); 0.6% xylose induced (lanes 1 and 3), none induced (lanes 2 and 

4), and commercially purified hIFN-β 50 ng (lane 5). Arrowheads indicate the positions of 

the Pro-hIFN-β and hIFN-β. (adapted from Kakeshita et al., 2011b) 

In L. lactis, directed mutagenesis experiments demonstrated that the positive effect of 

LEISSTCDA on protein secretion was due to the insertion of negatively charged residues in 

the N-terminus of the mature moiety (Le Loir et al., 2001). In hIFN-α2b with AmyE 

propeptide, the first 10 amino acid residues of this mature protein have a net charge of -1. 

On the other hand, hIFN-α2b without propeptide has a net charge of 0. In addition, we 

demonstrated that propeptide mutants of neutral or positive charge resulted in a reduction 

in the amount of secreted hIFN-α2b, compared with propeptides of negative charge. This 

result suggested that negative charges in the mature protein can enhance the secretion of 

hIFN-α2b (Kakeshita et al., 2011a).  

We then indicated that the AmyE propeptide enhanced the secretion of the hIFN-β protein 

from B. subtilis, as well. The secretion production and activity of hIFN-β with propeptide 

increased by more than 4-fold (Fig. 4, Kakeshita et al., 2011b). The amount of secreted hIFN- 
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β with propeptide was 3.7mg /L. These results indicated that the propeptide of AmyE 

enhanced the secretion and extracellular production of a heterologous protein in B. subtilis. 

2.3 Deletion of the C-terminus of SecA  

In B. subtilis, most secreted proteins are translocated across the cytoplasmic membrane via 
the Sec system (Tjalsma et al., 2000; Tjalsma et al., 2004; Yamane et al., 2004). Nearly all of 
the components of the Sec system identified in E. coli have also been identified in B. subtilis 
and are biochemically well-characterized (van Wely et al., 2001; Harwood et al., 2008). 
Among these components, the peripheral membrane protein, SecA is considered to play a 
pivotal role in secretion. The SecYEG complex acts as a receptor for SecA, and functions as a 
preprotein conducting channel (Hartl et al., 1990; Fekkes et al., 1997). In E. coli, SecB is a 
molecular chaperone that functions in the post-translational protein translocation pathway, 
and binds to the C-terminal SecB binding site of E. coli SecA. In B. subtilis, this region of SecA 
is highly conserved. However, genome sequencing revealed that SecB is absent in B. subtilis 
(Kunst et al., 1997). B. subtilis Ffh interacts directly with SecA, and promotes the formation of 
soluble SecA-preprotein complexes (Bunai et al., 1999). These results suggest that the signal 
recognition particle (SRP) of B. subtilis not only acts as a targeting factor in co-translational 
translocation, but also stimulates the process of post-translocation across the membrane 
(Harwood & Cranenburgh, 2008; Ling et al., 2007; Tjalsma et al., 2000; Yamane et al., 2004). 
In additon, it has been shown that SecB binding site of B. subtilis SecA is not essential for 
viability and protein secretion (van Wely et al., 2000). The SecB binding site is connected by 

a C-terminal Linker (CTL) with the α-helical scaffold domain (HSD) in SecA. A cross-species 
comparison of the amino acid sequence of SecA revealed that the CTL is not well-conserved 
between B. subtilis and other species, including E. coli. We examined the effects of modifying 
the C-terminal region of SecA on growth and the extracellular production of heterologous 
proteins in B. subtilis, and demonstrated that the C-terminal domain (CTD) of SecA is not 
essential for viability or protein secretion. Furthermore, we showed that the productivity of 
hINF-α2b increased by 2.2-fold, compared to wild type SecA (Kakeshita et al., 2010). The 
crystal structure of B. subtils SecA indicated that CTL binds to the surface of NBF-I. The 
CTL-binding grove is a highly conserved and hydrophobic surface, and this grove is 
predicted to be one of the mature preprotein binding sites in SecA (Hunt et al., 2002). 
Therefore, deletion of the CTL of SecA is likely to affect SecA - preprotein interaction, and 
likely caused an increase in the secretion of heterologous proteins. 

2.4 Co-expression of PrsA 

PrsA is essential for viability and protein secretion. In protein secretion, PrsA is suggested to 
mediate protein folding at the late stage of secretion (Konitinen et al., 1991; Kontinen & 
Sarvas, 1993; Vitikainen et al., 2001). We examined the effect of co-expression of an extra-
cytoplasmic molecular chaperone, PrsA. It is known that co-expression of an extra-

cytoplasmic molecular chaperone, PrsA enhances the secretion of several model proteins: α -
amylase, Single-chain antibody (SCA), and recombinant Protective antigen (rPA) (Kontinen 
& Sarvas, 1993; Vitikainen et al., 2001; Wu et al., 1998; Williams et al., 2003).  

We demonstrated that co-expression of PrsA can act in concert with the AmyE propeptide to 

enhance the secretion production of hIFN-β. The amount of secreted hIFN-β with 

propeptide was 5.5mg /L.  (Fig. 5, Kakeshita et al., 2011b). 
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Fig. 5. Comparison of the amounts of secreted hIFN-β from B. subtilis D8C and D8PA, PrsA 

co-expressing strains. (a) Schematic representation of the gene structure around the amyE 

locus in the B. subtilis mutant strains D8PA and D8C. PspoVG and prsA represent the B. subtilis 

spoVG promoter and B. subtilis PrsA, respectively. Pcat and Cmr represent the 

chloramphenicol-resistant gene promoter and coding region, respectively. (b) Western blot 

analysis of PrsA protein from B. subtilis D8C, D8PA, and Dpr8. (c) Western blot analysis of 

hIFN-β production by B. subtilis D8C, D8PA, and Dpr8. D8C with pHKK3211 (lane 1); D8PA 

with pHKK3211 (lane 2); Dpr8 with pHKK3211 (lane 3). Arrowheads indicate the positions 

of Pro-IFN-β. (Adapted from Kakeshita et al., 2011b). 

3. Tat pathway 

The majority of bacterial secreted proteins are translocated across the cytoplasmic 

membrane via the Sec pathway, which acts on unfolded proteins using the energy provided 

by ATP hydrolysis (Tajalsma et al., 2000; Antelman et al., 2000). Recently, a novel and 

different secretion protein translocation pathway, the twin-arginine translocation (Tat) 

pathway was discovered (Santini et al., 1998; Berks et al., 2000; van Dijl et al., 2002). The 

bacterial twin-arginine translocation (Tat) machinery is able to transport folded proteins 

across the cytoplasmic membrane (Robinson et al., 2001). The Tat pathway might have 

advantages over the Sec pathway for the production of heterologous proteins, because many 

proteins fold tightly before they reach the Sec machinery, and thus cannot engage with it for 

translocation across the cytoplasmic membrane.  

B. subtilis contains two substrate specific Tat systems, TatAyCy and TatAdCd. The TatAyCy 

translocase is required for translocation of YwbN. On the other hand, a TatAdCd translocase 

translocates the phosphodiesterase PhoD (Jongbloed JD et al., 2002; Pop et al., 2002). 
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3.1 Twin-arginine signal peptide  

Proteins are targeted to the Tat pathway by tripartite N-terminal signal peptides, the amino-

terminal portion (n region) of which contain a conserved twin-arginine (RR) motif (R-R-X-#-

#, where # is a hydrophobic residue). 

In a previous study by Jongbloed et al., a database search for the presence of this motif in 

amino-terminal protein sequences identified a total number of 27 putative RR-signal 

peptides.  

 

Fig. 6. Schematic representation of the signal sequences used for secretion of human 

Interferon-α in B. subtilis. Schematic structure of the proteins encoded by each indicated 

plasmid. The twin-arginine motif is boxed, and the residues at positions -3 to -1 relative to 

the predicted SPase I cleavage site are underlined. The six base pairs of the KpnI site add the 

amino acids Gly–Thr to the end of each signal peptide coding sequence; therefore, in the 

table, each sequence ends with GT. Numbers under the signal peptides refer to the 

respective locations of the encoded amino acid residues.  

We therefore selected six candidate Tat signal peptides, shown in Fig. 6, from the list 

generated by Jongbloed et al. for testing in the hIFN-α secreted assay. To determine the 

secretion ability for hINF-α2b, the six signal peptide genes considered to belong to the Tat 

pathway of B. subtilis were PCR-amplified. The PCR-amplified signal peptide genes were 

inserted upstream of the hIFN-α mature peptide gene in pHKK3101, yielding six secretion 

expression vectors. pHKK3101 expressing hIFN-α with the AmyE signal peptide, as the 

Sec-type signal peptide, was used as the control plasmid. The resultant recombinants 

were transformed into B. subtilis Dpr8, respectively, and the secretion expression of hIFN-

α mediated by these signal peptides was detected by immunoblotting analysis. The hIFN-

α was expressed in these strains and hIFN-α production was induced with the addition of 

0.6% of xylose to the exponentially growing cultures (OD660 = 0.3), and both culture 

supernatants and intracellular lysates were analyzed as described in Kakeshita et al. 

(2010). As shown in Fig. 7a, in the extracellular fraction, only one band corresponding to 

mature protein (16 kDa) was detected for the samples of B. subtilis Dpr8 cells harboring 
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pHKK3101 (AmyE signal), pHKK4004 (WprA), pHKK4005 (LipA), and pHKK4006 

(WapA) by Western blot and immunoblot. This result suggested that the obtained three 

signal peptides (WprA, LipA, WapA) directed efficient secretion expression.  

 

 

Fig. 7. Comparison of the amounts of secreted hIFN-α using the Twin arginine signal 

peptides from B. subtilis Dpr8. (a) Western blot analysis of hIFN-α production in B. subtilis 

Dpr8 harboring seven recombinants. Cells were grown at 30 °C in 2xL medium. Samples 

were collected at 20 h after xylose induction, separated by 15% SDS-PAGE, and subjected to 

Western blotting using anti hIFN-β polyclonal antibodies. Protein samples present in the 

supernatant (lanes 1, 2, 3, 4, 5, and 6) and cell fractions (lanes 7, 8, 9, 10, 11, and 12) of 

stationary-phase cultures were prepared by centrifugation, analyzed by SDS-PAGE, and 

immunodetected with anti-hIFN-α antibodies. Dpr8/pHKK3101 (lanes 1 and 8); 

Dpr8/pHKK4001 (lanes 2 and 9); Dpr8/pHKK4002 (lanes 3 and 10); Dpr8/pHKK4003 (lanes 

4 and 11); Dpr8/pHKK4004 (lanes 5 and 12); Dpr8/pHKK4005 (lanes 6 and 13); 

Dpr8/pHKK4006 (lanes 7 and 14); precursor, pre hIFN-α; mature, hIFN-α. S, supernatant; C, 

cell fractions. (b) Quantification of secreted hIFN-α mature form in the culture medium and 

cell fraction. The hIFN-α production corresponding to the supernatant of B. subtilis Dpr8 

carrying pHKK3101 (AmyE signal peptide) was set as 100%. Data represent the mean of 

three experiments, and error bars represent standard error. 

www.intechopen.com



 
Advances in Applied Biotechnology 

 

154 

Especially, WapA demonstrated the highest efficiency of hIFN-α secretion expression, 
which was 1.5-fold as high as the Sec dependent signal peptide, AmyE (Fig. 7b).  

However, No hIFN-α was detected in the supernatants of Dpr8/pHKK4001 (YvhJ), 
Dpr8/pHKK4002 (YwbN), or Dpr8/pHKK4003 (PhoD). In the intracellular lysates of 
Dpr8/pHKK3101, Dpr8/pHKK4004, Dpr8/pHKK4005, and Dpr8/pHKK4006, two bands 
were detected. As deduced from the molecular mass of each band, these bands ware 
assigned to the unprocessed precursor (17 kDa) and the mature protein (16 kDa), 
respectively. On the other hand, only one band corresponding to the unprocessed protein 
was detected for the samples of Dpr8/pHKK4001 (YvhJ), Dpr8/pHKK4002 (YwbN), and 
Dpr8/pHKK4003 (PhoD).  

These results suggested that the three obtained signal peptides, YvhJ, YwbN, and PhoD 

cannot be secreted hIFN-α2b into the supernatant.  

3.2 Co-expression of the tat system 

We examined the effect of co-expression of the Tat-machinary, TatAd/Cd or TatAy/Cy. To 

examine the effects of the co-expression of B. subtilis tat genes on hIFN-α secretion, we 
constructed TatAd/TatCd and TatAy/TatCy under the control of the spoVG promoter in 
plasmids. It is known that the spoVG promoter is a powerful promoter (Zuber & Losick 
1983). The resulting constructs were subsequently integrated into the chromosome of B. 
subtilis strain Dpr8 via a double crossover event at the amyE locus, leaving the native tat 
genes intact (Fig. 8a).  

The resultant strains, D8tatD and D8tatY were transformed with pHKK3101, pHKK4001, 

pHKK4002, pHKK4003, pHKK4004, pHKK4005, and pHKK4006 for expression of hIFN-α.  

As shown in Fig. 8b and c, when the LipA signal peptide was fused to hIFN-α, a densitometric 

analysis of the western blotting demonstrated that the amounts of hIFN-α secreted by D8tatD 

and D8tatY were increased by roughly 2-fold, compared with that in strain Dpr8 (Fig. 8c). 

When the WprA signal peptide was fused to hIFN-α, in D8tatD, the amount of secreted hIFN-

α was increased by 71% compared with that in the parental strain, Dpr8, whereas the 

enhanced production of hIFN-α increased by 29%. On the other hand, When the WapA signal 

peptide was fused to hIFN-α, the amounts of hIFN-α secreted by D8tatD and D8tatY were 

increased by only 10-20%, compared with that in strain Dpr8 (Fig. 8c). Then, when the AmyE 

signal peptide was fused to hIFN-α, the amounts of hIFN-α secreted by D8tatD and D8tatY 

were increased by 37% and 25%, respectively compared with that in strain Dpr8 (Fig. 8c). 

Therefore, WapA signal peptide and AmyE signal peptide are not able to enhance of secretion 

by co–expression of Tat system. In addition, when the YvhJ, YwbN, and PhoD signal peptides, 

respectively were fused to hIFN-α, the bands of hIFN-α secreted by D8tatD and D8tatY could 

not be detected in the resulting supernatants (data not shown). 

We demonstrated that co-expression of TatAd/Cd or TatAy/Cy with LipA signal peptide 

can act in concert to enhance the secretion production of hIFN-α. In addition, WprA signal 

peptide was enhanced the secretion production of hIFNα by co-expression of TatAd/Cd, 
not TatAy/Cy. On the other hands, AmyE signal peptide and WapA peptide are Tat 
pathway independent.  
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Fig. 8. Comparison of the amounts of secreted hIFN-α from B. subtilis Dpr8 and Tat 
overexpressing strains. (a) Schematic representation of the gene structure around the amyE 
locus in the B. subtilis D8tatD and D8tatY mutant strain genomes. Construction of strains 
D8tatD and D8tatY was by double crossover integration of plasmids pHKK2001 (tatAd-Cd) 
and pHKK2002 (tatAy-Cy) into the amyE locus of B. subtilis Dpr8. The resulting strain 
contains the native phoD-tatAd-tatCd locus, as well as one copy of tatAd-Cd and tatAy-Cy 
under the control of the PspoVG promoter. The stem-loop structures and the bent arrows 
indicate the putative Rho-independent terminators and promoters, respectively. (b) Western 
blot analysis of hIFN-α production by B. subtilis Dpr8, D8tatD, and D8tatY (carrying 
pHKK3101, pHKK4004, pHKK4005, or pHKK4006) was performed in the same manner as 
for hIFN-α. (c) Quantification of secreted hIFN-α in mature form in the culture medium. 
The hIFN-α production corresponding to the B. subtilis Dpr8 strain was set as 100%. Data 
represent the mean of three experiments, and error bars represent standard error. 

www.intechopen.com



 
Advances in Applied Biotechnology 

 

156 

4. Conclusions 

In recent years, considerable efforts have been targeted at developing B. subtilis as a host for 

the production of heterologous proteins. However, the secretion of heterologous proteins 

from eukaryotes by these species produces small yields and is frequently inefficient. 

Initially, we considered the major problem to be the presence of high levels of extracellular 

protease in B. subtilis. Nevertheless, even after obtaining many depleted protease strains, the 

problem of inefficient secretion was not resolved. Currently, it is considered that the largest 

problem is the detection of the pre-mature form of human protein in cell lysate, when 

human proteins with signal peptide are over expressed in B. subtilis (Fig. 7a). Normally, the 

pre-mature forms of target secretion proteins are not detected in cell lysates. If the pre-

mature form of target a secretion protein is detected, it indicates a problem in the secretion 

pathway, for example, non-functional or depleted SecA, SecY, Ffh, or FtsY (Sadaie et al. 

1991; Takamatsu et al., 1992; Honda et al., 1993; Oguro et al., 1995; Tjalsma et al., 2000; 

Tjalsma et al., 2004; Yamane et al., 2004). Therefore, we must solve this primary problem, 

which is the accumulation of the precursor of human proteins in B. subtilis cells.  

We indicated that the propeptide of AmyE enhanced the secretion of the extracellular 

production of a heterologous protein in B. subtilis. In L. lactis, the nine-residue synthetic 

propeptide, LEISSTCDA, which is fused immediately after the signal peptide cleavage site, 

is known to enhance heterologous protein secretion (Le Loir et al., 1998). In addition, 

LEISSTCDA enhances secretion efficiency (Le Loir et al., 2001). Therefore, it is considered 

that a short type propeptide may be one answer to improve the accumulation of precursor.  

On the other hand, we indicated that the deletion of the C-terminal domain of SecA 

enhanced the secretion of heterologous proteins. secA is an essential gene, and SecA is 

considered to play a pivotal role in secretion (Sadaie et al. 1991; Takamatsu et al., 1992; 

Tjalsma et al., 2000; Tjalsma et al., 2004; Yamane et al., 2004). In addition, we exhibited that 

the co-expression of PrsA or the Tat system can be able to enhance the secretion production.  

In the future, it may be necessary to modify the components of the secretion machinery for 

higher secretion efficiency.  
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