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1. Introduction 

Social and economic development has driven considerable scientific and engineering efforts 
on the discovery, development, and utilization of polymers. Widespread reliance in 
everyday life on conventional polymeric materials such as polyolefins has resulted in 
serious pollution which cannot be resolved in a straightforward fashion. Sustainable 
development and a green economy both require brand new materials which can avoid the 
occurrence of these problems. 
Poly(lactic acid) (PLA), an aliphatic polyester, has outstanding advantages over other 
polymers, and may thus be part of the solution. As early as the 1970’s, PLA products have 
been approved by the US Food and Drug Administration (FDA) for direct contact with 
biological fluids. Four of its most attractive advantages are renewability, biocompatibility, 
processability, and energy saving (Rasal, 2010). First of all, PLA is derived from renewable 
and degradable resources such as corn and rice, which can help alleviate the energy crisis as 
well as reduce the dependence on fossil fuels of our society; PLA and its degradation 
products, namely H2O and CO2, are neither toxic nor carcinogenic to the human body, hence 
making it an excellent material for biomedical applications including sutures, clips, and 
drug delivery systems (DDS). Furthermore, PLA can be processed by film casting, extrusion, 
blow molding, and fiber spinning due to its greater thermal processability in comparison to 
other biomaterials such as poly(ethylene glycol) (PEG), poly(hydroxyalkanoates) (PHAs), 
and poly(ǆ-caprolactone) (PCL) (Rhim et al., 2006). These thermal properties contribute to 
the application of PLA in industry in fields such as textiles and food packaging. Last but not 
least, PLA production consumes 25-55% less fossil energy than petroleum-based polymers. 
Cargill Dow has even targeted a reduction in fossil energy consumption by more than 90% 
as compared to any of the petroleum-based polymers for the near future, which will surely 
also lead to significant reductions in air and water pollutant emissions. It is also noteworthy 
that the total amount of water required for PLA production is competitive with the best 
performing petroleum-based polymers. This energy-saving feature perfectly caters to the 
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new concept of “low-carbon economy” which emerged recently in response to the global 
warming and energy crisis concerns, and makes investment in PLA a necessary and wise 
strategy in the future (Vink et al., 2003). Fig. 1 shows the cycle of PLA in nature. 
 

 
Fig. 1. The cycle of PLA in nature. 

While PLA can be considered an eco-friendly biomaterial with excellent properties, it also 
has many obvious drawbacks when confronted with requirements for certain applications: 
1) Its degradation rate through hydrolysis of the backbone ester groups is too slow. This 
process sometimes takes several years, which can impede its biomedical and food packaging 
applications (Bergsma et al., 1995). 2) PLA is very brittle, with less than 10% elongation at 
break, thus it is not suitable for demanding mechanical performance applications unless it is 
suitably modified (Rasal & Hirt, 2009). 3) PLA is strongly hydrophobic and can elicit an 
inflammatory response from the tissues of living hosts, because of its low affinity with cells 
when it is used as a tissue engineering material. 4) Another limitation of PLA towards its 
wider industrial application is its limited gas barrier properties which prevent its complete 
access to industrial sectors such as packaging (Singh et al., 2003). Considering the 
disadvantages of PLA stated above and its high cost (another shortcoming of that material), 
it is not surprising that PLA has not received the attention it deserves. Nevertheless, 
researchers have examined different methods for the bulk or surface modification of PLA, 
the introduction of other components, or the control of its surface energy, surface charge 
and surface roughness, depending on the requirements of specific applications.  
Previous reviews have examined different aspects of PLA chemistry and engineering. Thus 
Maharana et al. (Maharana et al., 2009) presented a review on the melt-solid 
polycondensation of lactic acid (LA). Gupta et al. (Gupta et al., 2007) presented an overview 
of the production of PLA fibers by various methods, along with correlations between the 
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structure and the properties of the fibers. Butterwick et al. (Butterwick et al., 2009) discussed 
the applications of PLA in Europe and the United States with respect to practitioner 
experiences and techniques to optimize the outcomes. Rasal et al. (Rasal et al., 2010) 
examined the chemical modification of PLA, while Graupner et al. (Graupner et al., 2009) 
assessed the production and the mechanical characteristics of composites prepared from 
PLA and renewable raw materials including cotton, hemp, kenaf, and man-made cellulose 
fibres (Lyocell) by compression molding. 
In this chapter we will underline novel ideas or technologies introduced over the last 5-10 
years, emphasizing some ambitious work which, even though it appears less successful than 
other mature methods, introduces concepts that may prove extremely positive in the near 
future. We will also attempt to foretell developmental trends on the basis of social demands 
and the progress achieved so far. More traditional topics including the synthesis, 
modification, and applications of PLA in biomedical field will be introduced mainly to 
provide a more comprehensive picture of PLA as a biomaterial. 

2. Physical and chemical properties of PLA 

L-lactic acid and D-lactic acid, the two isomers of lactic acid, are shown in Scheme 1. Pure L-
lactic acid or D-lactic acid, or mixtures of both components are needed for the synthesis of 
PLA. 
 

C

O

OHC

OH

CH3H

C

O

OHC

OH

HH3C

L-Lactic acid                         D-Lactic acid  
Scheme 1. The stereoisomers of lactic acid.  

The homopolymer of LA is a white powder at room temperature with Tg and Tm values of 
about 55°C and 175°C, respectively. High molecular weight PLA is a colorless, glossy, rigid 
thermoplastic material with properties similar to polystyrene. The two isomers of LA can 
produce four distinct materials: Poly(D-lactic acid) (PDLA), a crystalline material with a 
regular chain structure; poly(L-lactic acid) (PLLA), which is hemicrystalline, and likewise 
with a regular chain structure; poly(D,L-lactic acid) (PDLLA) which is amorphous; and 
meso-PLA, obtained by the polymerization of meso-lactide. PDLA, PLLA and PDLLA are 
soluble in common solvents including benzene, chloroform, dioxane, etc. and degrade by 
simple hydrolysis of the ester bond even in the absence of a hydrolase. PLA has a 
degradation half-life in the environment ranging from 6 months to 2 years, depending on 
the size and shape of the article, its isomer ratio, and the temperature. The tensile properties 
of PLA can vary widely depending on whether it is annealed or oriented, or its degree of 
crystallinity (Garlotta et al., 2001). Some of the physical and chemical properties of PLA are 
summarized in Table 1. 
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Properties PDLA PLLA PDLLA 
Solubility All are soluble in benzene, chloroform, acetonitrile, 

tetrahydrofuran (THF), dioxane etc., but insoluble in 
ethanol, methanol, and aliphatic hydrocarbons 

Crystalline structure Crystalline Hemicrystalline Amorphous 
Melting temperature (Tm)/ °C ~180 ~180  Variable  

Glass transition temperature 

(Tg)/ °C 
50-60 55-60 Variable  

Decomposition temperature/°C ~200   ~200 185-200 

Elongation at break/ (%) 20-30  20-30 Variable  

Breaking strength/ (g/d) 4.0-5.0  5.0-6.0 Variable  

Half-life in 37°C normal saline 4-6 months  4-6 months  2-3 months 

Table 1. Selected physical and chemical properties of PLA. 

3. Synthesis of PLA 

Two main synthetic methods are used to obtain PLA: Direct polycondensation (including 
solution polycondensation and melt polycondensation), and ring-opening polymerization 
(ROP).  

3.1 Direct polymerization 

Since the LA monomer has both –OH and –COOH groups, necessary for polymerization, 
the reaction can take place directly by self-condensation (Scheme 2):  
 

O C
H

CH3

COO HHC
H

CH3

COOHHOn

n

Lactic acid Poly(lactic acid)

polymerization

catalyst
+ (n - 1) H

2
O

 
Scheme 2. Direct polymerization. 

Direct polymerization includes solution and melt polycondensation, depending on whether 
a solvent is used in the reaction to dissolve the PLA or not. 

3.1.1 Solution polycondensation 

In this case an organic solvent capable of dissolving the PLA without interfering with the 
reaction is added, and the mixture is refluxed with removal of the water generated in the 
polycondensation process, which is beneficial to achieve a high molecular weight. Many 
procedures yield PLA with a weight-average molecular weight (Mw) of over 200,000 by this 
method (Ohta et al., 1995; Ichikawa et al., 1995). This approach was developed by Carothers 
and is still used by Mitsui Chemicals. The resultant polymer can be coupled with 
isocyanates, epoxides or peroxides to produce a range of molecular weights (Lunt et al., 
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1998). The reaction proceeds smoothly, however solution polymerization suffers from 
certain disadvantages such as being susceptible to impurities from the solvent and various 
side reactions including racemization and trans-esterification. It also consumes large 
volumes of organic solvents, which are potential pollutants to the environment. 
Under optimized conditions, Ajioka et al. obtained PLA with Mw > 300,000 by this method 
(Ajioka et al., 1995). Characterization data have shown that the glass transition temperatures 
(Tg) of PLA and polylactide synthesized by the conventional lactide process are essentially 
identical (Tg = 58°C and 59 °C, respectively), but PLA has a lower melting point (Tm = 163 
°C) than polylactide (Tm = 178°C). The mechanical properties of the two polymers are also 
very similar.  

3.1.2 Melt polycondensation 

In contrast to solution polycondensation, the melt polycondensation of monomers can 
proceed without any organic solvent, but only if the temperature of the reaction remains 
above the Tm of the polymer (Gao et al., 2002). Moon et al. discovered that high Mw PLLA 
[Mw ≥ 100,000] could be produced in this way in a relatively short reaction time (≤ 15 h) 
(Moon et al., 2000). This method can lower the cost of the synthesis significantly due to the 
simplified procedure, but major problems still need to be solved before it can be applied 
industrially because of its sensitivity to reaction conditions (Maharana et al., 2009). Thus 
Moon et al. worked to develop a melt/solid polycondensation technique using a binary 
catalyst system (tin dichloride hydrate and p-toluenesulfonic acid) (Moon et al., 2001). 
Simply put, thermal oligocondensates of LA were first subjected to melt polycondensation 
to obtain a melt polycondensate, which was then subjected to solid state polycondensation 
at 105°C. As a consequence, the molecular weight of the PLA was as high as 600,000 after a 
short reaction time under optimized conditions. 
In summary, these one-step polymerization processes are relatively economical and easy to 
control, but they are equilibrium reactions affected by numerous parameters such as the 
temperature, the reaction time, catalysts, pressure, and so on. These factors can strongly 
influence the molecular weight of the products obtained. Besides, the water generated in 
this process can cause high molecular weight PLA to break down at high reaction 
temperatures. Thus the polymer resulting from these reactions usually has an 
unsatisfactorily low molecular weight. Attention must be paid to three aspects of the 
reaction to obtain a high molecular weight, namely controlling the reaction kinetics, 
removing the water formed, and preventing the degradation of the PLA chains. 

3.2 Ring-opening polymerization 

Considering the drawbacks of direct polymerization, PLA is typically synthesized by ring-
opening polymerization (ROP) (Scheme 3), an important and effective method to 
manufacture high molecular weight PLA. This reaction requires strict purity of the lactide 
monomer, obtained by dimerization of the lactic acid monomer. PLA is obtained by using a 
catalyst with the monomer under vacuum or an inert atmosphere. By controlling the 
residence time and the temperatures in combination with the catalyst type and 
concentration, it is possible to control the ratio and sequence of D- and L-lactic acid (LA) 
units in the final polymer (Lunt et al., 1998). The polymerization mechanism involved can be 
ionic, coordination, or free-radical, depending on type of catalyst employed (Penczek et al., 
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2000). Most of the researchers are now exploring new and effective catalysts. Köhn et al. 
(Köhn et al., 2003) first reported that the ROP of D,L-lactide could be catalyzed by 
bis(trimethyl triazacyclohexane) praseodymium triflate [(Me3TAC)2 Pr(OTf)3] (Cat), while 
Pr(OTf)3 by itself had a poor catalytic activity. Cat was found to catalyze the polymerization 
of D,L-lactide in various solvents (THF, dichloromethane, ethyl acetate, and toluene) 
without any additional reagents. The optimal polymer yield (95%) and molecular weight 
(18,000) were obtained after 18 h at 170°C, with a ratio of [LA]:[Cat] = 1000. John et al. (John 
et al., 2007) produced one of the few reports on lactide polymerization with a Cu-based 
catalyst. ROP of L-lactide catalyzed by {2-[1-(2,6-diethylphenylimino)ethyl]phenoxy}2Cu(II) 
yielded the highest Mw (26.3 × 103) with a monomer conversion of 57%. Two other copper 
complexes, {2-[1-(2,6-dimethylphenylimino)ethyl]phenoxy}2Cu(II) and {2-[1-(2-
methylphenylimino)ethyl]phenoxy}2Cu(II), also catalyzed the reaction under solvent-free 
melt conditions (160°C) but produced polylactides of moderate molecular weights (Mw = 
12.0 × 103 and 15.9 × 103, respectively). 
 

O C
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CH3

COOHO C

H

CH3

COOH
-H2O O

O O

O CH3

H3C

2
cyclization ring-open polymerization

catalyst n

Lactic acid                                       Lactide                                                                 Poly(lactic acid)  
 

Scheme 3. Ring-opening polymerization. 

Numerous studies have examined the influence of different factors such as the concentration 
and type of catalyst, monomer purity, and temperature on the polymerization of lactide. 
Special attention has been paid to the catalyst. Currently tin octoate is the most widely used 
catalyst for the ring-opening polymerization of lactides, but numerous novel efficient metal-
free catalytic systems are emerging as valuable alternatives (Jérôme & Lecomte, 2008). The 
heavy metal-based catalysts are indeed very likely to contaminate the product, which 
complicates the purification of the PLA obtained and also limits the applications of PLA in 
the fields of food packaging and biomedicine. Some of the means developed to solve this 
problem will be addressed later. 

3.3 New approaches 

The inherent disadvantages of the traditional synthetic methodology have led some 
researchers to explore solutions such as the development of nontoxic catalysts, unusual 
polymerization conditions, or other polymerization pathways (Lassalle & Ferreira, 2008). 
To solve the potential pollution problems caused by heavy metal catalysts, many nontoxic 
catalysts derived from magnesium (Wu et al., 2005), calcium (Zhong et al., 2003), zinc 
(Sarazin et al., 2004), alkali metals (Chisholm et al., 2003), and aluminum (Nomura et al., 
2002) have been developed for the ROP of lactides (Deng et al., 2000; Ejfler et al., 2005). For 
example, Chen et al. (Chen et al., 2007) tested a series of ǃ-diketiminate zinc complexes as 
initiators for the ROP of lactide and they were all highly active, however the Mw attained 
was unsatisfactory. It is worth noting that a variety of rare earth derivatives are usually 
highly reactive, which entitles them to be very promising initiators for the ROP of lactide 
(Agarwal et al., 2000). 
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With respect to unusual reaction conditions, supercritical CO2 (scCO2) technology has 
attracted much attention because this environmentally friendly, chemically inert, 
inexpensive, non-toxic, and nonflammable solvent can be substituted for organic solvents 
(Nalawade et al., 2006). Yoda et al. (Yoda et al., 2004) thus carried out the synthesis of 
PLLA from an L-lactic acid oligomer in scCO2 with dicyclohexyldimethylcarbodiimide 
(DCC) as an esterification promoter and 4-dimethylaminopyridine (DMAP) as a catalyst. 
PLLA with a number-average molecular weight Mn reaching 13,500 was obtained in 95% 
yield after 24 h at 3500 psi and 80°C. The molecular weight distribution of the products 
was also narrower than for PLLA prepared by melt–solid phase polymerization under 
conventional conditions. Not only can scCO2 be used as a medium to synthesize 
polymers, but it can also serve in the purification and processing of the polymer micro-
particles obtained (Kang et al., 2008).  
The direct polycondensation of lactic acid has been considered to have a promising future 
due to its low cost; however it is hard to increase the molecule weight due to the difficulty in 
removing the water from the system under these conditions. One way to solve this problem 
is a chain-extension method, although the properties of the PLA obtained in this way can be 
somewhat affected by the procedure. Simply put, hydroxyl- or carboxyl-terminated low 
molecular weight PLA obtained by direct polymerization can be linked together through a 
chain extender, which is a bifunctional compound carrying highly reactive functional 
groups. Many achievements have been reported in this area, hexamethylene diisocyanate 
(HDI) being the most widely used chain extender for hydroxyl-terminated prepolymers 
since the work done by Woo and coworkers (Woo et al., 1995). Finding new and satisfactory 
chain extenders will remain a major goal in the near future, since HDI is toxic and subject to 
side reaction in this process. 
In addition, LA-polymerizing enzymes functioning in replacement of metal catalysts 
should enable the biosynthesis of PLA, even though it is enormously challenging both in 
terms of research and industrial implementation. The best solution could be the 
development of a PLA-producing microorganism, but this has not been reported so far. 
Taguchi et al. (Taguchi et al. 2008) have nonetheless obtained encouraging results by 
developing a recombinant Escherichia coli strain allowing the synthesis of LA-based 
polyesters by introducing the gene encoding polyhydroxyalkanoate (PHA) synthase. This 
is illustrated in Fig. 2. They thus achieved the one-step biosynthesis of a copolymer with 6 
mol% of lactate and 94 mol% of 3-hydroxybutyrate units, having a molecular weight of 1.9 
× 105. This extremely important result represents a milestone towards the biological 
synthesis of PLA and confirms that the work is moving in the right direction. At present, 
the LA fraction in the copolyesters has been enriched up to 96 mol% (Shozui et al., 2011), 
so the synthesis of homopolymers of LA represents a major goal. To that end, the current 
microbial cell factory ought to be improved with further evolved LA-polymerizing 
enzymes (LPE) and metabolic engineering-based optimization (Taguchi, 2010). 
Matsumura et al. (Matsumura et al., 1997) likewise reported the lipase PC-catalyzed 
polymerization of cyclic diester-D,L-lactide at a temperature of 80-130°C to yield 
poly(lactic acid) with molecular masses of up to 12,600. Other novel methods (e.g. metal-
free catalysts, non-catalytic systems) are also under development (Zhong et al., 2003; 
Achmad et al., 2009). The advantages and disadvantages of the PLA synthesis methods 
mentioned above are summarized in Table 2. 
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Fig. 2. Mechanism for the bio-synthesis of LA polyester. In the bio-process, the LA monomer 
is converted into LA-CoA ,which is recognized by the LA-polymerizing enzyme recruited 
from microbial PHA synthase (Tajima et al., 2009).  

 

Synthesis methods Advantages Disadvantages 
Solution 
polycondensation 

One-step, economical and 
easy to control  

Impurities, side reactions, 
pollution, low molecular weight 
PLA 

Melt polycondensation High reaction temperature, 
sensitivity to reaction 
conditions, low molecular 
weight PLA 

Ring-opening 
polymerization 

High molecular weight 
PLA 

Requires strict purity of the 
lactide monomer, related high 
cost 

New solutions 
 (new catalysts, 
polymerization 
conditions, etc) 

Efficient, non-toxic, no 
pollution , high molecular 
weight PLA, etc. 

Under development 

Biosynthesis One-step, efficient, non-
toxic, no pollution, low 
cost, etc. 

Under development 

 

Table 2. Comparison of PLA synthesis methods. 
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4. Modification of PLA 

The major drawbacks of PLA limiting its applications are its poor chemical modifiability 
and mechanical ductility, slow degradation profile, and poor hydrophilicity. In order to be 
suitable for specific biomedical applications, the PLA has been modified mainly concerning 
two aspects: Bulk properties and surface chemistry. To achieve this, both chemical 
modification and physical modification have been tried, involving the incorporation of 
functional monomers with different molecular architectures and compositions, the tuning of 
crystallinity and processibility via blending and plasticization, etc., which are described in 
the following sections. 

4.1 Bulk modification 
Biomaterials must possess bulk properties, particularly hydrophilic and mechanical 
properties, meeting special requirements. Critical factors affecting these characteristics 
include chemical additives, composition, and morphological structure. At present 
considerable research focuses on a variety of hydrolytic groups, controlling the flexibility 
and crystallinity of the molecular chains, and the presence of hydrophilic groups. 

4.1.1 Physical modification 
Blending, plasticization, and composition variations belong to this category. 

Blending 

Polymer blending is an effective, simple, and versatile method to develop new materials with 
tailored properties without synthesizing new polymers (Peesan et al., 2005). The properties of 
different polymers (biodegradable and non-biodegradable) can be combined by blending with 
PLA, or even new properties can arise in the products due to interactions between the 
components. Biodegradable components blended with PLA include poly(ethylene glycol) 
(PEG), poly(ǃ-hydroxybutyrate) (PHB), poly(ǆ-caprolactone) (PCL), poly(butylene adipate-co-
terephthalate) (PBAT), chitosan, and starch (Sheth et al., 1997). While blends of PLA and non-
biodegradable polymers have not been as extensively studied, low-density polyethylene 
(LDPE), poly(vinyl acetate) (PVA), and polypropylene (PP) have been examined. Reddy et al. 
(Reddy et al., 2008) found that PLA in blends obtained from five ratios of PLA/PP had 
substantially better resistance to biodegradation and hydrolysis, and improved dyeability with 
dispersed dyes. However most of these blends are immiscible (phase-separated) and display 
poor mechanical properties due to low interfacial adhesion between the polymer phases. 
To improve the processing and mechanical properties of PLA without sacrificing its 
degradability and biocompatibility, Xu et al. (Xu et al., 2009) blended PLA with a new 
degradable thermoplastic derived from konjac glucomannan (TKGM), synthesized by graft 
copolymerization of vinyl acetate and methyl acrylate onto konjac glucomannan (KGM). 
Dynamic mechanical analysis (DMA) and scanning electron microscopy (SEM) measurements 
showed that the PLA/TKGM system was miscible due to specific interactions between PLA 
and TKGM. This led to a maximum elongation at break of 520% for the blend (20/80), as 
compared to 14% for neat PLA. The impact strength also increased from 11.9 kJ/m2 for neat 
PLA to 26.9 kJ/m2 for the 20/80 blend. The synthesis of new polymers, biodegradable or non-
biodegradable, to be compatibly blended with PLA, will represent a major task in the future. 

Plasticization 

PLA is a glassy polymer with poor elongation at break (typically less than 10%). The 
modification of PLA with different biodegradable and non-biodegradable plasticizers, 
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having a low molecular weight but a high boiling point and a low volatility, has been 
explored as a mean to lower the Tg and increase the ductility and softness of PLA. This has 
been achieved by varying the molecular weight, the polarity and functional groups of the 
plasticizers. Biocompatible molecules such as oligomeric lactic acid, oligomeric citrate ester, 
oligomeric PEG, and glycerol are all plasticizers of choice for PLA (Martin & Averous, 2001; 
Ljungberg et al., 2005). Ljungberg et al. (Ljungberg & Wesslén, 2002) have blended PLA with 
five plasticizers (triacetine, tributyl citrate, triethyl citrate, acetyl tributyl citrate, and acetyl 
triethyl citrate) and found that triacetine and tributyl citrate were more effective as 
plasticizers than the others to obtain a significant decrease in Tg for PLA. 
Wang et al. (Wang et al., 2009) found that diisononyl cyclohexane-1,2-dicarboxylate 
(DINCH), a new plasticizer obtained by the hydrogenation of the benzene ring of o-
phthalates, had limited compatibility with PLA when compared with tributyl citrate ester 
(TBC). PLA samples plasticized with 10 and 20 phr DINCH gave a constant Tg of 50°C. They 
were stiff materials displaying elevated values of elongation at break (129% and 200%, 
respectively) and impact strength (41.1 MPa and 30.1 MPa, respectively). On the other hand, 
TBC significantly decreased the Tg and increased the crystallinity of PLA, the PLA/TBC (20 
phr TBC) blend being a soft material with a Tg of 24°C. Results from thermogravimetric and 
thermal analysis also indicated that PLA plasticized with DINCH had good mechanical 
properties and excellent water resistance (as reflected in time-dependent weight loss data in 
phosphate buffer) and aging resistance (characterized by the mechanical and thermal 
properties of specimens exposed to ambient conditions for 4 months).  

Composition  

Fibers can serve as fillers in the formation of PLA composites processable by compression or 
injection molding, to enhance the thermal stability, the hydrolysis resistance, or the 
mechanical properties of PLA. Several investigations on PLA composites prepared from 
natural and modified cellulose fibers have shown that their mechanical properties scale with 
the mass fraction of added fibers (Wan et al., 2001; Mathew et al., 2005). Optimization of the 
natural fiber-reinforced PLA composites, in terms of mechanical and other properties, is 
critical to minimize their cost, tailor their biodegradability, and broaden their areas of 
application. Inorganic fillers can also contribute to property modification. Table 3 provides a 
comparison of some of the organic and inorganic materials tested as PLA fillers. 
Graupner et al. (Graupner et al., 2009) prepared composites from different types of natural 
fibers (cotton, hemp, kenaf) and modified cellulose fibers (Lyocell), with a fiber mass 
fraction of 40%, by compression molding. The mechanical properties of these composites are 
summarized in Table 4. Tomé et al. (Tomé et al., 2011) prepared composites from PLA and 
acetylated bacterial cellulose by mechanical compounding. The composites displayed 
significant increases in both elastic and Young moduli, as well as in tensile strength 
(increments of about 100, 40, and 25%, respectively, as compared with neat PLA) at 6% filler 
loading. Some surface modifiers can enhance adhesion between the fibers and the PLA 
matrix. For example, 3-aminopropyltriethoxysilane (APS) hydrolyzes in water or solvents to 
produce silanol groups that are capable of bonding to -OH groups on the kenaf fiber surface 
(Huda et al., 2008). The -NH2 groups from APS can also bond with -CO2- sites formed on the 
PLA surface by treatment with a sodium hydroxide solution. Thus APS effectively functions 
as a coupling agent. Yang et al. (Yang et al., 2011) produced a composite from PLA and 
microcrystalline cellulose modified by L-lactic acid. The tensile strength and the elongation 
at break of the composite were higher than for neat PLA. The surface modification of the 
cellulose substrates was considered a key element of the mechanical reinforcement.  
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Type Filler Result Reference 
Organic 
 
 
 
 
 

Jute Tensile stress and modulus increase with fiber 
volume fraction 

Khondkeret 
al., 2006 

Flax fibers Composite strength about 50% higher than for 
PP/flax composites 

Oksman et al., 
2003 

Kenaf fibers Greatly improved crystallization rate, tensile 
and storage moduli 

Pan et al., 2007 

Bamboo fibers Increased bending strength and improved 
thermal properties 

Tokoro et al., 
2008 

Silkworm silk 
fibers 

Good wettability, increased elasticity modulus 
and ductility 

Cheung et al., 
2008 

Microcrystalline 
cellulose 

Poor mechanical properties and adhesion; 
increased storage modulus 

Mathew et al., 
2005 
 

LA-modified 
microcrystalline 
cellulose 

Higher tensile strength and elongation at break 
than neat PLA 

Yang et al., 
2011 

Acetylated 
bacterial cellulose 

Considerable improvement in thermal and 
mechanical properties 

Tomé et al., 
2011 

Inorganic 
 
 
 
 
 

Calcium 
metaphosphate 

Narrow pore size distribution and high tensile 
strength 

Jung et al., 
2005 

Calcium carbonate No brittle fracture behavior and comparably 
high bending strength 

Kasuga et al., 
2003 

Montmorillonite Good affinity and improved thermal stability 
of the nanocomposites 

Pluta et al., 
2002 

HAP Improved elastic modulus and unchanged 
bending strength 

Kasuga et al., 
2001 

Carbon nanotubes Dramatic enhancement in thermal and 
mechanical properties 

Wu & Liao, 
2007 

Nano/Micro-silica Increased tensile strength, thermal stability, 
and hydrolysis resistance 

Huang et al., 
2009 

Table 3. Organic and inorganic fillers for the preparation of PLA composites. 

 
 Tensile 

strength/ 
(N/mm2) 

Young’s 
modulus/ 
(N/mm2) 

Elongation at 
break/  

(%) 

Charpy impact 
strength/ 
(kJ/mm2) 

Pure PLA sample 30.1 3820.2 0.83 24.4 

Cottom-PLA 41.2 4242.3 3.07 28.7 

Kenaf-PLA 52.9 7138.6 1.05 9.0 

Hemp-PLA 57.5 8064.2 1.24 9.5 

Lyocell-PLA 81.8 6783.8 4.09 39.7 

Hemp/kenaf-PLA 61.0 7763.8 1.22 11.8 

Hemp/Lyocell-PLA 71.5 7034.9 1.65 24.7 

Table 4. Mechanical properties of composites and a pure PLA sample (mean values; all the 
specimens were tested at 0°C; adapted in part from (Graupner et al., 2009). 
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Kim et al. (Kim et al., 2010) prepared a series of PLA/exfoliated graphite (EG) 
nanocomposites and confirmed that the graphite nanoplatelets could be dispersed 
homogeneously within the PLA matrix. Thermogravimetric analysis also showed that the 
thermal stability of the nanocomposites was improved with incremental amounts of EG up 
to 3 wt %. For example, the temperature corresponding to a 3% weight loss for a composite 
with 3.0 wt % EG increased by 14 degrees to ~364 °C vs. pure PLA. Additionally, the 
Young’s modulus of the composites increased with their graphite content and their electrical 
resistivity was dramatically lowered. Poly(lactic acid)/hydroxyapatite (PLA/HAP) 
composite scaffolds processed by foaming with supercritical CO2 were shown to be 
promising for bone replacement, because their mechanical characteristics closely matched 
the properties of bone in terms of viscoelasticity and anisotropy (Mathieu et al., 2006). 

4.1.2 Chemical modification 

The chemical modification of PLA has been achieved mainly through copolymerization and 
cross-linking. 

Copolymerization 

The carboxyl and hydroxyl groups of LA make it possible to copolymerize it with other 
monomers through polycondensation with lactone-type monomers such as ǆ-caprolactone, 
which generally leads to low molecular weight copolymers, or alternately through the ring-
opening copolymerization of lactide with other cyclic monomers including glycolide, ǅ-
valerolactone, and trimethylene carbonate, as well as with monomers like ethylene oxide 
(EO) to produce high molecular weight copolymers. The hydrophobicity and crystallinity of 
the copolymers can be increased for low to moderate comonomer contents. Besides, 
poly(ethylene oxide) (PEO) and PEG have been most commonly copolymerized with PLA to 
prepare copolymers on account that it is highly biocompatible, hydrophilic and non-toxic, 
non-immunogenic and non-antigenic (Metters et al., 2000). Such properties reduce protein 
adsorption and enhance resistance to bacterial and animal cell adhesion. 
Block copolymers are composed of long sequences (blocks) of the same monomer unit, 
covalently bound to sequences of a different type. The blocks can be connected in a variety 
of ways. Fig. 3 shows examples of block copolymer structures. Diblock PLA-PEG 
copolymers and triblock PLA-PEG-PLA copolymers allow modulation of the 
biodegradation rate, the hydrophilicity, and the mechanical properties of the copolymers, 
while phase separation can be tailored with PLA-PEG multi-block copolymers of 
predetermined block lengths (Wang et al., 2005). Star- and dendrimer-like PLA-PEG 
copolymers have also been synthesized to lower the Tg, Tm, and the crystallinity of the 
materials (Zhang et al., 2004). 
Riley et al. (Riley et al., 2001) prepared a range of PLA-PEG copolymers incorporating a PEG 
block of constant molecular weight (Mn = 5,000) and varying PLA segment lengths (Mn = 
2,000-110,000) by ROP of D,L-lactide catalyzed by stannous octoate; all the dispersions were 
stable under physiological conditions. In 2003, Li and Vert (Li & Vert, 2003) prepared series 
of diblock and triblock copolymers by ring-opening polymerization of L(D)-lactide from 
mono- and dihydroxyl PEO, using zinc metal as a catalyst under vacuum. The copolymers 
were semicrystalline, their composition and molar mass being determining factors affecting 
their solubility in water. Fu et al. (Fu et al., 2008) prepared series of LA-based polyurethanes 
modified by castor oil with controllable mechanical properties. In this work, hydroxyl-
terminated prepolymers were synthesized by copolymerization of L-LA and 1, 4-butanediol.  
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(a)

(c)                                     (e)

(b)

(d)

 
Fig. 3. Schematics of block copolymer structures: (a) diblock; (b) triblock; (c) alternating 
multiblock; (d); dendrimer-like copolymer; (e) star-like copolymer.  

Cross-linking 

Cross-linked PLA structures can be formed either by irradiation or through chemical 
reactions. Electron beam and Ǆ-irradiation have been widely applied to cross-linking PLA in 
the presence of small amounts of cross-linking agents such as triallyl isocyanurate (TAIC) 
(Quynh et al., 2008; Phong et al., 2010). The thermal stability of PLA-based materials can be 
significantly improved in this way (Quynh et al., 2007). Quynh et al. (Quynh et al., 2009) 
obtained stereocomplexes by cross-linking blends of PLLA and low molecular weight 
PDLA. Alkaline hydrolysis and enzymatic degradation of the stereocomplex could be 
controlled by radiation cross-linking, because the alkaline solution as well as proteinase 
hardly attacked the cross-linked polymer network. Unfortunately, irradiation equipment is 
expensive and the PLA samples must be processed as thin plates to absorb enough energy 
from the radiation to initiate cross-linking reactions, which significantly limits its practical 
application.  
Modified PLA with different gel fractions and cross-linking densities can also be obtained 
through chemical reactions between linking agents and the polymer chains without 
irradiation (Agrawal et al., 2010). Yang et al. (Yang et al., 2008) thus induced cross-linking 
via treatment of the PLA melt with small amounts of TAIC and dicumyl peroxide (DCP). 
The results obtained for samples with different gel fractions and cross-link densities showed 
that the cross-linking of PLA was initiated at low contents of either TAIC or DCP. The 
crystallinity of cross-linked PLA samples obtained with 0.5 wt% TAIC and 0.5 wt% DCP 
decreased from 32% for pure PLA to 24%. Significant increases in tensile modulus from 1.7 
GPa to 1.9 GPa, and in tensile strength from 66 GPa to 75 GPa were also observed, and the 
thermal degradation initiation and completion temperatures were both increased relatively 
to neat PLA. Additional advantages of this method are that it requires neither extra 
purification steps nor specialized equipment, since the reaction is carried out in the molten 
state with only small amounts of cross-linking agent. It is thus economically very 
advantageous over irradiation, which requires expensive equipment. An increase in 
brittleness was nevertheless observed following the formation of highly cross-linked 
structures, which remains a problem to be solved. 
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4.2 Surface modification 

The surface properties of materials play a key role in determining their applications. The 
presence of specific surface chemical functionalities, hydrophilicity, roughness, surface 
energy, and topography is crucial for biomedical applications of PLA and its interactions 
with biomacromolecules. Pure PLA causes a mild inflammatory response if it is implanted 
into human tissues. It is therefore important to design biomaterials with the required surface 
properties. The different surface modification strategies examined include physical 
methods, including surface coating, entrapment and plasma treatment, and chemical 
methods. Both types of approaches are reviewed. 

4.2.1 Physical methods 

Surface coating 

This is one of the simplest surface modification methods and has been applied to various 
polymers, but particularly to PLA nanoparticles used for drug delivery. For instance, PEG 
coating delayed the phagocytosis of PLA nanoparticles and prolonged the circulation time 
of the nanoparticles in vivo (Gref et al., 1994). Unfortunately the PEG-coated PLA 
nanoparticles cannot provide specific targeting, which influences their delivery efficiency. 
One of the most promising alternatives to PEG in this respect is the use of polysaccharides. 
These materials provide steric protection to the nanoparticles against non-specific 
interactions with proteins and thereby insure particle stability in the blood circulation 
system (Ma et al., 2008). Additionally, ligands to achieve active targeting can be conjugated 
on the surface of these nanoparticles, because many reactive groups are available on the 
polysaccharides and their derivatives (Gu et al., 2007). Another option is coating of the 
surface with extracellular matrix (ECM) proteins such as fibronectin, laminin, vitronectin, 
and collagen, which are conducive to cell adhesion and can greatly improve 
biocompatibility as well (Lin et al., 2010). 
Innovative work was accomplished by Cronin et al. (Cronin et al., 2004), who tested a PLLA 
fiber scaffold as a substrate for the differentiation of human skeletal muscle cells. Cell 
attachment (the number of cells attached to the films counted along the center, from one 
edge to the opposite edge of the film within the field of view) increased significantly on 
PLLA films coated with ECM gel, fibronectin, or laminin as compared to uncoated or 
gelatin-coated PLLA films. Myoblasts were able to differentiate into multinucleated 
myofibers on the ECM gel-coated PLLA fibers and expressed muscle markers such as 
myosin and ǂ-actinin, as demonstrated by western blot and oligonucleotide microarray 
analysis.  

Entrapment 

The entrapment of modifying species (e.g. PEG, alginate, gelatin, etc.) can be achieved 
through reversible swelling of the PLA surface as illustrated in Fig. 4. This is a simple yet 
effective method for surface modification requiring no specific functional groups in the 
polymer chains, as the modifying molecules accumulate merely on the surface of the 
material without modifying its bulk properties (Lu et al., 2009). Additionally, entrapment 
can be used to generate different morphologies and thicknesses of 3D scaffolds, which 
cannot be achieved by other surface modification methods. Finally, entrapment allows the 
modification of the surface in a controlled fashion because various parameters (e.g. solvent 
ratio, gelatin concentration, immersion time, and chemical cross-linking) can be varied to 
tailor the process (Zhu et al., 2003). 
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Fig. 4. Schematic illustration of entrapment process. 

PEG (Mw = 18,500) and poly(L-lysine) (PLL) (Mw = 29,300) have been trapped on PLA 
surfaces using 2,2,2-trifluoroethanol (TFE)/water as solvent/nonsolvent mixtures (Quirk et 
al., 2002). A new entrapment process has also been reported by Liu et al. (Liu et al., 2005), 
through chemical cross-linking of gelatin with 1-ethyl-3-(3-dimethylaminopropyl) 
carbodiimide (EDC) HCl and N-hydroxysuccinimide (NHS) (97%) in {2-[N-morpholino] 
ethanesulfonic acid} (MES) hydrate buffer, after the pretreated PLLA films were immersed 
in the gelatin solution for a set time. Results in comparison to the control scaffolds have 
shown that the surface hydrophilicity increased with the amount of entrapped gelatin and 
that cell attachment and proliferation, the deposition of collagen fibers, and other cell 
excretion (extracellular matrix, etc.) were also significantly improved. 

Plasma treatment 

Tests with plasma treatment were initiated in the 1960s and have been since then widely 
utilized to improve the hydrophilicity and cell affinity of PLA surfaces. The obvious 
advantages of plasma treatment as compared to other surface modification methods include 
its ability to control the surface structure, energy and charge, and to uniformly modify the 
surface without impacting bulk properties (Chu et al., 2002). Functional groups such as –
NH2, –COOH, and –OH, which are apt to form covalent bonds with other materials for 
further modification, are most frequently introduced by plasma treatment (Favia et al., 
1998). 
Liu et al. thus investigated the influence of the main operation parameters, namely the 
plasma power, the treatment duration (number of treatment cycles) and the electrode gap 
on a dielectric barrier discharge (DBD) plasma treatment of PLA films in terms of changes in 
surface wettability and chemistry (Liu et al., 2004). They further developed equations 
relating the surface properties (water contact angle and oxygen enrichment, as observed by 
XPS analysis) to these operational parameters. It was determined that the magnitude of the 
electrode gap played a dominant role in the treatment of PLA, and the observed wettability 
improvements were attributed to changes in both surface chemistry and microstructure. 
Chaiwong and coworkers (Chaiwong et al., 2010) investigated the influence of SF6 plasma 
on the hydrophobicity and barrier properties of PLA. It was found that the SF6 plasma 
enhanced the hydrophilicity and increased the water absorption time of PLA two-fold. 
Plasma treatment did not have any significant influence on the water vapor permeability of 
PLA, however, since the bulk structure controlling the transport properties are unaffected 
by the treatment. Other types of plasmas such as oxygen, helium, and nitrogen plasmas 
have also been investigated (Hirotsu et al., 2002). 
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While plasma treatment has been successfully applied to improving PLA wettability and 
cell affinity, its main disadvantage is that surface rearrangements caused by thermally 
activated macromolecular motions, to minimize its interfacial energy, can also influence the 
surface modification. Moreover, the potential influence of plasma on the degradation of PLA 
cannot be ignored.  

4.2.2 Chemical modification 

PLA does not carry reactive side-chain functional groups. Consequently, the first step of 
chemical modification is typically a simple surface hydrolysis (with an alkali) or an 
aminolysis treatment. The hydrophilic –COOH and –OH or reactive –NH2 groups 
introduced by cleavage of the ester bonds can be used to bind bioactive molecules such as 
arginine-glycine-aspartic acid (RGD)-containing peptides, chitosan (CS), arginine and lysine, 
PEG, collagen, and so on to regulate cell adhesion or protein adsorption. 
The synthetic RGD-containing peptides could be immobilized on PLA after treatment by 
hydrolysis or aminolysis (Stupack et al., 2001). Materials prepared by this method provide 
suitable recognition sites for cell adhesion receptors and biodegradation rates, making them 
suitable for various applications in fields such as tissue engineering and implant technology. 
It has also been determined that RGD-conjugated poly(lactic acid-co-lysine)(arginine-
glycine-aspartic acid) nanoparticles (PLA-PLL-RGD NP) are non-toxic and bind more 
efficiently to human umbilical vein endothelial cells (HUVECs) as compared to bare PLA-
PLL NP in vitro. Targeted imaging results obtained in vivo showed that PLA-PLL-RGD can 
selectively bind to BACP-37 breast cancer cells. Lieb et al. also demonstrated largely 
increased cell densities and cell proliferation on surfaces modified with RGD-anchored 
monoaminated poly(ethylene glycol)-block-poly(D,L-lactic acid) (H2N-PEG-PLA), mediated 
through RGD–integrin interactions (Lieb et al., 2005). 
Chitosan (CS) is a biopolymer displaying good biocompatibility, non-toxicity and 
biodegradability, produced by the alkaline N-deacetylation of chitin. The immobilization of 
this polymer on PLA has been accomplished by coating the surface with chitosan, modified 
with the photosensitive hetero-bifunctional cross-linking reagent 4-azidobenzoic acid, and 
irradiation with ultraviolet light to photolyze the azide groups and covalently link the two 
polymers (Zhu et al., 2002). The -OH and -NH2 groups of chitosan provide further 
opportunities to introduce a wide range of functional groups on the surface. Thus CS 
molecules immobilized on PLA were modified with a heparin (Hp) solution to form a 
polyelectrolyte complex on the surface, which inhibited platelet adhesion and activation, 
and enhanced cell adhesion. 

4.3 Outlook of PLA surface modification 

The surface attributes of PLA can be tailored to enhance its hydrophilicity and 
biocompatiblity through various methods. Unfortunately, all these established methods 
for surface modification are inherently flawed to some extent. For example, a single 
plasma treatment can merely improve cell adhesion but cannot accelerate cell growth; 
non-covalent attachment of a functional material onto a PLA surface is not stable and 
permanent. An excellent method suggested to solve the second issue is the use of 1,6-
hexanediamine for surface aminolysis, followed by conjugation with biocompatible 
macromolecules such as gelatin, chitosan, or collagen (Zhu et al., 2004). Hong et al. have 
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shown that chondrocyte cells could attach, proliferate, and spread on PLA microspheres 
coated with collagen in the same way as described above, in particular those having high 
collagen contents (Hong et al., 2005). It appears that the surface modification of PLA 
would be best achieved with a combination of distinct approaches, to benefit from the 
advantages of all the methods. Polysaccharide polyelectrolyte multilayers, including 
chitosan and dextran sulfate-stabilized silver nano-sized colloids developed by Yu et al. 
(Yu et al., 2007), were successfully deposited on an aminolyzed PLA membrane in a layer-
by-layer self-assembly manner. This seemingly easy process resulted in significant 
improvements in hydrophilicity, antibacterial activity, hemocompatibility, and 
cytocompatibility for the PLA membrane, thanks to the different attributes of –NH3+ 

(positive charge), chitosan (biocompatibility), and silver nanoparticles (antibacterial 
activity). The radiation-induced methods are emerging as powerful surface modification 
techniques, particularly when relying on PLA photoactivation to create reactive groups or 
moieties useful to graft specific chemical functionalities. The irradiation of PLA with UV 
(ozone can be generated from molecular oxygen irradiated with UV in this process), for 
example, is known to increase fiber adhesion to high surface energy components due to 
the introduction of photo-oxidized polar groups on the surface (Koo & Jang, 2008). 
Irradiation followed by grafting has also been used extensively to alter PLA surface 
characteristics, mainly due to the advantages it offers, namely a low operation cost, mild 
reaction conditions, selectivity to UV light, and the permanent surface chemistry changes 
induced (Ma et al., 2000). 

5. Applications of PLA in the biomedical field 

Due to its bioresorbability and biocompatibility in the human body, PLA has been 
employed to manufacture tissue engineering scaffolds, delivery system materials, or 
covering membranes, different bioabsorbable medical implants, as well as in dermatology 
and cosmetics. 

5.1 Tissue engineering 

Since the introduction of the concept in 1988, tissue engineering, a technique invented to 
reconstruct living tissues by associating the cells with biomaterials that provide a scaffold on 
which they can proliferate three-dimensionally and under physiological conditions, has 
emerged as a potential alternative to tissue or organ transplantation and has thus attracted 
great attention in science, engineering, and medicine. To meet the diverse needs of tissue 
engineering, scaffolds made from various materials have been tested in this field. Although 
certain metals are somewhat good choices for medical implants due to their superior 
mechanical properties, their lack of degradability in a biological environment makes them 
disadvantageous for scaffold applications (Liu & Ma, 2004). Inorganic/ceramic materials 
such as HAP or calcium phosphates, being studied for mineralized tissue engineering with 
good osteoconductivity, are also limited due to poor processability into porous structures 
(Ilan & Ladd, 2002). In contrast, polymers have great design flexibility because their 
composition and structure can be tailored to meet specific needs (Huang et al., 2007). 
Degradable polymers frequently used for tissue engineering applications are linear aliphatic 
polyesters such as PGA, PLA, and their copolymers (PLGA), which are fabricated into 
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scaffolds. These polymers are among the few synthetic polymers approved by the FDA for 
human clinical applications. The drawbacks of these polyesters include their hydrophobicity 
and lack of functional groups, which limits cell adhesion, an important factor when 
constructing polymeric scaffolds. Another drawback is their slow hydrolytic degradation 
(Iwata & Doi, 1998).  
An ideal scaffold used for tissue engineering should possess the following properties: 1) Be 
biocompatible, so that the scaffold can be well integrated into host tissues without resulting 
in any immune response; 2) It should be porous with appropriate pore size, size distribution 
and mechanical function, to allow cell or tissue growth and the removal of metabolic waste; 
3) It must be mechanically able to withstand local stress and maintain the pore structure for 
tissue regeneration; 4) Very importantly, the scaffold should be biodegradable (Ma, 2004). 
Synthetic scaffolds are considered important components of a successful tissue engineering 
strategy (Wang, 2007). Hybrid three dimentional porous scaffolds of synthetic and naturally 
derived biodegradable polymers are particularly promising because they combine the 
advantages of the two types of materials. They should maintain sufficient mechanical 
strength while providing specific cell-surface receptors during the tissue remodeling process 
that stimulate both in vitro and in vivo cell growth (Chen et al., 2002). PLA-based hybrid 
materials have been successfully tested clinically for that purpose so far, and tests on other 
tissues including bladder (Engelhardt et al., 2011), cartilage (John et al., 2003), liver (Lv et al., 
2007), adipose (Mauney et al., 2007), and bone tissues (Mathieu et al., 2006) have also been 
reported. 
Jiang et al. (Jiang et al., 2010) functionalized chitosan/PLGA by heparin immobilization with 
controlled loading efficiency. One of the main benefits of introducing chitosan into PLGA 
microspheres is that chitosan imparts functionality due to its reactive amino groups, so that 
biomolecules such as heparin could be attached (Jiang et al., 2006). The compressive strength 
and modulus remained in the range of human trabecular bone after the heparinization 
process. More importantly, heparinized chitosan/PLGA scaffolds with a low heparin 
loading (1.71 g/scaffold) showed a stimulatory effect on cell differentiation, as indicated by 
enhanced osteocalcin expression as compared with a non-heparinized chitosan/PLGA 
scaffold. Based on these results, Jiang et al. (Jiang et al., 2006) continued to evaluate the 
novel scaffolds for bone regeneration in vivo. In the rabbit ulnar critical-sized-defect model 
created, successful bridging of the critical-sized defect on the sides both adjacent to and 
away from the radius occurred using chitosan/PLGA-based scaffolds. However, the 
addition of chitosan to PLGA led to somewhat higher inflammation and lower 
mineralization than for the PLGA counterpart, which is a major problem that remains to be 
solved. 
Three-dimensional (3D) electrospun fibrous scaffolds have been suggested as a potential 
tissue engineering tool for bone regeneration.  Shim et al. (Shim et al., 2010) thus reported a 
3D microfibrous PLLA scaffold fabricated using electrospinning techniques with a 
subsequent mechanical expansion process. The use of these 3D scaffolds for the proliferation 
of osteoblasts was examined. The 3D scaffolds led to a 1.8-fold higher level of osteoblast 
proliferation than generally achieved for electrospun 2D nanofibrous membranes. In vivo 
results further showed that 3D electrospun microfibrous matrices provided a favorable 
substrate for cell infiltration and bone formation after 2 and 4 weeks when using a rabbit 
calvarial defect model. 

www.intechopen.com



 
Poly(Lactic Acid)-Based Biomaterials: Synthesis, Modification and Applications 

 

265 

3D printing technology has rapidly expanded in the tissue engineering field since it was 
first developed at the Massachusetts Institute of Technology. Ge et al. (Ge et al., 2009) 
developed 3D-printed poly(lactic acid-co-glycolic acid) (PLGA) scaffolds which could 
support the proliferation and osteogenic differentiation of osteoblasts. Based on their in 
vitro study, they also evaluated PLGA scaffolds for bone regeneration within a rabbit 
model (Ge et al., 2009). In both the intra-periosteum and the iliac bone defect models, the 
implanted scaffolds facilitated new bone tissue formation and maturation over a time 
period of 24 weeks. 
The current clinical use of PLA-based scaffolds nevertheless remains very limited (Iwasa et 
al., 2009), mainly because of the risk of disease transmission and immune response. This can 
be illustrated by taking cartilage tissue engineering as an example. Traditional autologous 
chondrocyte implantation (ACI), first introduced by Brittberg et al. in 1994 (Brittberg et al., 
1994), has yielded good clinical results (Bentley et al., 2003). To date, none of the short- or 
mid-term clinical and histological results using scaffolds were reported to be better than 
ACI. As for the scaffolds, collagen and hyaluronan-based matrices are among the most 
popular scaffolds in clinical use nowadays, since they offer substrates which are normally 
essential elements in native articular cartilage (Iwasa et al., 2009). Among the very few cases 
of scaffolds in clinical use is the copolymer of PGA/PLA (polyglactin, vicryl) and 
polydioxanone, which is used for cartilage repair under the trade name of BioSeed®-B and 
BioSeed®-C (Biotissue Technologies AG, Freiburg, Germany). 
In summary, tissue engineering is one of the most exciting interdisciplinary fields today and 
is growing rapidly with time. The inclusive criteria for studies on scaffolds capable of 
clinical application were in vivo or clinical studies and thus certain artificially designed 
scaffold features (such as pore size, interpore connectivity, etc.) are necessary for optimal 
tissue engineering applications (accelerated tissue regeneration). Suggestions for future 
directions include the use of designer scaffolds with in vivo experimentation, and coupling 
scaffold design with cell printing to create designer material/biofactor hybrids to optimize 
tissue engineering treatments (Hollister, 2005).  

5.2 Delivery systems 

There has long been a desire to achieve the targeted delivery of bioactive compounds to 
areas in the body to maximize therapeutic potential and minimize side-effects. Many types 
of particles have been tested as delivery tools for biomedical applications such as liposomes, 
solid lipid nanoparticles, and biodegradable polyesters like PLA and PLGA (Torchilin, 
2006). With its excellent biocompatibility, biodegradability, mechanical strength, heat 
processability, and solubility in organic solvents, PLA can be used to produce dosage forms 
such as pellets, microcapsules, microparticles (MP), nanoparticles (NP), etc. MP and NP of 
PLA, modified or unmodified, are increasingly investigated for sustained release and 
targeted drug, peptide/protein, and RNA/DNA delivery applications because of their small 
size enabling their permeation through biological barriers such as the blood-brain barrier 
(Roney et al., 2007).  
Although PLA-based materials such as PLGA have been FDA-approved and are clinically 
available, they lack chemical functionalities to facilitate specific cell interactions. 
Furthermore, their potential for the sustained release of hydrophilic molecules (e.g. 
proteins) is often limited (Fahmy et al., 2005). Frequent undesired effects include low 
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encapsulation efficiency and high burst release of the encapsulated biomolecule within the 
first few hours or days, which is mainly due to the desorption of surface-associated 
hydrophilic molecules having weak interactions with the polymer (Fahmy et al., 2005). To 
circumvent these limitations and establish therapeutic efficacy, large doses or site-specific 
administration are often required for devices comprised of polyester biomaterials. In an 
attempt to address these problems, numerous groups have introduced functional groups 
(such as amine functionalities) on these materials, either through direct conjugation or 
device fabrication with additives (Betram et al., 2009). 
As for drug release from MPs or NPs, it is generally controlled by both drug diffusion and 
polymer degradation. To ensure the efficacy of drug delivery, control over the particle 
size and particle size distribution is critical, since smaller particles and narrower size 
distributions facilitate the design of targeted drug delivery systems. These involve 
binding fragments specific to a tumor-associated surface antigen, with a ligand binding to 
its corresponding receptor on the tumor cell surface, which can be attached on the surface 
of the PLA-based materials. Furthermore, polymers that display a physicochemical 
response to changes in their environment are being intensively explored as potential drug 
and gene delivery systems. The use of stimuli-responsive nanocarriers offers an attractive 
opportunity for targeted delivery, in which the delivery system becomes an active 
participant rather than a passive vehicle. The advantage of stimuli-responsive 
nanocarriers becomes obvious when the stimuli are unique to disease pathology, allowing 
the nanocarrier to respond specifically to the pathological characteristics. For instance, in 
solid tumors, the extracellular pH decreases significantly from 7.4 (the pH value under 
normal physiological conditions) to about 6.5 (Vaupel et al., 1989; Haag, 2004). In 
addition, the pH ranges from 4.5 in lysosomes to about 8.0 in mitochondria. Given these 
pH shifts, therapeutic compounds with a pKa between 5.0 and 8.0 are able to exhibit 
dramatic changes in physicochemical properties (Ganta et al., 2008). Another option is 
thermo-sensitive polymeric micelles, containing a hydrophobic core and a thermo-
sensitive shell, the later changing from a hydrophilic nature at body temperature to a 
collapsed hydrophobic polymer at a hyperthermic condition of 42°C (Na et al., 2006). 
Investigations concerned with this theme include responses induced by chemical 
substances, changes in temperature (Tyagi et al., 2004) or pH (Sethuraman & Bae, 2007), 
electric signals (Sawahata et al., 1990) or other environmental conditions (Qiu & Park, 
2001). 
The use of nucleic acids as therapeutic agents for genetic diseases has been extensively 
studied (Torchilin, 2008). However, a major limitation of this technique lies in the low 
delivery efficiency of the therapeutic DNA to the diseased site. To address this issue, various 
strategies have been explored including vectors engineered from viruses (Brun et al., 2008) 
and PLGA in NP formulations. PLGA NP have shown particular promise in improving the 
delivery efficacy (Kocbek et al., 2007). Besides, the physical characteristics of the 
nanoparticles can be manipulated to escape the degradative endosomal lumen, resulting in 
cytosolic localization. To develop novel administration paths, hybrid versions of research 
have been conducted on this subject, yet the results are mostly based on animal models or in 
vitro results, making it difficult to draw final conclusions. From clinical trials, substantial 
obstacles to their use, such as immunogenicity and inflammatory potential, have also been 
demonstrated (Nafee et al., 2007). Therefore, there is still a long way to go before real clinical 
applications come through. 
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Some examples of delivery systems incorporating PLA are provided in Table 5 and in Fig. 5 
(Chen et al., 2007; Sethuraman & Bae, 2007). Sethuraman et al. (Sethuraman & Bae, 2007) 
developed a novel drug delivery system for acidic tumors consisting of two components: 1) 
A polymeric micelle with a hydrophobic core of PLLA and a hydrophilic shell of PEG 
conjugated to TAT (a cell-penetrating peptide in HIV), and 2) a highly pH-sensitive 
copolymer of poly(methacryloyl sulfadimethoxine) (PSD) and PEG (PSD-b-PEG). The final 
carrier, which was able to shield the micelles and expose them at slightly more acidic tumor 
pH levels, was achieved by complexing PSD with the TAT of the micelles. The results 
obtained showed significantly higher uptake of TAT micelles at pH 6.6 in comparison with 
pH 7.4, and that TAT not only translocated into the cells but it was also traced to the surface 
of the nucleus [see Fig. 5]. 

 

Fig. 5. Test results for PLA-based drug delivery materials. Fluorescent microscopy images 
are shown on top for COS7 cells transfected by plasmid encoding enhanced green 
fluorescence protein (EGFP) with different carriers: (A) lipofectamine, (B) 
methoxypolyethyleneglycol-PLA-chitosan nanoparticles (MePEG-PLA-CS NP); the 
transfection efficiency, as detected by flow cytometry, is higher in (B) than in (A) 
(Reproduced with the permission from Chen, J. et al. (2007). Preparation, characterization 
and transfection efficiency of cationic PEGylated PLA nanoparticles as gene delivery 
systems, Journal of Biotechnology, Vol.130, No.2, pp.107. Copyright (2007) Elsevier) At the 
bottom are dual label confocal micrographs for MCF-7 cells incubated with TAT micelles: (a) 
Cells stained with fluorescein isothiocyanate (FITC) attached to TAT in the micelles; (b) the 
same nuclei as in (a) were stained with TOPRO-3; (c) superimposed images of (a) and (b); 
the yellow color shows the localization of TAT within the nuclei (Reproduced with the 
permission from Sethuraman, V. A. & Bae, Y. H. (2007). TAT peptide-based micelle system 
for potential active targeting of anti-cancer agents to acidic solid tumors. Journal of 
Controlled Release, Vol.118, No.2, pp.216. Copyright (2007) Elsevier). 
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Material Application Results Reference 
PLA-PEG 
particles 

Carrier for tetanus 
toxoid 

Enhanced transport across 
the rat nasal mucosa 

Vila  
et al., 2005 

PEG-PLA NP Conjugated with 
lactoferrin (Lf)

Increased uptake of the Lf-
NP by bEnd.3 cells

Hu  
et al., 2009 

PLA-b-Pluronic-
b-PLA 

Carrier for oral 
insulin 

Good control over blood 
glucose concentration 

Xiong  
et al., 2007 

PLA NP Carrier for HIV 
p24 proteins 

Induced seric and mucosal 
antibody production 

Aline 
et al., 2009 

Surfactant-free 
PLA NP 

Carrier for HIV 
p24 proteins  

Elicited strong CTL response 
and cytokine release 

Liggins  
et al., 2004 

PLA 
microspheres 

Carrier for 
paclitaxel 

Reduced inflammation of 
arthritis rabbit model 

Jie  
et al., 2005 

PEO-PLA 
copolymers 

Carrier for 5-FU 
and paclitaxel  

Complete drug release Zhang & 
Feng, 2006 

PLA-TPGS 
copolymers 

Carrier for 
paclitaxel 

Initial burst followed by 
sustained release  

Freitas  
et al., 2005 

PLA 
microspheres 

Carrier for 
nimesulide 

Initial burst followed by an 
exponential decrease 

Chen  
et al., 2007 

PEGylated PLA 
NP 

Gene delivery 
systems 

Improved transfection 
activity 

Ataman-Önal 
et al., 2006 

PLA-PEG-PLA 
copolymer 

Carrier for 5-FU 
and paclitaxel  

Good control over the release Venkatraman 
et al., 2005 

AP-PEG-
PLA/MPEG-PAE 

Drug carrier for 
cancer therapy 

Presented high tumor-
specific targeting ability 

Wu  
et al., 2010 

PLGA/PEI NP Carrier for 
luciferase siRNA 

Effective silencing of the 
gene in cells 

Patil & 
Panyam, 2009  

cNGR-PEG-PLA 
NP 

Carrier for DNA Rapid and efficient 
nanoparticle internalization 

Liu  
et al., 2011 

DMAB coated 
PLGA NP 

Loaded with 
plasmid DNA 

Significantly improved 
transfection efficiencies 

Fay  
et al., 2010 

Table 5. Investigations on PLA-based material as drug delivery systems. AP: peptide, 
CRKRLDRN; MPEG: methyl ether poly(ethylene glycol); PAE: poly(ǃ-amino ester); PEI: 
polyethylenimine; cNGR: Cyclic Asn-Gly-Arg; DMAB: dimethyldidodecylammonium 
bromide. 

In summary, some problems still remain to be tackled for this promising novela 
dministration method. A major issue is the presence of surfactants such as SDS or stabilizers 
such as PVA in the microparticles, necessary to achieve antigen binding and colloidal 
stability. Although present only at low concentrations, the acceptability of such components 
in human vaccines depends on the results of extensive and costly toxicological studies. 
Biodegradable polymers used for drug delivery to date have mostly been in the form of 
injectable microspheres or implant systems requiring complicated fabrication processes with 
organic solvents. In such systems, the organic solvents can denature components such as 
protein drugs being encapsulated. Besides, these delivery systems have relatively low 
transfection efficiencies in vitro as compared with reagents commercialized for cell 
transfection. The last problem concerns the lack of test results for these delivery systems 
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using animal models or in clinical trials, which is of fundamental importance for real 
applications in biomedical therapy. 

5.3 Other fields 

Due to its versatility, PLA has been investigated for membrane applications (e.g. wound 
covers), implants and medical devices (fixation rods, plates, pins, screws, sutures, etc.), and 
dermatological treatments (e.g. facial lipoatrophy and scar rejuvenation). 
With respect to wound treatment, bacterial infections are one of the main factors impacting the 
healing process. One of the best approaches to treat wound infections is by the immobilization 
of drugs or antibacterial agents within the nanofibers by electrospinning, or the 
electrospinning of polymers with intrinsic antibacterial and wound-healing properties. Dozens 
of patents have been issued on that topic so far (Ghosh et al., 2007; Robinson et al., 2009). Silver 
nanoparticles (nAg) and the natural polysaccharide chitosan (as well as its quaternized 
derivatives) are most commonly used as antibacterial agents with a high intrinsic activity 
against a broad spectrum of bacteria (Rujitanaroj et al., 2008; Ignatova et al., 2009). 
Metals are still the most popular materials for fracture fixation, but their disadvantages 
include stress shielding, accumulation in tissues, hypersensitivity, growth restriction, pain, 
corrosion, and interference with imaging techniques. Consequently, the focus of research is 
increasingly shifted to biomaterials like PLA, which offers satisfactory strength during the 
healing of bone tissue and then degrades over time (Mavrogenis et al., 2009). A commercial 
product with a proven track record in clinical applications is the VICRYLTM suture material, 
based on PGA/PLA copolymers (Mehta et al., 2005). The number of applications of PLA as 
fixation rods, plates, pins, screws, sutures, etc. in orthopaedics and dentistry is also 
increasing (Raghoebar et al., 2006). 
 

 

 
Fig. 6. Applications of PLA in the biomedical field. 
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In 2004, Sculptra™ [poly(L-lactic acid)] was approved by the FDA as the first injectable 
facial “volumizer” in the treatment of lipoatrophy due to its significant therapeutic 
effectiveness (Burgess & Quiroga, 2005). The lipodystrophy syndrome is associated with the 
usage of highly active antiretroviral therapy (HAART) containing protease inhibitors or 
nucleoside reverse transcriptase inhibitors for HIV patients. The action mechanism of 
Sculptra™ is via stimulation of the fibroblastic activity with generation of collagen and other 
connective tissue fibers. In addition, it acts as dermal matrix adding support by thickening 
the dermis (Vleggaar & Bauer, 2004). Moreover, PLA can help improve the appearance of 
scars due to acne, surgery, trauma, or suture (Lowe & Beer, 2005, as cited in Beer & Rendon, 
2006). 

6. Conclusions 

Due to the multiple desirable characteristics of PLA including renewability, 
biocompatibility, transparency, and thermoplasticity, it is being used or is a potential 
candidate for many consumer and biomedical applications (Jamshidian et al., 2010). Ever 
increasing environmental concerns associated with conventional polymers derived from 
petrochemicals lead to constantly expanding applications for PLA since its discovery in 1932 
by Carothers at DuPont.  
In previous years, the most negative point of PLA was its higher price as compared with 
petrochemical-based polymers. Today, by optimizing the LA and PLA production 
processes, and with increasing PLA demand, a reduction in its price can be achieved. The 
price of PLA is currently much lower than in previous years. Meanwhile, PLA is mainly 
synthesized in the industry by ROP employing tin(II) bis(2-ethylhexanoate) (SnOct2) as a 
catalyst, which has been approved as a food additive by the FDA, but the potential toxicity 
associated with most tin compounds cannot be ignored for biomedical applications. 
Scientists all over the world are now exploring novel, well-defined catalysts with good 
biocompatibility, high catalytic activity, low toxicity, and excellent stereoselectivity. This 
should remain an everlasting interest area. Finally, the possibility of obtaining 100% bio-
sourced opens the way for PLA to become more independent from petrochemical-based 
polymers, free of environmental and health concerns.  
However, the major disadvantages of PLA such as its poor ductility, slow degradation rate, 
and poor hydrophilicity somewhat limit its applications. The modification of PLA bulk and 
surface properties has thus become crucial to increase its applicability. Many of the bulk and 
surface modification strategies discussed above have been designed to tune the PLA surface 
properties according to the demands of biomedical applications. Unfortunately, all these 
established methods for surface modification are somewhat deficient and while they 
provide control over the wettability, degradation rate, and functionality, it is still 
compulsory to minimize their negative impact on PLA bulk properties. Thus a combined 
modification strategy (e.g. irradiation followed by grafting) or a better balance of PLA 
surface and bulk properties should be sought. Ideally, with respect to a better balance of 
properties and shorter modification times, one-step approaches need to be developed 
because it is time-consuming to carry out surface and bulk modifications separately, and the 
solvents and reagents involved in multiple modification steps tend to affect PLA properties 
significantly.  
All these modification strategies aim at tailoring the properties of PLA-based materials for 
certain applications. Fortunately, more and more encouraging results have been reported, 
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but the present conclusions from most of these reports cannot be directly generalized to 
truly biomedical applications since most of the experiments were carried out in vitro. 
Nevertheless, these findings offer some clues for further improvements. The increasing 
number of functional PLA-based polyesters provides the opportunity to study the 
relationships between structure and functionality of these polymers such as cell adhesion 
and degradability in vitro and in vivo, as well as to develop applications of these materials 
for delivery system in the form of micro- and nanoparticles or scaffolds for tissue 
engineering. Finally, cancers and acquired or inherited genetic diseases represent one of the 
most serious threats to the health of human beings, but no effective therapies are available 
so far. It is suggested that the development of effective and ideal tools for drug, 
peptide/protein, and RNA/DNA delivery will represent a good alternative in drug 
development. It therefore appears that it would be best to focus future research work on the 
rational design of novel carriers for biomedical uses and targeted delivery systems. 
Obviously, this requires plenty of relevant experiments on animal model and enough 
clinical trials before they are widely utilized. 
Even though countless studies have focused on the synthesis and the modification of PLA 
and remarkable progresses has been achieved over the last two decades, vast opportunities 
as well as challenges remain in terms of exploring the characteristics of PLA-based materials 
and expanding their domains of applications. 
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engineering and industrial engineering for cost-effective operation of a hospital.
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