
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



12 

Intelligent Object Exploration 

Robert Gaschler1, Dov Katz2, Martin Grund1,  
Peter A. Frensch1 and Oliver Brock2  

1Humboldt-Universität zu Berlin,  
2Technische Universität Berlin 

Germany 

1. Introduction 

Tool use is considered to be the hallmark of higher cognitive abilities (compare e.g. Blaisdell, 
2008). It is therefore the target of an extensive body of work in psychology. The mechanisms 
that enable the discovery of affordances in humans and animals are still not fully 
understood. Tool use has been observed predominantly in primates but also in other 
animals such as crows. Weir and Kacelnik (2007), for instance, report on a New Caledonian 
Crow modifying aluminum strips in order to retrieve food. The crow correctly chooses 
between bending and unbending aluminum strips, depending on the specific type of jar it is 
presented with. Studies on tool use suggest that the potential application of objects to 
achieve manipulation objectives can be discovered through exploration. When an affordance 
of an object is discovered, it becomes a tool.  

Recently, tool use has begun to gain the attention of a different research field: robotics. The 
goal of research in robotics is to produce artificial agents capable of accomplishing 
manipulation tasks. Many of these manipulation tasks require the usage of tools. Thus, 
significant progress in robotics will be achieved by developing the necessary mechanisms 
for tool use.  

We believe that much can be gained by integrating the methods of psychology and robotics. 
The mutual interest in tool use creates an opportunity for fruitful collaboration. On the one 
hand, roboticists can leverage insights gained by decades of research on tool use in humans 
and animals. On the other hand, psychologists can benefit from quantifiable and easy-to-
reproduce experiments conducted on artificial agents. A theory about tool use, for example, 
could be tested on a robotic system, allowing for precisely controlled experimental 
conditions, without the complexity involved in testing human subjects. 

In this chapter, we present a new collaborative effort between researchers from the areas of 
psychology and robotics. We focus on exploration of kinematic structures as a first step 
towards advancing our understanding of human and robotic tool use. Through the study of 
kinematic structures, we hope to gain insights into the principles that govern tool use at a 
more general level.  The work presented here is still in its early stages. Nevertheless, our 
preliminary results are encouraging. 

To assess whether a new object can be a useful tool for a certain task, an agent must be able 
to explore the object's properties, such as its shape or the possible relative motions its 
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constituent parts are able to perform. An understanding of object exploration is therefore a 
prerequisite for explaining tool use in humans and in robots. As in many environments 
exploration is costly, learning of efficient exploration strategies and transfer to novel objects 
is a major concern of the current chapter. To understand the principles underlying object 
exploration and the acquisition of exploration strategies, we turn our attention to a specific 
class of objects: rigid articulated objects. Articulated objects are objects composed of rigid 
parts that are connected to each other via degrees of freedom (joints). Exploration provides 
an agent with an understanding of how an object's degrees of freedom can be used and thus 
with knowledge about the potential use or the function of the object. Consequently, the 
ability to explore the kinematic structure of an object is a prerequisite for using it as a tool.  

We describe a novel simulation environment, which will allow for robots and humans to 
interact with the same objects, in order to determine their kinematic structure. This 
simulated environment enables us to study object exploration in humans and robots. We 
hope that by studying exploration of articulated objects we can advance the current level of 
understanding of human object exploration and tool use, and that this improved 
understanding will play an important role in advancing robotic tool use. We also hope that 
this collaborative research will encourage a greater exchange of ideas and techniques 
between robotics and psychology. 

In the following paragraphs we will discuss what psychology and robotics can contribute to 

intelligent object exploration in terms of representational formats, the dilemma of 

exploration vs. exploitation, and the interplay of passive knowledge accumulation and 

active testing. In each case we will briefly sketch how the robotics approach to object 

exploration can benefit from incorporating approaches from psychology and how 

psychological studies and applications concerning object exploration can be fostered by 

borrowing from and providing interfaces with robot object exploration. After this, we will 

describe in more detail our current approach and results concerning robot object 

exploration. Finally, we report findings on human exploration that render as highly 

promising future attempts to provide robots with human exploration strategies and to 

construct interfaces that allow for humans and robots to manipulate the same objects. 

1.1 Symbolic and relational representations 

The form of representation of object structure is highly relevant for intelligent object 

exploration. In order to benefit from past exploration episodes, experience needs to be 

stored in a way that allows application to novel cases and abstraction from irrelevant 

features. Both of the latter criteria pose a serious challenge to instance-based models that 

have been proposed in psychology and robotics for improving performance by storing 

processing episodes. We argue that symbolic and relational representations will be crucial to 

capture human and robot object exploration. 

In cognitive psychology, instance-based approaches have been developed that successfully 
model human skill acquisition with narrow sets of stimuli (e.g., Logan, 1988). In these 
models, processing episodes (e.g. an arithmetic problem and its solution) are stored in 
memory. When the situation reoccurs, the solution can be retrieved from memory which is 
often faster and more efficient than the original way of computing the solution. While 
successful in explaining some aspects of human skill acquisition, these models are less 
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helpful for capturing exploration. However, research on information reduction (e.g., Haider 
& Frensch, 2002; Gaschler & Frensch, 2007, 2009) suggests that humans spontaneously 
explore object structure and parse objects into relevant and irrelevant parts – even in 
repetitive tasks with a narrow set of material that would be solvable by an instance-based 
approach. They generate knowledge about abstract structural properties of the task material 
which allows them to process novel and unfamiliar objects just as efficiently as highly 
practiced ones.  

Roboticists have also been using instance-based approaches to link specific states of the 
environment to actions. While machines are good at storing tables of states and actions, the 
problem of applying the knowledge to novel situations remains. Instance-based 
representations usually contain too much information due to the storage of irrelevant 
features. Unless repeated exposure to various exemplars of objects allows for pruning of the 
irrelevant features, they will hinder application of the knowledge to novel situations (e.g., 
Sun, Merrill, & Peterson, 2001 for an interesting approach). This is because novel situations 
that might in principle be suitable for application of the instance knowledge might have low 
similarity on irrelevant features. Other research in artificial intelligence and robotics has 
tried to tackle the problem of matching knowledge to states of the environment by 
considering more abstract representation formats. Katz and Brock (2008) proposed to 
capture information about robot object exploration episodes by symbolic relational 
representations. This work focuses on the domain of articulated objects. It leverages a 
representation of link properties that only includes properties that are relevant for 
manipulation. Application of the knowledge of the structural properties of the object 
therefore does not depend on irrelevant features such as the configuration of an object in 
every exploration episode. This type of approach avoids problems of combinatorial 
explosion when planning and learning from specific physical interactions that instantiate 
exploration episodes. Also, a robot system that has a clear-cut representation of an 
exploration event allows for an interface with a human. More specifically, a robot may learn 
from human exploratory behavior through observation.  

In psychology and robotics representation can be regarded as an important component of 
intelligent object exploration and tool use. Representation format is crucial to solve the 
problem of the application to novel cases and abstraction from irrelevant features as well as 
the problem to provide an interface between human and robot exploration behavior. A 
high-dimensional world can be represented such that human and robot object exploration 
can rely on helpful restrictions of what has to be considered to solve a task. Through 
experiments, psychologists can reveal insights about the representations used by humans 
for solving exploration and tool use tasks. Roboticists can then test such representations in 
real-world or simulated experiments and try to design mechanisms that can choose or 
generate the most appropriate representation format for a new tool use task. Psychologists 
can gain from strict validation of their experimental results on a robotic platform. Human 
theories of exploration and tool use can be cast in the representation used for robot 
exploration and then tested in a simulation environment that allows for a large array of 
systematic variations of object structure. 

1.2 Exploration vs. exploitation 

Object exploration can lay the ground for tool use by delivering the knowledge about 
structural properties that is necessary to infer functional properties. If exploration is a means 
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rather than an end, efficiency considerations are relevant. Humans or robots can either 
invest more time and energy in acquiring more knowledge about the structure of an object 
or rather capitalize on the (potentially incomplete) knowledge acquired so far and exploit it 
to boost performance.  

Based on human and animal research, learning and decision theories have proposed models 
that balance exploration and exploitation by proposing that the probability to choose an 
option different from the one that is currently associated with the highest reward is 
inversely related to the strength of the evidence for the option deemed best (e.g., Luce, 
1959). Through updating of the estimates choice preferences will change from trial to trial. 
Crucial for adaptation to dynamic reward structures, reinforcement learning will provide 
estimates that grant opportunities for further learning as eventually the option deemed less 
profitable is chosen occasionally. Indeed, humans often show probability matching. If 
human participants are instructed to choose between options (e.g. card decks) in reward 
discrimination experiments, probability matching has been frequently observed (e.g., 
Gaissmaier & Schooler, 2008). Their participants did not constantly choose the deck with the 
highest reward probability (i.e., optimizing) but rather chose all decks – with frequencies 
paralleling reward probabilities. Probability matching ensures quick adaptation to changes 
in the reward schedule as information on all options is constantly gathered. If, for instance, 
the previously less rewarding option would surpass the previously most rewarding option, 
a participant relying on optimization would miss the chance to profit from the new highest 
reward, while one engaging in probability matching would not. Notably, the authors 
furthermore showed that probability matching was not the result of probabilistic action 
selection in all cases. Rather, some of the participants constantly tested hypotheses about 
potential deterministic regular structures in the reward schedule of the task (even when the 
task was still probabilistic). Exploring various hypotheses subsequently led to choice 
patterns that were consistent with probability matching. Once a regular rather than a 
probabilistic structure was present in the material, many of the participants discovered it 
and switched to exploitation of the discovered regularity. Thus, human behavior can, at 
least on the aggregate level, be captured well by probabilistic approaches linking the 
strength of evidence to the balance between exploration and exploitation. This however 
does not preclude the development and usage of rule knowledge. 

In a similar way, reinforcement learning approaches used in robotics inherently balance 

exploration and exploitation and are flexible enough to adapt to probabilistic as well as 

deterministic regularities in object structure. For instance, Katz and Brock (2008) have 

proposed a reinforcement learning approach to make robot object exploration more efficient. 

Robot actions that lead to the discovery of properties of the structure of an object are 

assigned a reward. The higher the evidence that a specific action will lead to a substantial 

increase in the amount of knowledge about the structure of an articulated object, the more 

likely it is to be executed. By this mechanism regular object structures will lead to strong 

manipulation knowledge which is exploited in order to boost exploration performance.  

While reinforcement learning had originally been developed in psychology, the extension to 
temporal difference learning that is nowadays of high impact in model-based neuroscience 
and behavioral research has been sparked by work conducted from a machine learning 
perspective (e.g., Sutton & Barto, 1998). Investigating how humans balance exploration and 
exploitation will enable us to develop robots that are capable of exploring their environment 
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in an efficient way. For instance, the conditions under which humans discard (seemingly) 
irrelevant object features from processing or, alternatively, start to rely on a feature first 
deemed irrelevant that then turned out to be highly correlated with outcomes and easy to 
assess might be of special interest for efficient object exploration and tool use in robots. 
Hypotheses about potentially efficient exploration strategies can be tested on simulated or 
physical artificial agents. Furthermore, heuristics for efficient exploration discovered or 
validated in robotic systems can be provided to humans. For instance, the visual saliency of 
object parts in a virtual environment can be dynamically adapted in order to guide attention 
of a human novel to a task based on comparing online eye tracking data and exploration 
knowledge of the robot. 

1.3 Watching vs. doing 

To explore a new object, we typically begin by poking it, rotating it, etc. This indicates that 
for humans action and perception are closely linked. Nevertheless, action and perception 
have often been studied separately. Similarly, robots are usually modeled as input-
computing-output devices. Indeed, the most dominant paradigm in robotics is called sense-
plan-act. This paradigm has led to a separation in the study or robot perception and robot 
motion. 

In psychology, integrative approaches have been flourishing on different levels. On the one 

hand, this relates to the issue of action-enabled perception. On the other hand, this relates to 

the issue of how learning can lay the ground for developing agency and specifically for the 

ability to choose actions according to goals. Concerning the issue of action-enabled 

perception, animal research has early on pointed out that active movements are necessary in 

order to develop a functioning visual cortex (e.g., Held & Hein, 1963). While kitten actively 

moving in a controlled visual environment developed normal vision, yoked-control kittens 

being exposed to the very same movements passively did not. Recent findings by Craighero, 

Leo, Umiltà, and Simion (2011) suggest that based on a bias in perception, action and 

perception are linked in humans even before own action starts. They reported that two-day-

old human newborns preferentially attend movements directed toward an object. The 

authors systematically manipulated (a) presence of an object, (b) direction of the arm 

movement, and (c) hand shaping, and found that the newborns oriented more frequently 

and looked longer at a hand shapes that were consistent with a movement goal. Apart from 

this, research and everyday experience suggests that moved or moving objects are detected 

faster as compared to items stationary to the background. 

One of the first examples of robots interacting with the environment to simplify perception 
was proposed by Katz and Brock (2008; see also Katz, Pyuro, & Brock, 2008, and Katz, 
Orthey, & Brock, 2010). This work proposes that by pushing and pulling on an object, a 
robot can distinguish the object from the background and track which parts of the object are 
connected to each other by degrees of freedom. Consequently, when faced with a novel 
object, the robot can discover its kinematic structure by interacting with it.  

The link between perception and action leads to an interesting perspective when 
considering how learning enables action. Perception and learning of co-variations between 
states in the environment and own movements can enable robots and humans to later 
exploit their knowledge about useful interactions to explore new objects. One line of 
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research on human action control, often referred to as ideo-motor theory, proposes that we 
develop the capability to intentionally influence our environment by inverting observations 
of accidental moves and effects in the environment. For instance, Elsner and Hommel (2001) 
suggested that humans become intentional agents in a two-step procedure. Due to a lack of 
knowledge relating own movements to changes in the environment, a baby might at first 
have little basis for intentional action in the form of selecting motor programs that lead to 
desired goals. At first, a baby may in fact randomly execute motor programs and observe 
changes in objects. The co-occurrence of movements (i.e., shaking the leg) and changes in 
object (i.e., the mobile starts to move) are stored. Once established, associations between 
motor programs and changes in objects can be applied in reverse direction in the next step. 
For instance, a representation of the moving mobile might evoke the motor program that 
made it move accidentally in the first place. The baby becomes an active agent as it can 
select the motor programs leading to desired goals, because pleasurable states are linked to 
motor programs that anteceded them. By this it can test and establish causal knowledge 
linking motor programs to changes in objects. While later in life, we surely possess action-
effect knowledge with respect to many objects and domains, we might use similar ways to 
obtain structured knowledge about novel objects. We develop the capability to intentionally 
use novel objects as tools by storing co-occurrences of movements and effects and by active 
exploration. To this end we can employ principled testing, but also learn from effects that 
were not brought about by active testing. 

A central motivation of our work on combining the study of object exploration in humans 
and in robots is our belief that much can be gained by better integrating learning from 
watching and learning from doing. Humans and robots can explore objects successfully by 
capitalizing on our embodiment, as well as by taking advantage of opportunities for passive 
learning. While active exploration and systematic experimentation is the key strategy to test 
hypotheses about causal relations between own movements and changes in the object, the 
hypotheses to be tested might in part be derived from a rather passive subsystem that 
observes movements in the actor and the object. Research on implicit learning in humans 
(e.g., Frensch & Rünger, 2003) suggests that co-occurrence statistics about a multitude of 
features in the actor and the object might accumulate and the strongest of the co-variations 
may fuel active testing that can lead to causal knowledge and a symbolic level of 
representation. We thus propose that it may be beneficial to follow the human example, and 
develop robotic systems that combine active exploration with passive learning. Likely 
humans can, if novel to an object exploration or tool use task, profit from a robot model as a 
starting point for generating and testing hypotheses. Furthermore, human object exploration 
might benefit from robot systems that dynamically adjust training schedules in order to 
foster efficient hypothesis testing. For instance, the robot might track the hypothesis space 
explored by the human and enforce overlooked tests by blocking access to object parts, 
visual highlighting of object parts or online composition of transfer objects that pinpoint 
hypotheses about object structure. 

1.4 From puzzle boxes to virtual environments  

Since Thorndike's research on cats learning to escape from puzzle boxes and gaining access 
to food (Thorndike, 1911), various researchers have employed similar devices in order to 
study exploration. Approaches have to balance between (a) the goal of providing a rich 
environment to explore and (b) the consideration that data logging and quantification of 
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behavior are necessary for most research purposes. If participants are provided with a rich 
environment and can explore it in a multitude of different ways, researchers will be faced 
with the task of categorizing and summarizing many instances of rather unique behavior. 
For instance, they will have to determine which motor patterns are functionally equivalent.  

We are currently developing a virtual environment in which humans can explore and use 
kinematic structures through a haptic interface. This system allows to log the forces applied to 
the object and object movements. As discussed in the previous sections, it is often far from 
obvious whether or not a behavior allows to conclude that a system is behaving in a goal 
directed manner and through exploration is building up a knowledge base capturing relevant 
parts of the structure of the object – unless one has designed the system and has access to the 
process parameters. Braitenberg (1984) provided a vivid demonstration of how a few simple 
mechanical building blocks can, when combined, produce complex behavior in purely reactive 
creatures that nevertheless readily leads to attribution of agency by humans. Braitenberg 
suggested combining the analysis of biological systems with a synthetic approach in order to 
(a) guard against the pitfalls of attributing agency where there is none and to (b) generate 
fruitful research hypotheses from one approach to the other and vice versa. This is exactly the 
research agenda we are currently following to understand exploration of kinematic structures 
of objects. Robots and humans are faced with very similar tasks. In a virtual environment, 
humans can interact with kinematic objects over haptic devices transmitting force back and 
forth between hand and object. Simulated robots can explore the same objects in the same 
environment. Apart from offering the possibility to test robots and humans on the same task, 
the virtual environment has several other advantages. Data logging is precise and easy to 
automate. Different variants of fully specified and exactly reproducible objects can be created. 
Experimental manipulations of perceptual capabilities, regularities in the structure of the 
object, and manipulation capabilities are possible. Most importantly, depending on research 
goals, objects and manipulation capabilities can be designed in such a way that prior 
knowledge is either of key relevance or has little impact. 

Our current approach to study how humans and robots explore the kinematic structure of 
objects and how exploration strategies change with experience is twofold. We are using high 
and low constrained environments in order to combine the strengths of both approaches. In 
each case we are using kinematic chains as objects that can be explored. The chains are 
equipped with different types of joints. The agent has to determine what type of joint is 
located at which part of the object in order to capture the structure and functionality of the 
chain. In the environment with few constraints the agent can apply continuous amounts of 
force to different parts of the object. By pushing or pulling, the agent creates the opportunity 
to track movements of the different parts of the chain. Based on observing how the parts of 
the chain move in relation to one another, the agent can (a) distinguish object from 
background, (b) infer which parts of the moving object(s) are linked rather than 
independent objects, and (c) infer which type of joint is located at which position. 

2. Robot learning to explore objects by manipulating them through grounded 
relational reinforcement learning 

Undirected object exploration can be time consuming. In many environments, an agent may 
thus be required to explore new objects efficiently. The ability to plan an exploration 
sequence by considering past experience with similar objects is therefore essential.  
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To decide how to explore an articulated object, a robot must determine a sequence of 
interactions with it. These interactions would result in relative motion between the parts of 
the object, enabling the robot to acquire knowledge of the object's shape and kinematic 
structure. In this section, we describe a simulation environment within which an agent can 
interact with novel objects. We will demonstrate that it is possible to gather and generalize 
manipulation expertise that will enable the robot to efficiently direct its future interactions 
within the environment. Our robot interacts with an object by pushing or pulling it, while 
observing the object's motion. As these interactions create a change in the configuration of 
the object, the robot incrementally discovers the object's intrinsic and extrinsic degrees of 
freedom (intrinsic = between the parts of a single object, extrinsic = between different 
objects). The robot learns to select interactions that are most likely to reveal the maximum 
information about the kinematic structure. The acquired manipulation knowledge 
substantially reduces the number of interactions required to obtain an accurate kinematic 
model. Furthermore, manipulation knowledge acquired by modeling one object transfers to 
other objects even if they have different kinematic structures. 

In the approach introduced by Katz and Brock (2008), manipulation expertise is learned 

based on a relational state representation. This representation is essential, as it renders 

learning tractable by collapsing large regions of the state space onto a single, task-relevant, 

relational state. The symbolic representation is carefully grounded in the perceptual and 

interaction skills of the robot. This grounding ensures that relationally learned knowledge 

remains applicable in the physical world. We begin our discussion by introducing the 

relational representations of kinematic structures that forms the basis of our learning-based 

approach to manipulation. Next, we describe how this representation can be grounded 

using the perception and manipulation capabilities of the robot. We proceed to discuss the 

relational learning framework and how it can be grounded with respect to the relational 

representation. Finally, we demonstrate the effectiveness of our approach in manipulation 

experiments with articulated objects. 

2.1 Relational representation of kinematic structure 

To describe the state space associated with manipulating rigid articulated objects using a 

propositional representation, we would have to include a proposition for every object 

encountered by the agent. We would also have to include a proposition for every action 

applicable to this object. Gathering and generalizing manipulation expertise becomes 

impossible with this representation due to the combinatorial explosion of actions and states. 

A relational representation allows us to describe an infinite number of states and actions 

using a finite set of relations. It is thus critical to the success of our learning-based approach 

to manipulation. Our relational representation leverages the following insight: an agent may 

encounter, for example, many types of scissors. These scissors may vary in color, shape, and 

size. All scissors, however, have the same kinematic structure. This kinematic structure can 

be captured by a single relational formula. 

What object properties should our relational representation include? To represent the 

kinematic structure of an object, we must consider joint types (revolute, prismatic, or 

disconnected), link properties (e.g. color and size), and the kinematic relationships between 

links. Therefore, our relational representation uses the following predicates: 
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1. Revolute Joint: R(,,…)  
2. Prismatic Joint: P(,,…)  
3. Disconnected: D(,,…)  

    

Fig. 1. Two examples of kinematic structures: scissors with a single revolute joint and a 
wooden toy with a prismatic joint and two revolute joints. 

Fig. 1 shows two examples of kinematic structures. The scissors have a single revolute 

degree of freedom and the wooden toy is a serial kinematic chain with a prismatic joint (on 

the left of the figure) and two revolute joints. Our relational representation enables us to 

describe the kinematic structure of the scissors as: B 1 2D(L ,R(L ,L )) , where 1L  and 2L  

represent the two links of the scissors and BL is a disconnected background link. Similarly, 

the kinematic structure of the wooden toy can be represented as 

B 4 3 1 2D(L ,R(L ,R(L ,P(L ,L )))) . The notation is constructed based on a table that indicates the 

kinematic relationship between every pair of rigid bodies. 

This representation is not unique. The wooden toy could also be represented as: 

4 1 2 3 BD(P(L ,R(R(L ,L ),L )),L ) . The specific representation used by the agent depends on the 

order of discovery of the joints. The most deeply nested relation is the one discovered first. 

The representation of links can also be extended to an m-ary relation: L(,,…) where m>0 (m 

can be any positive integer implying that any finite number of properties can be captured by 

the representation). This representation supports a variety of link properties such as size, 

color, and composition. In the work we describe here, we limit ourselves to a single link 

property: size. The extension to a larger number of link properties, however, is 

straightforward. Using the extended link representation, the wooden toy can be described 

by: B 4 3 1 2D(L ,R(L(S,F ),R(L(S,F ),P(L(S,F ),L(S,F )))))  where S stands for the property size=small 

and iF  spatially identifies link i in the physical world. To complete our relational 

representation, we must also provide a representation for the actions performed by the 

agent. The actions that we allow are limited to pushing or pulling a link. Each action can be 

applied either along the major axes of the link or at a forty-five degree angle to the major 

axes. An action is represented as A(L(,,…),α), where L(,,…) represents a link and α is an 

atom describing one of the six possible actions. The relational representation of links, joints, 

and actions allows us to reason and learn about objects based on their kinematic structure. 

The experience that an agent may acquire by manipulating scissors can be applied to all 

other scissors. The properties of an object that affect its manipulation behavior may not be 

limited to its kinematic structure. The relational representation of a link can be extended to 
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include other relevant properties. With additional link properties, our agent will be able to 

distinguish between identical kinematic structures. The advantage of this approach is that it 

ignores information about the physical manifestation of objects (i.e. position, orientation, 

and configuration), as well as other properties irrelevant for generic description and control 

of manipulation. As a result, we achieve a significant reduction in the dimensionality of the 

state space, rendering the learning problem tractable. 

2.2 Grounding the relational representation 

The relational representation described in the previous section can only support the learning 
of manipulation knowledge if it is grounded in the physical capabilities of the robot. 
Grounding bridges between the symbols of our representation and the physical, continuous 
world (Harnad, 1990). It ensures that we can symbolically interpret the observations made 
by the robot with regards to its interactions with the world. At the same time, grounding 
ensures that the resulting symbolic manipulation knowledge maintains its relevance and 
predictive power for the robot's real-world interactions. 

To ground our relational representation, we bind the relations R(,,…), P(,,…), and 
D(,,…) as well as the links' properties to real-world perceptual capabilities of the robot. 
These perceptual capabilities enable a robot to model rigid articulated objects (Katz & Brock, 
2008). The robot's perceptual capabilities provide adequate grounding for our relational 
representation of links and their kinematic relationship. 

2.3 Acquiring manipulation expertise 

With the grounded relational representation of states (links and joints) and actions, we can 
now cast the problem of incremental acquisition of manipulation knowledge as a relational 
reinforcement learning problem (Džeroski, de Raedt, & Driessens, 2001; Tadepalli, Givan, & 
Driessens, 2004; van Otterlo, 2005). In reinforcement learning, an agent learns an optimal 
policy for solving a task. This policy tells the agent which action to perform in a particular state 
(e.g., where to affect the object and whether to push or to pull). The process of acquiring the 
policy is incremental; the agent learns the policy through a sequence of interactions with the 
environment. With every action, the robot may or may not discover new information. To 
formulate this process as a reinforcement learning problem, in our experiments, we simply 
assign a reward for every degree of freedom and every link property discovered by the robot. 
We expect the robot to incorporate new experiences into its policy, improving it over time. If 
learning succeeds, our robot will have acquired an effective policy for modeling the kinematic 
structure of novel rigid articulated objects. For more information about the implementation, 
we refer the reader to Katz, Pyuro, and Brock (2008). 

Given unlimited time for exploration, an agent can gather enough manipulation experiences 
to learn an optimal policy. To comply with the time constraints imposed by manipulation in 
unstructured environments, our agent must be able to discover an optimal (or nearly 
optimal) policy quickly. To that end, it must balance between exploration and exploitation. 
Exploration refers to the execution of an action to improve the robot's estimate of the 
associated reward. In other words, when an agent explores, it either chooses an action it has 
never tried before, or the action the outcome of which the agent is most uncertain about. 
Exploitation, in contrast, refers to action selection based on maximizing reward. The balance 
between exploration and exploitation is important. If the agent explores too much, it will 
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miss to employ knowledge. If it exploits too early, it will perform poorly because it has not 
gathered enough experience. 

To decide if a new action should be executed, we compute the fraction of actions for which 
the robot already has gathered experience. It then selects one of the actions associated with 
its current knowledge about the object unless the random number generator indicates that 
exploration should be executed instead. If the robot is to retrieve an action based on its 
experience, we use Interval Estimation (IE) (Kaelbling, 1993), which picks the action that has 
the highest potential to perform well. Thus, IE also balances between exploration and 
exploitation. 

 

Fig. 2. Example of an articulated object. Links (rigid bodies) are shown in blue. Revolute 
joints are represented by red cylinders, and prismatic joints are illustrated as green boxes. 
Joint types are only marked for illustrative purposes but not in the experiments. 

2.4 Experiments with planar objects 

To evaluate the effectiveness of our learning-based approach to manipulation of articulated 
objects, we perform two types of experiments, previously published in Katz and Brock 
(2008). First, we show that manipulation knowledge can be gathered from experience. And 
second, we show that the acquired experience transfers to previously unseen objects. We 
perform experiments in a simulated environment. This environment is based on the Open 
Dynamics Engine (ODE), a popular dynamics simulator. ODE is an open source, high-
performance library for simulating the dynamics of rigid bodies. It features various joint 
types and integrated collision detection. It simulates gravity, various sources of friction, and 
allows for some non-determinacy. In our experiments, a robot interacts with an articulated 
planar (two-dimensional) object to extract its kinematic structure. An example object is 
shown in Fig. 2. Links (rigid bodies) are shown in blue. Revolute joints are represented by 
red cylinders, and prismatic joints are illustrated as green boxes. 

An experiment consists of a sequence of trials. A trial is composed of a number of steps. In 
each step, the robot applies a pushing or pulling action to the articulated object. The trial 
ends when an external observer (independent thread of the simulation) signals that the 
robot has obtained the correct kinematic structure of the object. In each step of every trial the 
robot accumulates manipulation experiences that improve its future performance. The 
number of steps per trial measures the number of interactions necessary to discover the 
correct kinematic structure of the articulated object. It therefore measures the efficiency with 
which the robot accomplishes the task. Each step of a trial can be divided into three phases: 

1. The robot selects an action and a link for interaction. The action is instantiated using the 
current state and the experience stored in the agent's memory. 

2. The selected action is applied to the link, and the resulting object motion is simulated. 
The observed motion is reported to the agent. If the agent pushes or pulls the object at a 
suitable location, the resulting object motion might deliver information concerning 
multiple links at the same time.  

www.intechopen.com



 
Human Machine Interaction – Getting Closer 

 

246 

3. The agent analyzes the observed motion and determines the kinematic properties of the 
rigid bodies observed so far. These properties are then incorporated into the robot's 
current state representation. 

 

Fig. 3. left panel. Experiments with a planar kinematic structure (PRPRPRP). The object 
possesses seven degrees of freedom (R = revolute, P = prismatic). The right panel shows the 
experiment with the structure (RPRPRPR; seven degrees of freedom). Error bars in all 
figures reflect the standard error of the mean. 

2.5 Gathering manipulation knowledge 

Our first type of experiments shows that manipulation knowledge can be gathered from 

experience. To demonstrate the effectiveness of learning, we observe the practice-related 

decrease in the number of actions required to discover a kinematic structure. We compare 

the performance of the proposed grounded relational reinforcement learning approach to a 

random action selection strategy. Fig. 3 and 4 show the objects presented to the robot, as 

well as the results (learning curves) of four experiments. For each trial, we report the 

average number of interactions used to discover the correct kinematic structure. This 

average is computed over 10 independent replications. 

In the first experiment, we presented the robot with an object with seven degrees of freedom 
and eight links. The resulting learning curve is shown in Fig. 3 (left panel). Action selection 
based on the proposed relational reinforcement learning approach results in a substantial 
reduction of the number of actions required to correctly identify the kinematic structure. As 
to be expected there is a stable and high number of actions required in the baseline, random 
action selection. This improvement already becomes apparent after about 10 trials. Using the 
learning-based strategy, an average of eight pushing actions is required to extract the correct 
kinematic model of the object. Compared to the approximately 16 pushing actions required 
with random action selection, learning achieves an improvement of about 50%. In the 
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second experiment, we presented the robot with another object with seven degrees of 
freedom and eight links. The resulting learning curve is shown in the right panel of Fig. 3. 
The improvement achieved by our learning approach becomes apparent after about 20 
trials. Using the learning-based strategy, an average of 10 pushing actions is required to 
extract the correct kinematic model of the object. Compared to the approximately 15 
pushing actions required with random action selection, learning achieves an improvement 
of about 30%. 

In the third experiment, we presented the robot with an object with eight degrees of freedom 
and nine links. The resulting learning curve is shown in Fig. 4 (left panel). The learning-based 
strategy requires an average of eight pushes at asymptote, whereas the random strategy uses 
approximately 20 pushing actions. Learning achieves an improvement of about 60%. In the 
fourth experiment, we present the robot with an object with nine degrees of freedom and ten 
links. The resulting learning curve is shown in the right panel of Fig. 4. The learning-based 
strategy requires an average of 10 pushes, whereas the random strategy uses approximately 22 
pushing actions. Learning achieves an improvement of about 60%. These four experiments 
demonstrate that our approach to manipulation enables robots to gather manipulation 
knowledge and to apply this knowledge to improve manipulation performance. 

 

Fig. 4. Structure RRRRRRRR (eight degrees of freedom) plus learning curve and baseline on 
the left panel as well as structure RRPRPRRPR (nine degrees of freedom) on the right panel. 

2.6 Transferring manipulation knowledge 

Our second type of experiment shows that manipulation experience acquired with one 

object transfers to other objects. To demonstrate the effectiveness of knowledge transfer, we 

again observe the number of actions required to discover a kinematic structure. We compare 

the performance of the proposed grounded relational reinforcement learning approach with 

and without prior experience. Fig. 5 and 6 show the objects presented to the robot, as well as 

the results (learning curves) of four experiments. 
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In the first transfer experiment, the robot gathers experience with an articulated object with 

seven degrees of freedom (see Fig. 5, left panel). After 50 trials, the robot is given a simpler 

object with only five degrees of freedom. The simpler structure is a substructure of the more 

complex one. We compare the robot's performance with that of a robot without prior 

experience. The robot with prior experience consistently outperforms the robot without 

experience. In the first trial, which is the most important for real-world manipulation, the 

experienced robot requires only 40% as many pushes. Over the following five trials, the 

performance improvement is approximately 20%. In trials 5 to 20, the performance 

improvement is much smaller. 

In the second transfer experiment, the robot learns to manipulate a complex articulated 

object with five revolute joints (see Fig. 5, right panel). After 50 trials, the robot is given a 

slightly simpler structure that only possesses four revolute joints. Again, the simpler 

structure is a substructure of the more complex one. We compared the robot's performance 

after these initial 50 trials to the performance of a robot without prior experience. The 

experienced robot achieves convergence almost immediately. This corresponds to a 

performance improvement of about 50% in the first trial, relative to the robot without 

experience. After about 15 trials, both robots converge to approximately the same 

performance. This is to be expected for simple structures, exclusively consisting of revolute 

joints. The third transfer experiment complements the second experiment. Here, the robot 

learns to manipulate an articulated object with four revolute degrees of freedom (see Fig. 6, 

left panel). After 50 trials, the robot is given a structure with an additional revolute joint 

(five altogether). We compare the robot's performance after these initial 50 trials to another 

robot's performance without prior experience. Again, experience results in an improved 

performance in the first few trials (about 30%). After about eight trials, both robots converge 

towards the same number of interactions. 

 

 
 

Fig. 5. left panel. Experiment on transfer of knowledge acquired with PRPRPRP to PRPRP. 
The right panel shows the experiment on transfer from RRRRR to RRRR.  
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Fig. 6. Left panel. Experiment on transfer of knowledge acquired with RRRR to RRRRR. The 
right panel shows the transfer (RPR to PRRP and RRPRPRRPR).  

The fourth experiment (see Fig. 6, right panel) takes a step towards long term learning of 

manipulation expertise. Here, we compare the performance of three robots: The first has no 

prior knowledge, the second's prior knowledge is based on interactions with one object, and 

the third's prior knowledge relies on interactions with two objects. The results show the 

advantage that the more experienced robots have in the first few trials. More importantly, 

this experiment suggests that the more experience a robot gathers, the more it can transfer to 

new situations. 

To summarize, our experimental results provide strong evidence that learning from past 

experience can significantly boost the robot's manipulation performance. Learning enables a 

robot to autonomously acquire manipulation expertise by interacting with the environment. 

Our results show that this expertise transfers across different instances of the manipulation 

task and substantially improves manipulation performance. Learning and generalization of 

manipulation knowledge become possible due to our relational representation of states and 

actions. This representation collapses the otherwise intractable state space and renders 

reinforcement learning feasible. We believe that the effectiveness of our approach is due to 

the proper, task-specific grounding of our relational representation in the robot's perceptual 

and interactive capabilities. 

2.7 Experiments with 3-D objects 

We are currently working on the development of a new simulation environment for three-
dimensional objects. This work is still in its early stages. Our primary objective is to replicate 
the success of learning for planar objects in the more general case of 3-D articulated objects. 
An example of the type of three-dimensional objects we plan to explore in the new 
simulation environment is shown in Fig. 7 (left panel). In this simulation environment, we 
also intend to explore the relevance of a variety of object properties, such as size, color, 
texture, the existence of parallel lines, or sharp changes in contrast. 
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Fig. 7. Left panel. Simulated three-dimensional rigid articulated object. On the right side: 
two haptic devices operated by a human subject to interact with an object. 

The new simulator is designed to facilitate research in the intersection between human and 
robotic object exploration. The simulator features a haptic interface (see Fig. 7, right panel), 
enabling human subjects and the simulated robots to interact with the same kinematic 
structures. Encouraged by the success of our learning approach for the domain of planar 
objects, we intend to use the new simulation environment to further develop our robot's 
skills in exploring new objects. We hope that by studying how human subjects approach 
object exploration, balance exploration and exploitation we will be able to extract 
knowledge that will advance the state of the art in autonomous manipulation.  

3. Exploration of simple structures in humans 

If, in the long run, robot exploration is to take advantage of adaptive strategies from human 
exploration behavior, one has to demonstrate in the first place that there is in fact an 
adaptive processing in humans while performing an exploration task that is suitable for 
robots. This is the goal of this section. Ideally, one could substantiate the notion that 
participants make use of clever exploration strategies, show systematic exploration and 
generate rules about the characteristics of the material. This could motivate research that 
employs these behavioral patterns for robot object exploration. To this end, we study here 
human exploration of simple structures with a simplified interface. We aim first to 
demonstrate principled exploration in a narrow environment before expanding to more 
complicated object structures and elaborate interfaces in the future. For instance, in the 
virtual 3-D environment described above, humans will use haptic interfaces to manipulate 
objects. Robots can (a) observe and try to learn from human moves and (b) manipulate the 
same objects. Notably, on the human side, psychomotor abilities and cognitive aspects of 
exploration will jointly determine performance. Failure can either be attributed to lack of 
knowledge about where and how to physically affect the object in order to learn the most 
about its structure, or can be attributed to difficulties in skillfully executing and completing 
manipulation plans. Likewise, for a researcher or a robot trying to extract valuable patterns 
of exploration behavior from human manipulation there is the problem of parsing behavior 
into discrete attempts to affect the object by applying force to a specific part of the object.  

In order to provide a firm basis for our future attempts to tackle these problems, we first 
tried a divide and conquer strategy, setting apart the more cognitive aspects of exploration 
from the more psychomotor aspects. As detailed below, we started our work on human 
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exploration of articulated objects with a highly simplified exploration environment 
excluding the need for skillful application of force and limiting the space of possible tests 
and strategies. With this, we wanted to provide evidence for systematic and adaptive 
exploration strategies in a variant in which the parsing of the exploration by a machine 
would be trivial. This should lay the ground for tackling more complicated object structures 
and less constrained continuous exploration behavior while making use of a haptic 
interface. As described in detail in the next section, in the high constrained environment 
participants were confronted with a short chain with space for three joints on each trial. 
Participants were asked to conduct discrete tests for each of the different potential types of 
joints in each of the locations of the chain in order to discover the structure of the chain.  

3.1 Setup of the task 

We designed an experiment to test whether and how systematic exploration of highly 
constrained structures occurs in humans. On each trial, participants were provided with a 
chain on the screen and were asked to test the different joints (compare Fig. 8).  
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Fig. 8. Setup and example trial of the highly constraint exploration task for humans. 

Each chain had three joints. There were three different kinds of joints: bending upward, 
bending downward, and stiff connections. We used the number pad of a regular keyboard. 
The leftmost column of the 3 by 3 matrix of the number pad was assigned to testing whether 
the leftmost joint was bending upward (upper key), was stiff (middle key) or bending 
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downward (lower key). The same arrangement was in place in the second and third column 
of the number pad with respect to the second and third joint (counted from the left). Tests 
were executed in a discrete manner. If the participant wanted to test whether the leftmost 
joint was able to bend upward, the participant pressed the upper left key on the 3 by 3 
matrix of the number pad. Then, the display on the screen indicated if the joint indeed 
bended upward (if this was the characteristic of this joint) or if it was instead either a stiff 
joint or one able to be bent downwards. Then a tone sounded as feedback on the discrete 
test while the visual display remained constant. 

3.2 Selection of training material 

In order to test for systematic and adaptive exploration in humans we used material that 
normatively favored some strategies over others. We judged the systematism of human 
exploration behavior based on whether participants adapted to the structure of the material. 
On a finer level, we inquired whether humans either developed rule-like knowledge about 
the structure of the chains occurring in the training material or rather learned which 
exemplars of chains existed in the practice set. While we first describe the different 
regularities we built into the material for different groups of participants, we then discuss 
how it is possible to distinguish between an adaptation to these regularities that is based on 
rule knowledge vs. one based on exemplar knowledge.  

We distinguished four conditions with different training materials. As we constructed 
chains with three joints each selected from three different types of joints, there were 27 
different chains in principle. The training material was selected from the pool of 27 
possible chains according to one of three different rules. Each of the rules led to the 
selection of twelve chains and allowed for clear predictions on how learning should 
change exploration. The first rule was tested on two different groups of participants. They 
explored chains in which joints 2 and 3 were never stiff (they were either bending upward 
or bending downward). If participants learned about the structure of the chains, they 
should stop testing whether the joints 2 and 3 are stiff. As detailed below, we varied the 
frequency of specific chains during training in 13 participants so that four of the twelve 
chains were repeated four times per learning block and others just once. For nine 
participants the same chains were presented with balanced frequencies – each twice per 
block of 24 trials. The third group of participants (N=9) was provided with chains in 
which no neighboring joints were identical. If participants adapted to the structure of the 
material, they should often switch to a different type of test when switching to test 
another joint. The fourth group of participants (N=9) explored the structure of chains in 
which two neighboring joints were identical, either the joints 1 and 2 or 2 and 3. We 
hypothesized that participants would adapt to the material by often executing identical 
tests on neighboring joints, especially once one joint had been correctly classified.  

3.3 Frequency variation to test for rule knowledge 

In the following we consider the condition in which joints 2 and 3 were never stiff in some 
more detail for two reasons. First, this training material allows for a strategy change towards 
faster exploration by discarding irrelevant aspects of the exploration task (refraining from 
stiffness tests on joints 2 and 3). Research on information reduction (i.e., Gaschler & Frensch, 
2007, 2009) has argued that the discarding of irrelevant aspects of tasks from processing is a 
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major basis of skill acquisition and of expertise acquisition. One can argue that by learning 
which aspects are relevant and which can be ignored, experts learn to use their time and 
cognitive resources very efficiently (in their domain of expertise). Similarly, learning to 
avoid less useful tests on kinematic objects helps to focus on hypotheses concerning their 
structure, to save time and energy, and to reduce risks that might be involved in executing 
tests in adverse environments. Second, in the research on information reduction we have 
proposed means to test whether simplification of task processing is based on rule-like 
knowledge and voluntary strategy change. We therefore wanted to apply such a test first on 
the data of the group with the setup most similar to the one used in research on information 
reduction so far. A test of rule-based performance is very useful for our goal to demonstrate 
systematic, principled exploration behavior in humans. 

In research on information reduction we have been arguing that observations of people 
simplifying task processing, for instance by ignoring irrelevant aspects of stimuli, are 
widespread in various domains of applied psychology. However, special manipulations are 
necessary in order to test exactly how the simplification of task processing takes place and 
what kind of knowledge about regularities in the task material is acquired. For instance, the 
widespread observation that after some practice, participants ignore aspects of stimuli that 
are less relevant does not suffice to judge whether rule-like knowledge has developed or 
whether participants have instead adapted to the specific training exemplars. We 
successfully applied manipulations of exemplar frequency to specify the type of knowledge 
being acquired during practice and the mode of exploitation that this knowledge leads to. In 
particular, we varied the frequency with which specific training exemplars were processed 
during practice. If knowledge about the structure of the material would be bound to the 
specific instances encountered during training, then one would expect that learning should 
occur early in training for the frequently encountered exemplars, but much later for the 
examples presented only infrequently. Already early in training, participants could 
accumulate substantial experience with frequently presented exemplars and, for instance, 
start to ignore irrelevant parts in these exemplars, while still fully processing the infrequent 
exemplars until a similar amount of experience with these has been gathered. If, however, 
participants generate rule-like knowledge, then practice should modify the processing of the 
frequently and less frequently encountered instances at the same time and to the same 
extent. The latter is what we observed in the studies on information reduction. Participants 
learned to ignore the irrelevant parts of infrequently presented exemplars at the same point 
in time during practice and managed to ignore these to the same extent as the frequently 
encountered exemplars. It was not the case that participants dared to ignore the irrelevant 
parts of well-known items while still fully processing infrequently presented and novel 
exemplars. Rather, there was an all-or-none strategy change.  

Here we employed a similar approach in order to judge whether or not participants 
developed rule knowledge when confronted with material in which the joints 2 and 3 were 
never stiff. Counterbalanced across participants, either the four chains with the first joint 
bending upward or the four chains with the first joint bending downward were repeated 
four times rather than once per block. The frequency manipulation allowed to distinguish 
between gains in exploration efficiency based on rules knowledge vs. on representations of 
specific exemplars of chains. If, on the one hand, participants rely on knowledge about 
specific exemplars, then the rate of testing whether joint 2 and 3 are stiff should decrease 
much more quickly per block of practice for the four frequent in comparison with the 

www.intechopen.com



 
Human Machine Interaction – Getting Closer 

 

254 

infrequently presented chains. People would e.g. learn that for the four frequently presented 
chains starting with an upward bending joint 1 there is no need to test whether joints 2 and 
3 are stiff, but learn little about the other eight chains confirming to the rule that were 
presented less frequently. If, on the other hand, participants acquire knowledge that can be 
described as a rule, then the frequency of training exemplars should be irrelevant. The rate 
of testing whether joints 2 and 3 are stiff should decrease at the same rate per block and to 
the same level for both frequently and infrequently presented chains. 

3.4 Procedure 

Participants were instructed that their task was to explore chains by determining in each 
trial the types of the joints. Participants were provided with the mapping of keys and tests 
for the three different types of joints. They then performed four blocks of 24 trials on the 
training material selected as detailed above. In block 5, participants from all conditions were 
exposed to all 27 possible chains. We randomly sorted the chains in each of the five blocks 
for each participant . From the perspective of the participants, there was no signal for the 
beginning or end of a block.  

3.5 Results 

3.5.1 Overall learning 

As an initial learning check, we analyzed whether practice led to a decrease in the number 
of tests required to determine the structure of a chain. This analysis confirmed that 
participants learned to explore chains more efficiently from block to block (compare Fig. 9, 
left panel). A mixed analysis of variance with training block as factor varied within 
participants and composition of training material varied between participants confirmed the 
general training effect as there was a significant main effect of training block, F(2.24, 80.52) = 
20.1, MSE = 253, p < .001, p2 = .358. We applied Greenhouse-Geisser correction here and 
whenever warranted in the analyses of variance (ANOVAs). The average amount of tests 
per trial was similar in each of the four groups and decreased at the same rate over blocks. 
The ANOVA neither showed a main effect of the composition of training material (F = 1.07) 
nor an interaction of training material and training block (F < 1). 
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Fig. 9. Practice-related changes in human exploration performance. The left panel shows the 
decrease of the average number of tests executed per trial to determine the structure of the 
chain. The right panel depicts the average % of test repetitions that were observed when 
participants changed from testing one joint to testing a different one.  
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The decrease in the number of tests per chain in blocks 1 to 4 could either be the result of 
learning about the structure of the chains or of other practice effects (e.g., learning to operate 
the keyboard to execute the tests or learning to avoid test repetitions). Therefore, transfer to 
a situation in which the pool of chains changed while the exploration task stayed constant 
was essential. Comparison of the last block of training with the subset of the material and 
the final block with all possible 27 chains suggests that participants indeed learned of the 
structure of the chains presented in blocks 1 to 4. There was a sharp increase in the average 
number of tests executed per chain between block 4 and the final block, bringing 
performance back to the starting level. This rules out that the decrease in the number of tests 
executed per chain was due to general training effects unrelated to the chains presented. An 
ANOVA of the last two blocks confirmed the visual impression. There was a main effect of 

block, F(1, 36) = 89.46, MSE = .125, p < .001, p2 = .713. Again the specific rule applied to 
select the training set neither influenced the average amount of tests per chain in main effect 
nor in interaction with block (Fs < 1). 

3.5.2 Practice related changes in tests on neighboring joints 

While the above analyses suggest that participants learned about the chains they 

encountered during training, it does not specify what exactly was learned. In the next two 

sections we therefore analyzed the groups of participants separately according to whether 

and how they adapted to the specific regularity present in their training material.  

First we analyzed the average rate of trials in which one type of test was repeated on 
subsequent tests on different joints of the same chain. Participants confronted with chains 
selected from the pool of 27 possible chains under the constraint that no neighboring joints 
were identical should refrain from repeatedly executing the same test. After having tested, 
for instance, whether joint 1 bends upward, they should not execute the same test on joint 2 
but rather check for the ability of joint 2 to bend downwards. The right panel of Fig. 9 
suggests that this was indeed the case. Participants adapted to the regularity during the first 
few trials. The proportion of subsequent identical tests on different joints was already very 
low in this condition as compared to the other conditions in the first block and decreased 
further over the three training blocks. The reverse should hold true for participants trained 
on chains selected so that 2 neighboring joints were identical. They should execute the same 
tests on neighboring joints. Unexpectedly however, no marked boost of the rate of executing 
identical tests subsequently on different joints was evident. Differences in overall rate of 
repeating tests subsequently on different joints amongst the conditions as well as differences 
in the dynamics were confirmed by an ANOVA on the data of training blocks 1 to 4. There 
was a main effect of the composition of the training material, F(3, 36) = 18.98, MSE = 774.15, 
p < .001, p2 = .613, as well as an interaction of composition condition and training block, 

F(7.49, 89.86) = 2.75, MSE = 103.17, p = .011, p2 = .187. 

3.5.3 Practice related changes in tests as joints 2 and 3 were never stiff 

Testing for systematic exploration in humans, we next analyzed the data of the participants 
trained on chains in which joints 2 and 3 were never stiff. We focused on how the average 
number of tests for whether joints 2 or 3 were stiff decreased with practice. As detailed 
above, in and of itself a practice-related decrease in the average number of tests is 
compatible with many views on what exactly is being learned. For testing whether 
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exploration leads to rule-like knowledge and systematic exploration, the variation of the 
frequency with which specific chains were presented per block has to be taken into account. 

Consistent with the view that exploration is systematic and related to rule knowledge, we 
found that participants learned as quickly to perform efficient exploration on infrequently 
presented chains as they did on frequently presented chains. General knowledge about the 
characteristics of the chains rather than knowledge about specific chains that were 
frequently presented was driving performance. Fig. 10 shows average frequencies of testing 
joints 2 and 3 in the group with the frequency variation (lines named high frequency vs. low 
frequency) and in the group of participants in which all chains were presented twice per 
block of practice (equal frequency line). In order to investigate the impact of presentation 
frequency on the number of tests for stiff joints 2 and 3, we charted the same data in two 
different ways. On the left panel we averaged the data per block (which we consider first), 
while on the right panel we averaged the data based on counting the occurrence of the 
specific exemplar of a chain during training. In the blockwise analysis we can, for instance, 
determine whether the rate of tests for stiff joints 2 and 3 had decreased to the same level by 
training block 4 in the infrequent (fourth presentation) and the frequent chains (14th-16th 
presentation). Indeed, there was no difference in the rate of tests for stiff joints 2 and 3 for 
the latter chains. More generally, the performance on high and low frequency chains was 
highly similar in all blocks of training. The uniform increase in exploration efficiency is in 
line with an account proposing that participants are acquiring rule knowledge that is 
applied to frequently encountered and infrequently encountered chains alike.  

Interestingly, in tendency more of the stiffness tests on joints 2 and 3 were observed in the 
first training block of the group of participants exploring each chain with equal frequency as 
compared to the number of tests in the group of participants with frequency variation. This 
might suggest that learning of the regularity in the structure of the material was faster or 
was exploited faster for efficient exploration in participants with frequency variation. It is 
conceivable that knowledge of regularities in the material is generated relatively quickly 
based on the chains presented four times per block and then immediately transferred to the 
chains presented less frequently (compare Gaschler & Frensch, 2007). However further 
experimentation would be necessary to determine in detail whether knowledge develops in 
the frequent chains and transfers to the infrequent ones or vice versa. This would, first of all, 
include a replication of the data pattern as the ANOVA was not fully decisive with regard to 
the question of whether the equal frequency group deviated from the course of practice 
observed in the group of participants with frequency variation. There was a main effect of 

block, F(2.19, 43.7) = 23.98, MSE = .016, p < .001, p2 = .545. The interaction of block and 

training group was marginal, F(2.19, 43.7) = 2.59, MSE = .016, p = .082, p2 = .115. There was 
no main effect of group of participants (F < 1). 

The blockwise analysis suggests equal increases in exploration efficiency for the high and 

the low frequency chains. While this null effect is consistent with the interpretation that 

participants were acquiring and employing rule knowledge to increase exploration 

efficiency, one could wonder whether the setup is actually suitable to demonstrate any 

influence of the rate of presentation of specific chains on performance. We therefore also 

charted the same data based on counting the occurrence of the specific example of a chain 

during training. As the high frequency chains were presented four times in each of four 

blocks, we have 16 data points. The four presentations of the low frequency chains over the 
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course of practice lead to four data points, and sorting the presentation of the specific 

instances in the equal frequency group led to eight data points. The graph suggests that the 

reduction in the rate of tests for stiffness in joints 2 and 3 was much faster for low frequency 

compared to high frequency chains when plotted based on the instance counter. On average, 

the very first encounter with an infrequent chain led to a much lower rate of testing joints 2 

or 3 for stiffness as compared to the first encounter with a high frequency chain. Notably, 

the first encounter with a specific low frequency chain usually occurred at a point in time 

during training in block one, when several frequently presented chains had already been 

processed. Apparently, the knowledge acquired during the processing of the latter was 

immediately transferred to the former. As practice on high frequency chains affected 

performance on low frequency chains from their first presentation onwards, the knowledge 

acquired cannot be specific to the high frequency chains. Rather, it seems to be rule-like. The 

observation that learning changed the performance on low frequency chains faster than on 

high frequency chains (if charted per presentation of the specific chain) was substantiated 

with a within-subjects ANOVA on the data of the group of participants with the frequency 

variation. This analysis was restricted to the first four encounters with each specific high 

frequency chain and included all four encounters with low frequency chains. As the rate of 

stiffness tests on joints 2 and 3 was overall lower in the low frequency chains, the ANOVA 

showed a main effect of frequency, F(1, 12) = 6.24, MSE = .063, p = .028, p2 = .342. The 

overall decrease in the rate of testing stiffness in the joints 2 and 3 was reflected in a main 

effect of instance counter, F(2.18, 26.19) = 15.4, MSE = .03, p < .001, p2 = .562. The steeper 

slope of learning on the high frequency as compared to the low frequency chains over the 

first four encounters led to an interaction of frequency and instance counter, F(1.98, 23.75) = 

3.72, MSE = .04, p = .04, p2 = .237. 
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Fig. 10. For participants exposed to a selection of chains in which the joints 2 and 3 were 
never stiff, the average number of tests for stiffness per joint (2 and 3 averaged) is displayed 
over the course of practice, either by aggregating per block of practice or by aggregating per 
encounter with the specific chain. On the right side, we display the practice related decrease 
in the percentage of participants still testing stiffness in joints 2 or 3. 

In summary, we can conclude that participants adapted to the regularity in the material. 

When confronted with material in which joints 2 and 3 were never stiff (but rather bending 

upward or downward) participants showed a marked reduction in the average number of 
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tests for stiffness per chain on these joints. As exploration efficiency increased at the same 

time in practice and to the same extent for high and low frequency chains, we suggest that 

participants employed systematic exploration and developed rule knowledge on the 

structure of the chains. The data are consistent with the view that humans develop relational 

representations that capture high-level features and regularities of the objects. For the 

future, this encourages us to provide robots with human behavior in this and similar 

exploration situations in order to grant them with a set of adaptive exploration sequences 

they can expand upon. Comparison with robot object exploration will in turn allow us to 

judge what aspects of human exploration behavior come close to optimal exploration 

sequences and which aspects might be improved. This also counts for approaches to the 

exploration-exploitation dilemma. For instance, our analyses suggest that most of the 

participants eventually ceased exploration and started exploitation of the acquired 

knowledge. As shown in the right panel of Fig. 10 from block 3 onwards, the majority of 

participants did not check stiffness in joint 2 or 3 at all. They switched from exploration to 

exploitation mode. For instance, they would not have noted whether multiple characteristics 

had been ascribed to single joints. While all participants tested stiffness in the high 

frequency chains in block 1, results of these tests were apparently transferred to low 

frequency chains, by some participants already within the first block. 

4. Summary 

In this chapter we have described first steps for studying tool use in humans and robots in a 

common framework by focusing on how humans and robots explore the kinematic structure 

of objects. We have gathered initial evidence that representational formats, which make the 

problem of discovering and representing kinematic structure tractable for robots, may have 

similar counterparts in humans. Exploration experience could be used to render exploration 

more efficient both by robots and by humans. As we observed that humans adapt their 

exploration strategies to the constraints present in the pool of objects, future work can target 

the possibility that robots use the observation of human exploration behavior as a starting 

point for acquiring efficient strategies. So far we have used tasks in which exploration was 

applied to completely unravel the kinematic structure of an object. Expanding upon our 

results on humans exploiting redundancies in the structure of the objects, future research 

can address how exploration can be terminated once sufficient structural properties are 

discovered for tool use according to the current goal.  
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