
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900

Helmut Horacek, Roman Popp and David Raneburger
Institute of Computer Technology, Technical University of Vienna

Austria

1. Introduction

In the past decade, demands on interfaces for human-computer interaction (HCI) as well
as efforts invested in building these components of software systems have increased
substantially. This development has essentially two sources: Existing tools do not well
support the designer, so that building these components is time-consuming, error-prone, and
requires substantial programming skills. Moreover, the increasing variety of devices with
different presentation profiles, variations on media uses and combinations of several media
points to a necessity of designing some sort of interface shells so that one such shell can be
adapted to a set of partially divergent needs of varying presentation forms.

Especially the second factor, as also argued by Meixner & Seissler (2011), makes it advisable to
specify interfaces on some sort of abstract level, from which operational code can be generated
automatically, or at least in some semi-automated way. This aim is quite in contrast to
traditional, mostly syntactic specification levels. Abstract level interfaces should not only
be better understandable, especially by non-programmers, but they would also allow for
a systematic adaptation to varying presentation demands, as advocated for above. Apart
from the ambitious goal to define an appropriate design language and tools for building
interfaces in this language, a major difficulty with such models lies in the operationalization of
specifications built on the basis of these models, both in terms of degrees of automation and
in terms of quality of the resulting interface appearance and functionality. Since semantic
interaction specifications can abstract away plenty of details that need to be worked out
for building a running system, we can expect that there is a fundamental tension between
ease and intuitiveness of the design on the one hand, and coverage and usage quality of the
resulting interface on the other hand.

To date, a limited set of development models for interface design have been proposed, which
are in line with the motivations as outlined above: discourse-based communication models
(Falb et al. (2006)), task models (Paternò et al. (1997), Limbourg & Vanderdonckt (2003)),
and models in the OO method (Pastor et al. (2008)). Moreover, abstract models of interface
design bear some similarities to natural language dialog systems and techniques underlying
their response facilities, including reasoning about content specifications based on forces of
underlying dialog concepts, as well as measures to achieve conformance to requirements
of form. Therefore, we elaborate some essential, relevant properties of natural language
dialog systems, which help us to develop a catalog of desirable properties of abstract models
for interface design. In order to assess achievements and prospects of abstract models for

Automated Generation of User Interfaces –
A Comparison of Models and Future Prospects

1

www.intechopen.com

2 Will-be-set-by-IN-TECH

interface design, we compare some of the leading approaches. We elaborate their relative
strengths and weaknesses, in terms of differences across models, and we discuss to what
extent they can or cannot fulfill factors we consider relevant for a successful interface design.
Based on this comparison, we characterize the current position of state-of-the-art systems on
a road map to building competitive interfaces based on abstract specifications.

This paper is organized as follows. We first introduce models of natural language dialog
systems, from the perspective of their relevance for designing HCI components. Then we
present a catalog of criteria that models for designing interfaces should fulfill to a certain
extent, in order to exhibit a degree of quality competitive to traditionally built interfaces. In
the main sections, we present some of the leading models for designing interfaces on abstract
levels, including assessments as to what extent they fulfill the criteria from this catalog. Next,
we summarize these assessments, in terms of relative strengths and weaknesses of these
models, and in terms of where models in general are competent or fall short. We conclude
by discussing future prospects.

2. Linguistic models

Two categories of linguistic models bear relevance for the purposes of handling discourse
issues within HCIs:

• Methods for dialog modeling, notably those based on information states. This is the modern
approach to dialog modeling that has significantly improved the capabilities of dialog
systems in comparison to traditional approaches, which are based on explicit, but generally
too rigid dialog grammars.

• Methods for natural language generation, which cover major factors in the process of
expressing abstract specifications in adequate surface forms. They comprise techniques
to concretize possibly quite abstract specifications, putting this content material in
an adequate structure and order, choosing adequate lexical items to express these
specifications in the target language, and composing these items according to the
constraints of the language.

Apparently, major simplifications can be made prior to elaborating relations to the task of
building HCIs: no interpretation of linguistic content and form is needed, and ambiguities
about the scope of newly presented information also do not exist. Nevertheless, we will see
that there are a variety of concepts relevant to HCIs, which makes it quite worth to study
potential correspondences and relations.

Dialog models with information states have been introduced by Traum & Larsson (2003).
According to them, the purpose of this method includes the following functionalities:

• updating the dialog context on the basis of interpreted utterances

• providing context-dependent expectations for interpreting observed signals

• interfacing with task processing, to coordinate dialog and non-dialog behavior and
reasoning

• deciding what content to express next and when to express it

When it comes down to more details, there are not many standards about the information
state, and its use for acting as a system in a conversation needs to be elaborated – recent
approaches try to employ empirically based learning methods, such as Heeman (2007).

4 Human Machine Interaction – Getting Closer

www.intechopen.com

Automated Generation of User Interfaces

A Comparison of Models and Future Prospects 3

Semantically motivated approaches typically address certain text sorts or phenomena such
as some classes of speech acts, in abstract semantics. Elaborations have been made for
typical situations in information-seeking and task-oriented dialogs, including grounding and
obligations, such as Matheson et al. (2000), and Kreutel & Matheson (2003). Altogether,
information state-based techniques regulate locally possible dialog continuations, as well as
some overarching contextual factors.

For purposes of HCI development, a few of these underlying concepts pertain:

• Sets of interaction types that regulate the coherence of the discourse continuation in
dependency of the category of the immediately preceding interaction. For instance,
questions must normally be answered, and requests confirmed, prior to executing an
action that satisfies the request.

• Changes in the joint knowledge of the conversants according to the state of the discourse
(grounding). For example, specifications made about properties of a discourse object should
be maintained – e.g., an article to be selected eventually, as long as the interaction remains
within the scope of the task to which this discourse object is associated.

• Holding evident commitments introduced in the course of the interaction, which essentially
means that a communicative action that requires a reaction of some sort from the other
conversant must eventually be addressed unless the force of this action is canceled through
another communicative action. For example, a user is expected to answer a set of questions
displayed by a GUI to proceed normally in this dialog, unless he decides to change the
course of actions by clicking a ’back’ or ’home’ button or he chooses another topic in the
application which terminates the subdialog to which the set of questions belongs.

The other category of linguistic models, methods for natural language generation, are
characterized by a stratified architecture, especially used in application-oriented approaches
(see Reiter (1994)). There are three phases, concerned with issues of what to say, when and how
to say it, mediating between four strata:

1. A communicative intention constitutes the first stratum, which consists of some sort of
abstract, typically non-linguistic specifications. Through the first phase called text planning,
which comprises selecting and organizing content specifications that implement the
communicative intention,

2. a text plan, the second stratum is built. This representation level is conceived as
language-independent. Through operations that fall in the second phase, including the
choice of lexical items and building referring expressions,

3. a functional description of some sort, the third stratum, is built. This representation
level is generally conceived as form-independent, that is, neither surface word forms nor
their order is given at this stage. However, details of this representation level differ
considerably according to the underlying linguistic theory. Through accessing information
from grammar and lexicon knowledge sources

4. a surface form is built, which constitutes the fourth stratum, the final representation level.

Especially the criterion of language independence of the text plan is frequently challenged on
theoretical grounds, since the desirable (and practically necessary) guarantee of expressibility
(as argued by Meteer (1992)) demands knowledge about the available expressive means in
the target language. The repertoire of available linguistic means bears some influence on how
content specifications may or may not be structured prior to expressing them lexically. Since

5Automated Generation of User Interfaces – A Comparison of Models and Future Prospects

www.intechopen.com

4 Will-be-set-by-IN-TECH

transformations are typically defined in an easily manageable, widely structure-preserving
manner, a high degree of structural similarity across representations from adjacent strata is
essential. In order to address this problem in a principled manner, several proposals with
interactive architectures have been made, to enable a text planner to revise some of its tentative
choices, on the basis of results reported by later phases of processing. These approaches,
however, were all computationally expensive and hard to control. In practical systems, a
clever design of concrete operations on text planning and subsequent levels of processing, as
well as care with the ontological design of the text plan level stratum proved to be sufficient
to circumvent problems of expressibility.

It is quite remarkable, that these four strata in architectural models of natural language
generation have a strong correspondence in the area of GUI development, in terms of
Model Driven Approaches. In both models, higher level strata are increasingly independent
of properties of the categories of proper expressive means, which are language and form
in the case of natural language, and platform and code in the case of GUI development.
The connection between these models becomes even tighter when we take into account
multi-modal extensions to natural language generation approaches, where components in a
text plan can be realized either by textual or by graphical means, including their coordination.

When it comes to examining the relevance of concrete methods originating from natural
language generation for HCI purposes, several measures offer themselves, which are all
neutral with respect to the proper features of natural language:

• Techniques for organizing bits and pieces of content in ontological and structural terms,
following concepts of coherence, as encapsulated in a number of theories, such as
Rhetorical Structure Theory, see Mann & Thompson (1988). Dominating relations on
this level are hierarchical dependencies, while form and order are expressed in terms of
constraints, which come to play not before concrete realizations are chosen.

• Choices between expressive means, primarily between alternative media, according to
their suitability to express certain categories of content. For example, causal relations or
negation elements can be presented much better in a textual rather than in a graphical
form, whereas the opposite is the case for local relations.

• Structural and ontological relations may also drive the suitability of form and layout
design. For example, groupings of items need to be presented in a uniform, aligned
manner. Moreover, background information should be presented in moderately salient
forms, quite in contrast to warnings and alert messages.

In addition, it is conceived that automated approaches to natural language generation are
generally good in producing texts that are conform to norms of several sorts, such as the
use of a specific vocabulary and limited syntactic forms, but also non lexically dependent
conventions.

In the following sections, we refer to various aspects of linguistic models, when comparisons
between models of GUI construction and transformations between representation levels are
discussed.

3. Criteria

The goal of building interfaces on some level of abstract specifications is ambitious, and
implementations of conceptual approaches comprise a variety of measures and the adequate
orchestration of their ingredients. Consequently, assessments made about competing

6 Human Machine Interaction – Getting Closer

www.intechopen.com

Automated Generation of User Interfaces

A Comparison of Models and Future Prospects 5

approaches can be broken down into a set of dimensions, where elaborations in individual
approaches can be expected to address some of these dimensions in partially compensative
degrees. Within this section, we apply the term ’user’ to refer to an essentially untrained
person who uses such an approach to develop an interface.

As for any software system to be built automatically or at least semi-automatically on the basis
of abstract, user-provided specifications, three orthogonal criteria offer themselves:

• The ease of use,

that is, the amount of training needed, prior knowledge required, and degree of effort
demanded to generate adequate specifications for some piece of application.

• The degree of operationalization,

that is, where the position of an approach resides on the typically long scale ranging from
moderately semi-automated to fully-automated systems.

• The coverage,

that is, to what extent and in what ways an approach can bring about the ingredients
needed for the system to be built, hence, what kind of situations it can handle and for
which ones it falls short for some reason.

In addition to these in some sense basic criteria, there are two further ones, which go beyond
the development of a single system in complementary ways:

• Adaptability in the realization,

that is, using the system ultimately generated in different contexts, thereby taking into
account specific needs of each of these contexts, and making use of a large portion of the
specifications in all contexts considered.

• Reuse of (partial) specifications,

that is, the use of specifications or of some of their parts in several components of a model
specified by an approach, or across different versions.

In the following, we flesh out these criteria for the specific task at hand.

As for the ease of use, the user should be discharged of technical details of interface
development as much as possible. Ideally, the user does not need to have any technical
experience in building interfaces, and only some limited teaching is required, so that the user
becomes acquainted with operations the development system offers and with the conventions
it adopts. In order to make this possible, the implementation of an interface development
model should foresee some language that provides the building blocks of the model, and
effective ways to compose them. In addition to that, certain features aiming at the support in
maintaining correctness and/or completeness of specifications made can prove quite useful.
While correctness proofs for programs are expensive and carried out for safety-critical tasks,
if at all, measures to check completeness or correctness in some local context are much easier
to realize, and they can still prove quite valuable. For example, the system might remind
the user of missing specifications for some of the possible dialog continuations, according
to contextually suitable combinations of communicative acts. We have filed these measures
under the item ease of use because they primarily support a user in verifying completion
and correcting errors of specifications if pointed to them, although these features can also
be conceived as contributions to degrees of operationalization.

7Automated Generation of User Interfaces – A Comparison of Models and Future Prospects

www.intechopen.com

6 Will-be-set-by-IN-TECH

The degree of operationalization itself constitutes methods and procedures which regulate how
the interpretation of a model specified by a user is transduced into executable modules,
especially what activities involved in these procedures need to be carried out by hand. These
measures manifest themselves in three components complementing each other:

• The discourse structure

• The incorporation of references to business logic components

• Invoking rendering techniques

The discourse structure per se constitutes the proper model which the user has to build in terms
of abstract specifications. The major challenge from the perspective of the operationalization
lies in providing an automated procedure for transducing the abstract specifications made
into a workable system. Since setting up such a procedure is normally associated with plenty
of details that go beyond of what is represented in the abstract specifications made by the
user, it is particularly important to automate the derivation of all necessary details as much as
possible.

The incorporation of references to business logic components is, strictly speaking, a subcategory of
activities concerning specifications of the discourse structure. Since this particular activity is
so prominent – it occurs in absolutely all models, in a significant number of instances, and
is potentially associated with quite detailed specifications – we have given it a first class
citizen state for our considerations. Moreover, handling this connection is also a primary
task supported by the information state in linguistic models. As for linguistic models,
it is generally assumed that the business logic underlying an application is properly and
completely defined when interface specifications are to be made, in particular for establishing
references to business logic components. However, when developing a software system,
it is conceivable that some functionality originating from the discourse model may point
to a demand on the business logic which has not been foreseen when this component has
been designed; this situation is similar to the building of discourse models in computational
linguistics, where discourse objects are introduced in the course of a conversation, which exist
within the scope of this conversation only, and are related to, but not identical to some real
world objects. For example, in a flight booking application, one has to distinguish between
the proper flights in the database, completed flight specifications made by a customer built
in the course of some customer-system subdialog, and partial, potentially inconsistent flight
specifications incrementally made by the customer in the course of this dialog. Since it is
generally unrealistic to assume perfect business logic design in all details, some sort of an
interplay between the definition of the business logic and the design of the discourse structure
may eventually be desirable. Finally, access to business logic components for reference
purposes can also vary significantly in their ease of use across approaches, so that we have
to consider this issue from the usability perspective as well.

Invoking rendering techniques is somehow converse to the other categories of handling
specifications. It comprises how and where information can be specified that rendering
methods additionally require in order to produce compositions of concrete interaction
elements in an appropriate form. There are similarities between the role of rendering
and components in the production of text out of internal specifications, as pursued in
computational linguistics. The production of text comprises measures to assemble content
specifications followed by methods to put these into an adequate linguistic form. Rendering
techniques essentially have relations to the second part of this process. These techniques
comprise mappings for the elements of the abstract specifications, transducing them into

8 Human Machine Interaction – Getting Closer

www.intechopen.com

Automated Generation of User Interfaces

A Comparison of Models and Future Prospects 7

elements of a GUI or of some other dedicated presentation device, as well as constraints
on how the results of these mappings are to be composed to meet form requirements
of the device addressed. The overall task is most suitably accomplished by automating
mapping specifications and device constraints as much as possible, and by providing a
search procedure that picks a mapping combination in accordance with the given constraints,
thereby obeying preference criteria, if available. In most natural language generation system
architectures, especially those of practical systems, locally optimal choices are made in a
systematic order, thus featuring computational effectiveness and simplicity of control, at
the cost of sacrificing some degree of potentially achievable quality. A few clever search
procedures exist, improving that quality with limited extra effort. In an elaborate version,
one can expect that this process is characterized by compensative effects between search
effort and quality achievement. A useful property of automated rendering techniques, similar
to some natural language generation applications, is the conformance to style conventions
and preference constraints, which can be ensured by the automation of form choice and
composition.

The coverage of a discourse model in terms of discourse situations addressed may vary
significantly across individual approaches. For elaborate versions, a considerably large
repertoire of discourse situations and their flexible handling can prove to be important,
following the experience from natural language dialog systems. For these systems, much
effort has been invested in expanding the kind of discourse situations covered, which proved
to be valuable, since the increased flexibility improved the effectiveness of dialog task
achievement considerably.

We distinguish discourse situations according to structural relations between components of
such situations. The more involved these relations are, the more challenging is it to provide
the user with tools to make abstract specifications of the underlying discourse situation in an
effective manner. We consider the following situations, in ascending order of complexity:

• Groupings

This structural pattern constitutes a limited set of items of the same kind, which have to
be addressed in the same fashion. Unlike in human spoken dialogs, they can be treated
in one go in many HCI devices, such as a GUI. A typical example is a pair of questions
concerning source and destination of a trip, and the associated answers.

• Embeddings, such as subdialogs

In many discourse situations, an elaboration of the item currently addressed may be
required. This may concern supplementary information, such as a property of some airport
chosen as destination, or, most frequently, a clarification dialog, asking, for example, to
disambiguate between two airports that are in accordance with some specification made
so far.

• Conditional branching

The appropriate continuation in a discourse situation may depend on some specific
condition that arose during the preceding course of the dialog, for example through
unexpected or faulty specifications. In many cases, this condition manifests itself in the
category of the immediately preceding utterance or of its content, such as an invalid date
specification, but it may also be the value of some recently computed state variable, such
as one which makes an incompatibility between a set of query specifications explicit. The
continuation after the branching may completely diverge into independent continuations,
or a subdialog may be started in one or several of these branches, after the completion of
which control may return to the point where the branching is invoked.

9Automated Generation of User Interfaces – A Comparison of Models and Future Prospects

www.intechopen.com

8 Will-be-set-by-IN-TECH

• Repetitions and related control patterns

In many situations, certain discourse patterns are invoked repeatedly, mostly in case of a
failure to bring about the goal underlying the fragment which conforms to this pattern.
Repetitions may be unlimited, if the human conversant is supposed to provide a suitable
combination of specifications within this discourse fragment, and he can retry until he
succeeds or he may decide to continue the dialog in some other way. Repetition may also
be constrained, for example by a fixed number of trials, such as when filling out a login
mask, or when specifying details of some payment action.

• Simultaneous and parallel structures

Most dialogs simply evolve as sequences of utterances over time. In some situations,
however, the proper dialog can reasonably continue in parallel to executing some
time-consuming system action. One class of examples concerns processing of
computationally heavy transactions, such as a database request, during which the proper
dialog can continue, with the result of the database request being asynchronously reported
when available. Another class of examples concerns the play of a video or of a slide show,
which can be accompanied by a dialog local to the context where the video respectively
slide show is displayed.

• Topic shifts, including implicit subdialog closing

This kind of discourse situation is the most advanced one, and it can also be expected
to be the most difficult one to handle. In human conversations, topic shifts are signaled
by discourse cues, thereby implicitly closing discourse segments unrelated to the newly
introduced topic, which makes these shifts concise and communicatively so effective.
Within a GUI, similar situations exist. They comprise structurally controlled jumps into
previous contexts, frequently implemented by Back and Home/Start keys, as well as explicit
shifts to another topic which is out of the scope of the current discourse segment. An
example is a customer request to enter a dialog about car rental, leaving a yet uncompleted
dialog about booking a flight. As opposed to human dialogs, where the precise scope
of the initiated subdialog with the new topic needs to be contextually inferred, these
circumstances are precisely defined within a GUI. However, providing mechanisms for
specifying these options in terms of abstract discourse specifications in an intuitive manner
and with limited amount of effort appears to be very challenging.

Adaptability in the realization may concern a set of contextual constraints. One of them
comprises specificities of the device used, such as the available screen size, which may be
significantly different for a laptop and for a PDA. Another distinction lies in the use of media,
if multiple media are available, or if versions for several ones are to be produced. For example,
a warning must be rendered differently whether it comes within a GUI or whether it is to be
expressed in speech. Finally, the ultimate appearance of an interface may be varied according
to different conventions or styles.

Reuse of partial specifications also may concern a number of issues. To start with, partial or
completed specifications of some discourse situation, including specifications for rendering,
may be modified according to demands of other styles or conventions – the purpose is
identical to the one described in the previous paragraph, but with a different timing and
organization. Moreover, the incorporation of subdialog patterns is a very important feature,
useful in some variants. One possible use is the provision of skeletons that cover subdialog
patterns, so that they can be instantiated according to the present discourse situation. Another
possible use is the reoccurrence of an already instantiated subdialog pattern, which may be
reused in another context, possibly after some modifications or adaptations to the concrete

10 Human Machine Interaction – Getting Closer

www.intechopen.com

Automated Generation of User Interfaces

A Comparison of Models and Future Prospects 9

instantiations are made. Finally, versioning may be an issue, either to maintain several
versions for different uses, or to keep them during the design phase, to explore the differences
among them and to pick a preferred one later. Most of these reuses of partial specifications can
be found in natural language generation systems, but this is hardly surprising, since almost
all of them are fully automated systems.

This catalog of criteria is quite large, and some of the items in this catalog are quite advanced,
so that few of the present approaches if any at all can be expected to address one or another
of these advanced items, even to a limited degree. Most items in this catalog do not constitute
black-or-white criteria, which makes assessing competing approaches along these criteria not
an easy job. Moreover, approaches to design interfaces on some abstract specification level are
not yet far enough developed and documented so that detailed, metric-based comparisons
make sense. For example, the ease of use, in terms of the amount of details to be specified
and the intuitiveness of use have to be assessed largely for each model separately, on the
basis of its specificities, since experimental results about these user-related issues are largely
missing. Altogether, we aim at a characterization of the current position of state-of-the-art
systems, in terms of their relative strengths and weaknesses, as well as in terms of how far
the state-of-the-art is in the ambitious goal of producing competitive interfaces out of abstract
specifications that users can produce with reasonable effort.

4. Models in user interface development

The use of models and their automated transformation to executable UI source code are
a promising approach to ease the process of UI development for several reasons. One
reason is that modeling is on a higher level of abstraction than writing program code. This
allows the designer to concentrate on high-level aspects of the interaction instead of low-level
representation/programming details and supposedly makes modeling more affordable than
writing program code. Another reason is that the difference in the level of abstraction makes
models reusable and a suitable means for multi-platform applications, as one model can
be transformed into several concrete implementations. This transformation is ideally even
fully automatic. One further reason is that models, if automatically transformable, facilitate
system modifications after the first development cycle. Changes on the requirements can be
satisfied through changes on the models which are subsequently automatically propagated
to the final UI through performing the transformations anew. A good overview of current
state-of-the-art models, approaches and their use in the domain of UI development is given
in Van den Bergh et al. (2010). It is notable that most approaches in the field of automated UI
generation are based on the Model Driven Architecture1 (MDA) paradigm. Such approaches
use a set of models to capture the different aspects involved and apply model transformations
while refining the input models to the source code for the final UI. In this section we will
introduce and discuss model-driven UI development approaches that support the automated
transformation of high-level interaction models to UI source code. We will highlight some of
their strong points and shortcomings based on the criteria that we defined in section 3.

The primary focus of our criteria is the comparison of high-level models that are used as
input for automated generation of user interfaces. Such models are typically tightly linked
to a dedicated transformation approach to increase the degree of operationalization and the
adaptability in realization. This tight coupling requires not only the comparison of the models,
but also of the corresponding transformation approaches. We will use the Cameleon Reference

1 http://www.omg.org/mda/

11Automated Generation of User Interfaces – A Comparison of Models and Future Prospects

www.intechopen.com

10 Will-be-set-by-IN-TECH

Framework by Calvary et al. (2003), a widely applied classification scheme for models used in
UI generation processes, to determine the level of abstraction for the models to compare. The
Cameleon Reference Framework defines four different levels of abstraction. These levels are
from abstract to concrete:

1. Tasks & Concepts. This level accommodates high-level interaction specifications.

2. Abstract UI. This level accommodates a modality and toolkit-independent UI specification.

3. Concrete UI. This level accommodates a modality-dependent but still toolkit-independent
UI specification.

4. Final UI. This level accommodates the final source code representation of the UI.

We apply our criteria to models on the tasks & concepts level and their transformation
approaches.

Let us introduce a small excerpt from a flight booking scenario, which we will use to
illustrate the presented approaches. First, the System asks the User to select a departure and a
destination airport. Next the System provides a list of flights between the selected airports to
the User. The User selects a flight and the System checks whether there are seats available on
this flight or not (i.e., already overbooked). Finally, the System either asks the User to select a
seat or informs him that the flight is already overbooked.

4.1 Discourse-based Communication Models

Discourse-based Communication Models provide a powerful means to specify the interaction
between two parties on the tasks & concepts level. They integrate three different models
to capture the aspects required for automated transformations (i.e., source code generation).
Communication Models use a Domain-of-Discourse Model to capture the required aspects of
the application domain. Moreover, they use an Action-Notification Model to specify actions that
can be performed by either of the interacting parties and notifications that can be exchanged
between them. The core part of the Communication Model is the Discourse Model that
models the flow of interaction between two parties as well as the exchanged information
(i.e., message content). The Discourse Model is based on human language theories and
provides an intuitive way for interaction designers to specify the interaction between a user
and a system. Discourse Models use Communicative Acts as basic communication units and
relate them to capture the flow of interaction. The Communicative Acts are based on Speech
Acts as introduced by Searle (1969). Typical turn takings like question-answer are modeled
through Adjacency Pairs, derived from Conversation Analysis by Luff et al. (1990). Rhetorical
Structure Theory (RST) by Mann & Thompson (1988) together with Procedural Relations are
used to relate the Adjacency Pairs and provide the means to capture more complex flows
of interaction. Discourse Models specify two interaction parties. Each Communicative Act
is assigned to one of the two interacting parties and specifies the content of the exchanged
messaged via its Propositional Content. The Propositional Content refers to concepts specified
in the Domain-of-Discourse and the Action-Notification Model and is important for the
operationalization of Communication Models (see Popp & Raneburger (2011) for details).
Thus, the Discourse, the Domain-of-Discourse and the Action-Notification Model form the
Communication Model which provides the basis for automated source code generation.

Let us use our small flight selection scenario to illustrate the discourse-based approach.
Figure 1 shows the graphical representation of the Discourse Model for our scenario. This
Discourse Model defines two interaction parties - the Customer (green or dark) and the

12 Human Machine Interaction – Getting Closer

www.intechopen.com

Automated Generation of User Interfaces

A Comparison of Models and Future Prospects 11

Fig. 1. Flight Booking Discourse Model from Raneburger, Popp, Kaindl & Falb (2011)

System (yellow or light). The Communicative Acts that are exchanged are represented by
rounded boxes and the corresponding Adjacency Pairs by diamonds. The Adjacency Pairs are
connected via RST or Procedural Relations. The green (or dark) and yellow (or light) fill color
of the elements indicates the assigned interaction party.

Ease of Use — A graphical representation of Discourse Models eases their use for the designer.
Various tutorials indicate that Discourse Models are intuitive to use during an informal design
phase due to their human language theory basis. They support easy modeling of typical
turn-takings in a conversation through the Adjacency Pairs and the specification of a more
complex interaction through their Relations.

A high degree of operationalization for Communication Models is provided by the Unified
Communication Platform (UCP) and the corresponding UI generation framework (UCP:UI).
The aim during the development of UCP and UCP:UI was to stay compliant or apply
well-established specification techniques so that only limited teaching is required. Therefore,
an SQL-like syntax is used to specify the Propositional Content of each Communicative Act.
Cascading Style Sheets2 are used for style and layout specifications.

Degree of Operationalization — Discourse-based Communication Models can be
operationalized with UCP and UCP:UI. A high degree of operationalization, however,
requires more detailed specifications in the input models. Communication Models use
the Propositional Content of each Communicative Act and the additional specification of
conditions for Relations to provide the needed information for their operationalization and
to specify the interface between UI and application logic. The Propositional Content specifies
the content of the exchanged messages (i.e., Communicative Acts) and how they shall be
processed by the corresponding interaction party. Popp & Raneburger (2011) show that the
Propositional Content provides an unambiguous specification of the interface between the
two interacting agents. In case of UI generation, the Propositional Content specifies the
references to business logic components.

Additionally to the Propositional Content, Popp et al. (2009) include UML-state machines3

in UCP to clearly define the procedural semantics of each Discourse Model element. Hence,
each Discourse Model can be mapped to a finite-state machine. This composite state machine

2 http://www.w3.org/Style/CSS/
3 http://uml.org

13Automated Generation of User Interfaces – A Comparison of Models and Future Prospects

www.intechopen.com

12 Will-be-set-by-IN-TECH

is used to derive and define the corresponding UI behavior in case of UI generation (see
Raneburger, Popp, Kaindl & Falb (2011)).

The runtime environment uses a Service-oriented Architecture and is provided by UCP
Popp (2009). Figure 2 illustrates the operationalization of the Communication Model.
The upper part depicts the integration of the Discourse, the Domain-of-Discourse and the
Action-Notification Model into the Communication Model. The lower part shows that the
Communication Model provides an interface that supports the distribution of the application
and the generated UI on different machines. The System and the Customer communicate
through the exchange of Communicative Acts over the Internet.

Fig. 2. The Communication Model as Runtime Interface

Coverage — Discourse Models define two abstract interaction parties. This makes them
suitable to model not only human-machine but also machine-machine interaction as stated
by Falb et al. (2006). Interaction Parties can be assigned to Communicative Acts as well as
to Relations. Therefore, Communication Models provide a means to explicitly specify the
interaction party on which the progress of the interaction depends at a certain time.

As mentioned above, each Propositional Content is defined for a certain Communicative Act,
which form the basic communication units. This implies that Communicative Acts and their
corresponding values cannot be updated after they have been sent to the other interaction
party. For example, let’s consider the selection of a departure and a destination airport in a
flight selection scenario. It would be sensible to limit the list of destination airports according
to the selected departure airport. If the selection of both airports is concurrently available
this cannot be done, because no Communicative Acts are exchanged between the UI and the
business logic between the selection.

Adaptability in Realization — Discourse-based Communication Models are device- and
platform-independent. For a device-specific UI generation however, additional information
about the target device, style and layout must be provided. UCP provides this information in
form of default templates that can be selected and modified by the designer.

UCP:UI incorporates a methodology to transform Communication Models into WIMP-UIs for
different devices and platforms at compile time. It uses automated optimization to generate
UIs for different devices as presented in Raneburger, Popp, Kavaldjian, Kaindl & Falb (2011).
Because of this optimization there is no user interface model on abstract UI level. However, we
create a consistent screen-based UI representation on concrete UI level — the Screen Model.

14 Human Machine Interaction – Getting Closer

www.intechopen.com

Automated Generation of User Interfaces

A Comparison of Models and Future Prospects 13

Fig. 3. Flight Booking Concur Task Tree Model

Raneburger (2010) argues that the adaptability during the UI generation process is important
in order to generate a satisfying UI for the end user. This is due to the reason that
high-level models for UI generation per se do not provide the appropriate means to specify
non-functional requirements like layout or style issues. UCP:UI provides the possibility
to specify layout and style issues either in the transformation rules used to transform the
Communication Model into a Structural Screen Model, or via CSS.

Reuse of Partial Specification — So far there is no support for reuse of partial specifications.

4.2 Task models

Task models provide designers with a means to model a user’s tasks to reach a specific goal.
A thorough review of task models can be found in Limbourg & Vanderdonckt (2003) and a
taxonomy for the comparison of task models has been developed by Meixner & Seissler (2011).
In our chapter we focus on task models using the Concur Task Tree (CTT) notation as defined
by Paternò et al. (1997). This notation is the de-facto standard today.

Each CTT model specifies its goal as an abstract root task. In order to achieve this goal the
root task is decomposed into sub-tasks during the model creation phase. The leaf nodes of
the CTT model are concrete User, Interaction or Machine Tasks. The subtasks on each level are
related through Temporal Operators. These operators are used to specify the order in which the
tasks have to be performed to reach the specific goal.

Figure 3 depicts the CTT Model for our running example. The abstract root task bookflight
is decomposed into several concrete Interaction or Machine tasks that are required to reach
the specific goal (i.e., to select a flight ticket). These concrete tasks are either performed by a
human user (Interaction Tasks) or the system (Machine Tasks). Interaction Tasks are depicted
as a human user in front of a computer and Machine Tasks as a small computer. Tasks on the
same level in a CTT diagram are related via a Temporal Operator. The tasks select departure
airport and select destination airport are on the same level and shall be enabled at the same time.
This is expressed by the interleaving Temporal Operator that relates them. The select flight task
requires the information of the airports selected in the select route task. Therefore, the enabling
with information passing Temporal Operator is used to relate these tasks. Our scenario states
that the machine shall check whether seats are available or not after a certain flight has been
selected (i.e., after the enter flight information task is finished) and either offer a list of seats or

15Automated Generation of User Interfaces – A Comparison of Models and Future Prospects

www.intechopen.com

14 Will-be-set-by-IN-TECH

inform the user that no seats are available. We modeled this decision with the choice Temporal
Operator that relates the select seat and no seat available interaction tasks.

Task Models, just like Communication Models, have been designed in order to support
automated UI generation. In this chapter we use our criteria to compare two major task-based
UI development frameworks: the MARIA-Environment (MARIAE) and the USer Interface
eXtensible Markup Language4 (UsiXML) framework.

MARIAE is based on the MARIA user interface specification language developed by Paternò
et al. (2009) and provides tool-based design support on all four levels of the Cameleon
Reference Framework.

The UsiXML language forms the basis of the UI development framework presented in
Vanderdonckt (2008). UsiXML is a XML-compliant markup language that describes the UI for
multiple contexts of use such as Character User Interfaces (CUIs), Graphical User Interfaces
(GUIs), Auditory User Interfaces, and Multimodal User Interfaces. The UsiXML framework
uses CTT models on the tasks & concepts level and supports the designer with tools during the
UI generation. The interoperability between the tools is accomplished through the common
use of UsiXML. The focus of UsiXML development team is not the development of UI models
and a generation approach but the creation of a UI specification language that supports the
specification of all needed models with one language.

Ease of Use — A graphical representation for all CTT elements together with tool support
through the CTT-Environment (CTTE) developed by Mori et al. (2002) makes the creation of
task models affordable for designers. MARIAE as well as the UsiXML framework provide
tool support on all four levels of the Cameleon Reference Framework.

Degree of Operationalization — The degree of operationalization for fully specified task models
is high. Both approaches use device-specific, but platform and modality independent CTT
models on the tasks & concepts level. They provide tool support for the transformation into
UIs for multiple modalities.

References to the application logic can be specified through the definition of modified objects
for each task or Web service calls. However, it faces the same UI update problem as
Communication Model.

Coverage — Task models are primarily used to model user-driven applications. User-driven in
this context means that the user decides which tasks to execute next and not the system. CTT
models in principle support the specification of preconditions in order to model scenarios in
which the system decides what task to execute next. CTT does not support the unambiguous
specification of such preconditions. Therefore, these preconditions are not considered during
the course of the UI generation in MARIAE. This leads to the derivation of wrong Presentation
Task Sets and the corresponding Navigators in the end and poses therefore a limitation of the
coverage. The consideration of the following two aspects would solve this problem. First, a
clear syntax for the specification of the preconditions is required. Second, these preconditions
must be considered and evaluated during the UI generation process.

Figure 3 shows the CTT model that we created after having failed using the preconditions.
The choice Temporal Operator, marked with a red (or gray) ellipse, represents the check for
available seats. Figure 3 is not a true model of our scenario as CTT does not specify the
user and the system explicitly as roles. Therefore, it does not support the assignment of

4 http://www.usixml.org/

16 Human Machine Interaction – Getting Closer

www.intechopen.com

Automated Generation of User Interfaces

A Comparison of Models and Future Prospects 15

Temporal Operators to the machine or the system. Even our small scenario shows that there
is an expressiveness problem if CTT models shall be used to model machine decisions. This
problem could be solved if it would be possible to assign roles and specify conditions for
Temporal Operators.

Apart from specifying the interaction between a user and a system, CTT models can also be
used to specify the collaborative interaction between more than two users. Such Cooperative
Task Models define an arbitrary number of interaction parties and the flow of interaction
between them. The interaction between each interaction party and the system is specified
through CTT models.

Adaptability in Realization — CTT models are device-specific. However, both approaches
provide tools to adapt the CTT for different devices and contexts of use and to generate the
corresponding UI at design time. Based on these UIs, both frameworks support the migration
of an application’s UI through migratory UIs (see Bandelloni & Paternò (2004) and Collignon
et al. (2008)) that adapt to various contexts of use (i.e., device, environment, etc.) during
runtime.

Reuse of Partial Specifications — To the best of our knowledge there is no support for reuse of
partial specifications so far.

4.3 Models in the OO-Method

The OO-Method has been developed by Pastor et al. (2008) and introduces a so-called
Conceptual Model to define all aspects that are needed to generate information system
applications. The Conceptual Model consists of an Object Model, a Dynamic Model, a Functional
Model and a Presentation Model. This method uses a model compiler to transform these
four models into a UI for an application fully automatically. CTT models are only used on
Computational Independent Level. They are not processed fully automatically, but rather
define a basis for the creation of the four models mentioned above.

The OO-method has been tailored for the creation of information system applications.
Therefore, it is not easy to use for untrained users. Furthermore, its focus on information
systems limits the coverage of the corresponding models on the one hand, but increases their
degree of operationalization on the other hand. Tool support for the OO-Method on an industrial
scale is provided by the Olivanova transformation engine5. Adaptability for the resulting UI
is considered as important and constitutes a current field of research (see Pederiva et al.
(2007)). Their current approach is to provide additional rendering information in so called
transformation templates developed by Aquino et al. (2008). This approach has been chosen
as not all parts of the rendering engines and the corresponding models are accessible for
alterations. To the best of our knowledge there is no support for reuse of partial specifications
so far.

5. Assessment

In this section, we compare the models introduced in the previous section, according to
the criteria defined before. Since neither their state of elaboration, nor the details of
documentation available are such that an in depth comparison appears to be sensible, we
summarize some of the criteria in our comparison. We characterize the state of all models

5 http://www.care-t.com

17Automated Generation of User Interfaces – A Comparison of Models and Future Prospects

www.intechopen.com

16 Will-be-set-by-IN-TECH

with respect to single or related sets of criteria, and we contrast discourse-based with task
models respectively OO models where appropriate.

Concerning the ease of use, there is sufficient evidence that both models behave reasonable.
The discourse-based model has been presented in various tutorials, and participants were
able to build simple models already after short training. Tasks models are well known
and commonly used, which makes it plausible that they are even easier to use than the
discourse-based model, since no training is required to get acquainted with idiosyncrasies
of the model. Both models support the user in building models according to syntactic
conventions, but they fail to provide means of repair semantic errors in user specifications.
Graphical CTT models use a different icon for each temporal operator that represents
its meaning. Compared to Communication Models such operators are more easy to
read. However, RST-based Communication Model Relation provide additional semantic
information that can be exploited to derive the layout of a resulting graphical UI or the
emphasis of different parts in a speech UI. The OO-Method uses task models only during an
informal design phase. The creation of the Conceptual Model requires detailed knowledge
of the models involved. Therefore, such a model cannot be created by untrained users.
Altogether, concretely assessing the ease of use depends on the particular user. If you are
familiar with established modeling concepts the use of all models will be affordable, the
Discourse Models even with less amount of training due to their natural language basis.

The operationalization is quite differently organized across models and approaches. In the
discourse-based model, the abstract user specifications are operationalized and, by the aid
of schematic patterns for rendering purposes, successively transduced into executable code.
For the task model, operationalization depends on a suitable orchestration of transformation
processes that mediate between the layers of representation. A weak point in both models
is the reference to business logic. While the discourse-based model offers an admittedly
rudimentary way to handle references to business logic elements, this part seems not well
supported formally in the task model. The OO-Method focuses on the creation of UIs
for information systems. Information systems require only a limited set of business logic
functionality. The OO-Method’s Dynamic Model together with its Functional Model provide
an explicit specification of the objects managed by the business logic and the events changing
their states.

Discourse Models and CTT Models are both on the tasks & concepts level of the Cameleon
Reference Framework. One could argue however that Discourse Models are on a slightly
higher level of abstraction as their Relations introduce an additional semantic layer
and are decoupled from their procedural semantics through an explicit state machine
representation. Hence, Discourse Models have a greater coverage but per se a lesser degree of
operationalization than CTT models.

The coverage can be assessed easier for the discourse-based model, since its building blocks
have close relations to the categories of coverage, as they appear in our list of criteria.
This model can handle quite well various sorts of conditionally determined discourse
continuations, as well as groupings of semantically-related discourse acts. Simultaneous
actions, though in principle expressible, are not yet fully supported by the operationalization
method. Finally, advanced discourse continuations, that is, topic changes involving the
implicit leave of open subdialogs is not elaborated yet. Assessing the coverage for task models
is a bit speculative, since this cannot be done on the level of tasks per se. It depends on how the
task model specifications are mapped onto compositions of interactions, by transformations
between these layers of representation. This transformation is quite challenging, including a

18 Human Machine Interaction – Getting Closer

www.intechopen.com

Automated Generation of User Interfaces

A Comparison of Models and Future Prospects 17

Criterion Discourse-based Task-based OO-method

Ease of use reasonable, some
experimental evidence

best known approach detailed specifications
needed

Operational-
ization

systematic process,
clear application logic
interface

good tool support on all
abstraction levels

direct model compilation

Coverage good repertoire, but
no advanced discourse
continuation patterns

user-driven applications tailored to information
systems

Adaptation explicit support, some
degree of elaboration

device specific input
model

device specific input
model

Reuse not yet developed not yet developed not yet developed

Table 1. Comparing Discourse-based, task-based and OO approach

variety of choices with substantial differences in effectiveness. Intuitively, the coverage of the
OO-Method seems smaller as its focus is on information systems only.

The attitude towards adaptation is quite divergent between the competing approaches. While
discourse-based models explicitly support the adaptation to multiple devices from the same
abstract representation, the task model requires the designer to take into account properties of
the intended device already from the beginning. Thus, this part of the philosophy behind
the task model makes the generation process a bit easier, but it may turn out to be quite
awkward, if changes of the intended device or extension in their variation prove necessary or
at least desirable. Elaborations of the discourse-based model have already demonstrated some
success in producing structural variations driven by device constraints from the same abstract
specifications, it remains to be seen how far the repertoire of device variants and associated
rendering alternations can be extended. The OO-Method uses a device-specific Presentation
Model and does not support adaptability for different devices during its compilation process.

Concerning the last category of criteria, reuse, it is not surprising that neither of the two
approaches has to offer something yet. Reuse of partial specifications is quite an advanced
issue in the context of HCI, since it is a priori not clear how portions suitable for reuse can be
precisely defined, and how they need to be adapted to the context in which they are reused.
For the design of larger interfaces, however, such a feature will eventually be indispensable.

Major differences between the models are summarized in Table 1. Some of the major problems
are shared by all approaches: missing user support for handling semantic errors, reference to
business logic elements, and reuse of partial specifications.

Altogether, the competing models turn out to exhibit complementary properties in several
factors, which has its source in fundamental differences of the underlying philosophy. The
task model treats the interface design as an integral part of the overall software design.
Specifications to be made are decoupled into a primary, highly abstract design at the task
level, and subsequent transformations, which gradually concretize the task model into a
working interface. Success of this model widely depends on the suitability of the intermediate
representation levels and on the skill of the designer in finding effective optimizations
when building transformations mapping between adjacent representation levels. The
discourse-based model has quite different priorities. The proper design resides on the level of
discourse interactions, which is a level deeper than the primary design level of the task model.
Consequently, the designer can concentrate his efforts on precisely this level, which makes his

19Automated Generation of User Interfaces – A Comparison of Models and Future Prospects

www.intechopen.com

18 Will-be-set-by-IN-TECH

task quite uniform. It is assumed that he is able to structure the design of the interaction
specifications in a suitable manner, without an abstracting task model, but supported by the
underlying linguistic concept. Moreover, user interface production and adaptation for one or
several devices is automated, guided by declarative representations of device constraints.

Table 1 indicates that each modeling and transformation approach has its own limitations.
Therefore, it is important to have a set of criteria as provided in our chapter, to compare them
in order to find the most appropriate model and approach for a given problem.

6. Conclusion and future work

In this paper, we have described and compared three models for HCI design which operate
on some abstract, semantically-oriented levels - a discourse-based, a task model, and an
OO model. We have made this comparison along an advanced set of criteria, which has
demonstrated achievements and shortcomings of these approaches, but also complementary
strengths and weaknesses grounded in the different nature of these approaches.

When expanding the coverage in these models, difficulties are expected to be complementary,
according to the differences in the architectural design of the models. In the discourse-based
model, additional representation elements must be defined to enable the user to built
specifications for more advanced discourse situations. Since these elements are likely to be
associated with relatively complex semantics, similar to the procedural relations, much care
must be devoted to this task - users must get a handle on understanding how to use these
elements, in order to achieve a desired system behavior. Moreover, modules responsible
for operationalization must be enhanced accordingly, which may be challenging for some
complex representation elements. In contrast to that, additional representation elements in
task and OO models probably need not to be semantically complex, but several such elements
from different representation levels are likely to contribute to specific coverage extensions. In
such a setting, the challenge is to define complementing expressive means adequately. For the
user, it is important to understand, on which level he needs to make partial specifications, and
how they interact to obtain a desired system behavior.

In order to strengthen these models, they should address several factors that became apparent
through our comparison: the discourse-based model may profit from some sort of relations
between discourse fragments and tasks, inspired by the task model, but different from the
use there. The task model may allow for some degrees of adaptation to device variants,
although not in the principled manner as the discourse-based model does. The OO model
may adapt some of the information encapsulated in discourse relations to support adaptation
in the rendering process, and it may put some emphasis on making the task of the designer
less dependent on knowledge and training. Finally, all models should take the incorporation
to business logic more serious, and try to address some more advanced and effective patterns
of communication as well as measure to support some degree of reuse of partial specifications.

7. References

Aquino, N., Vanderdonckt, J., Valverde, F. & Pastor, O. (2008). Using profiles to support
transformations in the model-driven development of user interfaces, Proceedings of
the 7th International Conference on Computer-Aided Design of User Interfaces (CADUI
2008), Springer.

20 Human Machine Interaction – Getting Closer

www.intechopen.com

Automated Generation of User Interfaces

A Comparison of Models and Future Prospects 19

Bandelloni, R. & Paternò, F. (2004). Migratory user interfaces able to adapt to various
interaction platforms, International Journal of Human-Computer Studies 60(5-6):
pp. 621–639. HCI Issues in Mobile Computing.

Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L. & Vanderdonckt, J. (2003).
A unifying reference framework for multi-target user interfaces, Interacting with
Computers 15(3): pp. 289–308. Computer-Aided Design of User Interface.
URL: http://www.sciencedirect.com/science/article/pii/S0953543803000109

Collignon, B., Vanderdonckt, J. & Calvary, G. (2008). Model-driven engineering of multi-target
plastic user interfaces, Proceedings of the Fourth International Conference on Autonomic
and Autonomous Systems (ICAS 2008), IEEE Computer Society, Washington, DC, USA,
pp. 7–14.

Falb, J., Kaindl, H., Horacek, H., Bogdan, C., Popp, R. & Arnautovic, E. (2006). A discourse
model for interaction design based on theories of human communication, Extended
Abstracts on Human Factors in Computing Systems (CHI ’06), ACM Press: New York,
NY, pp. 754–759.

Heeman, P. (2007). Combining reinforcement learning with information-state update rules,
Proceedings of the North American Chapter of the Association for Computational Linguistics
Annual Meeting, pp. 268–275.

Kreutel, J. & Matheson, C. (2003). Incremental information state updates in an
obligation-driven dialogue model, Logic Journal of the IGPL 11(4): pp. 485–511.

Limbourg, Q. & Vanderdonckt, J. (2003). Comparing task models for user interface design,
in D. Diaper & N. Stanton (eds), The Handbook of Task Analysis for Human-Computer
Interaction, Lawrence Erlbaum Associates, Mahwah, NJ, USA, chapter 6.

Luff, P., Frohlich, D. & Gilbert, N. (1990). Computers and Conversation, Academic Press, London,
UK.

Mann, W. C. & Thompson, S. (1988). Rhetorical Structure Theory: Toward a functional theory
of text organization, Text 8(3): pp. 243–281.

Matheson, C., Poesio, M. & Traum, D. (2000). Modelling grounding and discourse obligations
using update rules, Proceedings of the 1st Annual Meeting of the North American
Association for Computational Linguistics (NAACL2000), pp. 1–8.

Meixner, G. & Seissler, M. (2011). Selecting the right task model for model-based user
interface development, ACHI 2011, The Fourth International Conference on Advances
in Computer-Human Interactions, pp. 5–11.

Meteer, M. (1992). Expressibility and the problem of efficient text planning, St. Martin’s Press, Inc.
New York, NY, USA.

Mori, G., Paternò, F. & Santoro, C. (2002). Ctte: Support for developing and analyzing task
models for interactive system design, IEEE Transactions on Software Engineering 28:
pp. 797–813.

Pastor, O., España, S., Panach, J. I. & Aquino, N. (2008). Model-driven development, Informatik
Spektrum 31(5): pp. 394–407.

Paternò, F., Mancini, C. & Meniconi, S. (1997). ConcurTaskTrees: A diagrammatic notation for
specifying task models, Proceedings of the IFIP TC13 Sixth International Conference on
Human-Computer Interaction, pp. 362–369.

Paternò, F., Santoro, C. & Spano, L. D. (2009). Maria: A universal, declarative,
multiple abstraction-level language for service-oriented applications in ubiquitous
environments, ACM Trans. Comput.-Hum. Interact. 16: pp. 19:1–19:30.
URL: http://doi.acm.org/10.1145/1614390.1614394

Pederiva, I., Vanderdonckt, J., España, S., Panach, I. & Pastor, O. (2007). The beautification
process in model-driven engineering of user interfaces, Proceedings of the 11th IFIP TC

21Automated Generation of User Interfaces – A Comparison of Models and Future Prospects

www.intechopen.com

20 Will-be-set-by-IN-TECH

13 International Conference on Human-Computer Interaction — INTERACT 2007, Part I,
LNCS 4662, Springer Berlin / Heidelberg, Rio de Janeiro, Brazil, pp. 411–425.
URL: http://dx.doi.org/10.1007/978-3-540-74796-3_39

Popp, R. (2009). Defining communication in SOA based on discourse models, Proceeding of the
24th ACM SIGPLAN Conference Companion on Object Oriented Programming Systems
Languages and Applications (OOPSLA ’09), ACM Press: New York, NY, pp. 829–830.

Popp, R., Falb, J., Arnautovic, E., Kaindl, H., Kavaldjian, S., Ertl, D., Horacek, H. & Bogdan, C.
(2009). Automatic generation of the behavior of a user interface from a high-level
discourse model, Proceedings of the 42nd Annual Hawaii International Conference on
System Sciences (HICSS-42), IEEE Computer Society Press, Piscataway, NJ, USA.

Popp, R. & Raneburger, D. (2011). A high-level agent interaction protocol based on a
communication ontology, in C. Huemer & T. Setzer (eds), EC-Web 2011, Vol. 85
of Lecture Notes in Business Information Processing, Springer Berlin Heidelberg,
pp. 233–245.

Raneburger, D. (2010). Interactive model driven graphical user interface generation,
Proceedings of the 2nd ACM SIGCHI Symposium on Engineering Interactive Computing
Systems (EICS ’10), ACM, New York, NY, USA, pp. 321–324.
URL: http://doi.acm.org/10.1145/1822018.1822071

Raneburger, D., Popp, R., Kaindl, H. & Falb, J. (2011). Automated WIMP-UI behavior
generation: Parallelism and granularity of communication units, Proceedings of the
2011 IEEE International Conference on Systems, Man and Cybernetics (SMC 2011).

Raneburger, D., Popp, R., Kavaldjian, S., Kaindl, H. & Falb, J. (2011). Optimized
GUI generation for small screens, in H. Hussmann, G. Meixner & D. Zuehlke
(eds), Model-Driven Development of Advanced User Interfaces, Vol. 340 of Studies in
Computational Intelligence, Springer Berlin / Heidelberg, pp. 107–122.
URL: http://dx.doi.org/10.1007/978-3-642-14562-9_6

Reiter, E. (1994). Has a consensus nl generation architecture appeared, and is it
psycholinguistically plausible?, Proceeding INLG ’94 Proceedings of the Seventh
International Workshop on Natural Language Generation, Association for Computational
Linguistics.

Searle, J. R. (1969). Speech Acts: An Essay in the Philosophy of Language, Cambridge University
Press, Cambridge, England.

Traum, D. & Larsson, S. (2003). The information state approach to dialogue management,
in R. Smith & J. van Kuppevelt (eds), Current and New Directions in Discourse and
Dialogue, Kluwer Academic Publishers, Dordrecht, pp. 325–353.

Van den Bergh, J., Meixner, G., Breiner, K., Pleuss, A., Sauer, S. & Hussmann, H. (2010).
Model-driven development of advanced user interfaces, Proceedings of the 28th of the
international conference extended abstracts on Human factors in computing systems, CHI
EA ’10, ACM, New York, NY, USA, pp. 4429–4432.
URL: http://doi.acm.org/10.1145/1753846.1754166

Vanderdonckt, J. M. (2008). Model-driven engineering of user interfaces: Promises, successes,
and failures, Proceedings of 5th Annual Romanian Conf. on Human-Computer Interaction,
Matrix ROM, Bucaresti, pp. 1–10.

22 Human Machine Interaction – Getting Closer

www.intechopen.com

Human Machine Interaction - Getting Closer

Edited by Mr Inaki Maurtua

ISBN 978-953-307-890-8

Hard cover, 260 pages

Publisher InTech

Published online 25, January, 2012

Published in print edition January, 2012

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

In this book, the reader will find a set of papers divided into two sections. The first section presents different

proposals focused on the human-machine interaction development process. The second section is devoted to

different aspects of interaction, with a special emphasis on the physical interaction.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Helmut Horacek, Roman Popp and David Raneburger (2012). Automated Generation of User Interfaces – A

Comparison of Models and Future Prospects, Human Machine Interaction - Getting Closer, Mr Inaki Maurtua

(Ed.), ISBN: 978-953-307-890-8, InTech, Available from: http://www.intechopen.com/books/human-machine-

interaction-getting-closer/automated-generation-of-user-interfaces-a-comparison-of-models-and-future-

prospects

© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.

