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1. Introduction

Heisenberg’s uncertainty principle is one of the manifestations of quantum complementarity.

In particular, it states that upon measuring both the momentum and the position of a

particle, the product of uncertainties has a fundamental lower bound proportional to Planck’s

constatnt. Hence, one cannot measure position and momentum simultaneously with a

prescribed accuracy. In general, the quantum complementarity principle does not permit to

identify a quantum state from measurements on a single copy of the system unless some extra

knowledge is available.

One of the consequences of fundamental assumptions of quantum mechanics is the fact that

determination of an unknown state can be achieved by appropriate measurements only if we

have at our disposal a set of identically prepared copies of the system in question. Moreover, to

devise a successful approach to the above problem of state reconstruction one has to identify

a collection of observables, so-called quorum, such that their expectation values provide the

complete information about the system state.

The problems of state determination have gained new relevance in recent years, following

the realization that quantum systems and their evolutions can perform practical tasks such

as teleportation, secure communication or dense coding. It is important to realize that if we

identify the quorum of observables, then we also have a possibility to determine expectation

values of physical quantities (observables) for which no measuring apparatuses are available.

Quantum tomography is a procedure of reconstructing the properties of a quantum object

on the basis of experimentally accessible data. This means that quantum tomography can be

classified by the type of object to be reconstructed:

1. state tomography treats density operators, which describe states of quantum systems;

2. process tomography discusses linear trace-preserving completely positive maps;

3. device tomography treats quantum instruments, and so on.

In what follows, we briefly describe the theory of quantum state tomography (cf. e.g. (Nielsen

& Chuang, 2000; Weigert, 2000)).

The aim of quantum state tomography is to identify the density operator characterizing the

state of a quantum system under consideration. Let H and S(H) denote the Hilbert space
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corresponding to the system and the set of all density operators on H, respectively. We

assume that the dimension of H is finite, dimH = N. According to the famous Born rule,

if an observable corresponding to a Hermitian operator Q with discrete spectrum is measured

in a system whose state is given by the vector |ψ〉, then 1) the measured result will be one

of the eigenvalues λ of Q, and 2) the probability of measuring a given eigenvalue λi will

be 〈ψ|Pi|ψ〉, where Pi denotes the projection onto the eigenspace of Q corresponding to λi.

These statements are based on the existence of the spectral resolution for any observable

Q. However, if Q is given as a square matrix of order N > 4, then it is well known that

the problem of calculation of eigenvectors and eigenvalues of Q over the field C of complex

numbers is not solvable by radicals in the general case. Even more, it is not solvable by any

finite procedure in the situation, where only arithmetic operations are allowed. This means

that, in fact, for a given Q we are not able to find effectively the spectral decomposition

Q = ∑ λiPi. Therefore, we will suppose that the information about the state ρ ∈ S(H) is

extracted from the expectation values of some observables Q1, . . . , Qr, i.e.,

qi = Tr(ρQi), (1)

where qi are real numbers inferred from the measurement and Qi are self-adjoint operators on

H. (We do not assume the knowledge of spectral decompositions for Qi.)

The question, how to construct a quorum of meaningful observables for a given quantum state

is quite fundamental. Usually, one can identify only a small number of observables Q1, . . . , Qr,

where r ≪ N2, with clear physical meaninig, and their expectation values are not enough for

the determination of a quantum state. As a natural remedy for this situation we can ask about

the results of the measurements of these observables (their mean values) at different time

instants t1, . . . , ts during the time evolution of the system in question (Jamiołkowski, 1982;

1983).

Summing up, as the fundamental objects in modern quantum theory one considers the set of

states

S(H) := {ρ : H → H; ρ ≥ 0, Tr ρ = 1}, (2)

and the set of bounded hermitean (self-adjoint) operators

B∗ := {Q : H → H; Q = Q∗}. (3)

Time evolutions of systems are governed by linear master equations of the form (in the

so-called Schrödinger picture)
dρ(t)

dt
= K ρ(t), (4)

or in the dual form (in the so-called Heisenberg picture)

dQ(t)

dt
= L Q(t), (5)

where superoperators K and L act on operators from the sets S(H) and B∗(H), respectively.

They represent dual forms of the same physical idea. Both sets S(H) and B∗(H) can be

considered as subsets of the vector space B(H) of all bounded linear operators on H and
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they can be treated as scenes on which problems of quantum mechanical systems should be

discussed.

Since in this paper we will consider finite-dimensional Hilbert spaces, therefore in fact B(H)
denotes the set of all linear operators on H. If we introduce in B(H) the scalar product by the

equality

〈A, B〉 := Tr(A∗B), (6)

then B(H) can be regarded as yet another inner product space, namely the so-called

Hilbert-Schmidt space. It is not difficult to see that B∗(H) with scalar product defined by (6)

is a real vector space and dimB∗(H) = N2.

If one does not intend to describe the full dynamics but instead to give a “snapshot” of its

effect at a particular time instant t, then one introduces the idea of a quantum channel which

mathematically is represented by a completely positive trace preserving (CPTP) map. A

completely positive map (a superoperator) is a transformation on density operators defined

by the expression

ρ̃ = Φ(ρ(0)) = ∑
i

A∗
i ρ(0)Ai , (7)

where Ai ∈ B(H) are called Kraus operators (Kraus, 1971) or noise operators of the map Φ. The

trace preservation condition implies that

∑
i

Ai A
∗
i = I . (8)

Let us observe that a unitary evolution is a spacial case of the CPTP transformation, where

there is only one unitary Kraus operator.

According to one of fundamental postulates of quantum theory one assumes that

measurements change the state of the system in a way radically different from unitary

evolution. The process of making a von Neumann measurement is formally described by

an expression of the form (7) with the Kraus operators being some commuting self-adjoint

idempotent operators Pi with the property ∑ Pi = I. A more general concept of measurement

was introduced in the 1970-s by Davies and Lewis. This concept is formally expresses as a

positive operator-valued measure (POVM) which is defined as a set of positive semidefinite

operators {Mk} satisfying ∑ Mk = I and, obviously, every such Mk can be expressed in the

form Mk = FkF∗
k (cf. e.g. Nielsen & Chuang, 2000). The operators Mk need not commute,

and the result of a particular measurement depends, in general, on the order in which the

measurements of Mk are performed.

The idea of stroboscopic tomography for open quantum systems appeared for the first time

in the beginning of 1980’s (although expressed in different terms (Jamiołkowski, 1982; 1983;

1986)). The main motivation came from quantum optics and the theory of lasers. In particular,

using the concept of observability, in (Jamiołkowski, 1983) and (Jamiołkowski, 1986) the

question of the minimal number of observables Q1, . . . , Qη for which the quantum systems

can be (Q1, . . . , Qη)-reconstructible was discussed.

On the other hand, theory of frames, which are collections of vectors that provide robust and

usually non-unique representations of vectors, has been the subject of research in last decades

and has been applied in these disciplines where redundancy played a vital and useful role.

69Fusion Frames and Dynamics of Open Quantum Systems
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However, in some applications it is natural to model and describe considered systems by

collections of families of subspaces, and to split a large (global) frame system into a set of much

smaller frame systems in these subspaces. This has led to the development of a suitable theory

based on fusion frames (families of subspaces), which provides the framework to model these

more complex applications (Casazza & Kutyniok, 2004; Casazza et al., 2008). In particular,

a sequence of the so-called k-order Krylov subspaces which appear naturally in stroboscopic

tomography (Jamiołkowski, 1986) and are defined by (see also the next Section)

Kk(L, Q) := Span
R1

{
Q, LQ, . . . , L

k−1Q
}

, (9)

where Q is a fixed observable and L is a generator of time evolution of the system in question,

constitutes a fusion frame in the Hilbert-Schmidt space B∗(H) if (Jamiołkowski, 2000)

r

⊞
i=1

Kµ(L, Qi) = B∗(H). (10)

In the above equality µ denotes the degree of the minimal polynomial of the superoperator

L and Q1, . . . , Qr represent fixed observables. The symbol ⊞ denotes Minkowski sum of

subspaces (10) (see (Hauseholder, 2009; Jamiołkowski, 2010)). We recall that for two subspaces

K1 and K2 of the vector space H, by K1 ⊞K2 one understands the smallest subspace of H which

contains K1 and K2.

It is well known that the Krylov subspaces Kk(L, Q) for k = 1, 2, . . . form a nested sequence

of subspaces of increasing dimensions that eventually become invariant under L. Hence for a

given Q, there exists an index µ = µ(Q), often called the grade of Q with respect to L for which

K1(L, Q) � · · · � Kµ(L, Q) = Kµ+1(L, Q) = Kµ+2(L, Q) · · · . (11)

It is easy to see, that for a given operator Q, the natural number µ(Q) is equal to the degree

of the minimal polynomial of L with respect of Q. Clearly, µ(Q) ≤ µ(L), where µ(L) denotes

the degree of the minimal polynomial of superoperator L (cf. e.g. (Jamiołkowski, 2000)).

Now, let us observe that even if observables Q1, . . . , Qr are linearly independent, the Krylov

subspaces Kk(L, Qi) for i = 1, . . . , r can have nonempty intersections. At the same time they

can constitute a fusion frame for the space of all observables B∗(H).

In the statistical description of physical systems the main role of observables is to statistically

identify states, or some of their properties. A typical goal of an experiment can be to decide

among various alternatives or hypothesis about states. As a very good reference on such

type of problems we recommend the review book (Paris & Rehacek, 2004). The details

of a particular identification problem depend on our prior knowledge and the properties

we want to discuss. One can say that owing to both the a priori knowledge about states

and the knowledge of our technical possibilities we define the alternatives that we should

experimentally verify.

In general, depending whether the set of alternatives is finite or not, one makes a distinction

between discrimination and estimation problems. One can introduce three different types of

problems:
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1. State estimation problem. In its most general form, one wants to identify the state of a system

assuming that no additional (prior) knowledge is available. In other words, the whole state

space of a system constitutes the set of possible hypotheses.

2. Sufficient statistics for families of states. In this case we are interested in considering only

a subset of the whole set of states. We encode prior knowledge about the preparation

of states in a multiparameter family of states and consider them as a possible set of

hypotheses. For example, we can assume that one considers states which are pure states

or have a particular block-diagonal form.

3. State discrimination problem. A particular case of the problem 2). One assumes that we

want to identify the state which belongs to a finite set {ρ1, . . . , ρp} and our aim is to

distinguish among these p possibilities. It is an obvious observation that in this case the

set of observables used for identification can be restricted in an essential way.

All above problems create very interesting particular questions and we will discuss them in

separate publications. A general description and some results concerning the problems 2 and

3 based on the idea of fusion frames are discussed in the present paper.

The organization of the paper is as follows: In Section 2, we summarize some concepts and

results of the theory of frames; Section 3 presents the main ideas of stroboscopic tomography.

We conclude the paper in Section 4 by discussing some applications of the notions of frames

and fusion frames to problems of open quantum systems and we discuss some examples of

algebraic methods in low-dimensional quantum systems.

2. Frames and fusion frames

Frames were first introduced by Duffin and Schaeffer in 1952 as a natural concept that

appeared during their research in nonharmonic Fourier analysis (Duffin & Schaeffer, 1952).

After more than three decades Daubechies, Grossman and Meyer (Daubechies et al., 1986)

initiated the use of frame theory in the description of signal processing. Today, frame theory

plays an important role in dozens of applied areas, cf. e.g. (Christensen, 2008; Heil, 2006;

Kovacevic & Chebira, 2008).

Let us consider a Hilbert space H (dimH = N < ∞) with scalar product 〈·|·〉 which is linear

in the second argument. A collection of vectors F = {| fi〉 : i ∈ I}, | fi〉 ∈ H, is called a frame

if there are two positive constants α, β > 0 such that for every vector x ∈ H

α ‖ x ‖2 ≤ ∑
i∈I

|〈 fi|x〉|
2 ≤ β ‖ x ‖2 . (12)

One assumes that the number of vectors | fi〉 is greater or equal to N. The frame is tight when

the constants α and β are equal, α = β. If α = β = 1, then F is called a Parseval frame. The

numbers 〈 fi|x〉 are called frame coefficients.

For a given frame F we can introduce the analysis Θ and synthesis Θ∗ operators. They are

defined by the equality

Θ(x) = ∑
i∈I

〈 fi|x〉|ei〉, (13)
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where |ei〉 stands for the standard basis in Cm (we will consider only finite dimensional

frames, so that I = {1, . . . , m} and m ≥ N). Composing Θ with its adjoint operator Θ∗,

we obtain the frame operator

F : H → H, (14)

defined by

Fx := Θ∗Θx =
m

∑
i=1

〈 fi|x〉| fi〉. (15)

It is not difficult to see that any collection of vectors {| fi〉}
m
i=1 constitutes a frame for the

vector space N := span{| fi〉}
m
i=1, N ⊆ H. On the other hand a family of elements {| fi〉}

m
i=1

in H is a frame for H if and only if span{| fi〉}
m
i=1 = H. This means that a frame may

contain more elements than it is necessary for it to be a basis. In particular, if {| fi〉}
m
i=1 is

a frame for H and {|gi〉}
n
i=1 is an arbitrary finite collection of elements in H, then the set

{| f1〉, . . . , | fm〉, |g1〉, . . . , |gn〉} is also a frame for H.

Generally speaking, frame theory is the study of how {| fi〉}
m
i=1 should be chosen in order to

guarantee that the frame operator Θ∗Θ is well-conditioned. In particular, {| fi〉}
m
i=1 is a frame

for H if there exist frame bounds α, β such that

α I ≤ Θ∗Θ ≤ β I, (16)

and is a tight frame iff Θ∗Θ = αI. It is an obvious observation that F = Θ∗Θ is a self-adjoint

and invertible operator.

Fusion frame theory (theory of frames of subspaces) is an emerging mathematical theory that

provides a natural setting for performing distributed data processing in many fields Casazza

& Kutyniok (2004); Casazza et al. (2008). In particular, one can apply these ideas in quantum

state tomography. The notion of fusion frame was introduced in Casazza & Kutyniok (2004)

and further developed by Casazza et al. (2008). A fusion frame in a Hilbert space H ∼= CN is

a finite collection of subspaces {Wi}
m
i=1 of H, such that there exist constants 0 < α < β < ∞

satisfying, for any |ϕ〉 ∈ H, the two inequalities

α ‖ |ϕ〉 ‖2 ≤
m

∑
i=1

‖ Pi|ϕ〉 ‖
2 ≤ β ‖ |ϕ〉 ‖2, (17)

where Pi denotes the non-orthogonal projection on Wi. In other words, a collection {Wi}
m
i=1

is a fusion frame if and only if

α I ≤
m

∑
i=1

Pi ≤ β I. (18)

The constants α and β are called fusion frame bounds. An important class of fusion frames is

the class of tight fusion frames, for which α = β. This equality leads to the operator relation

∑
m
i=1 Pi = αI. Let us note that definition given in (Casazza & Kutyniok, 2004; Casazza et al.,

2008) for fusion frames applies to weighted subspaces in any Hilbert space as well. However,

since the scope of this paper is limited to non-weighted subspaces only, the definition of

a fusion frame is presented for this restricted situation. If we compare the definition of a

quantum channel and that of a tight fusion frame, it becomes evident that every quantum

channel can be considered a special case of a fusion frame (18) with α = β = 1.
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Now, let us recall that for a given operator M : H → H and a given fixed nonzero vector

|x〉 ∈ H, one introduces the kth-order Krylov subspace of H by the equality

Kk(M, x) := span{|x〉, M|x〉, . . . , Mk−1|x〉}. (19)

The above definition can also be written as

Kk(M, x) := span{p(M)|x〉; deg(p) ≤ k − 1} , (20)

where p denotes an arbitrary polynomial and deg(p) is its degree. It is an obvious observation

that the size of a Krylov subspace depends on both M and |x〉. Note also that there exists such

k that Kk(M, x) = Kk+1(M, x) and this k is the degree of the minimal polynomial of M with

respect to |x〉. If by µ(λ, M) we denote the minimal polynomial of the operator M, then the

minimal polynomial of M with respect to any vector |x〉 ∈ H divides µ(λ, M).

For a given operator M : H → H Krylov subspaces generated by a fixed set of vectors

|x1〉, . . . , |xr〉 constitute a fusion frame in H if and only if the following equality is satisfied

r

⊞
i=1

Kµ(M, xi) = H. (21)

3. Stroboscopic tomography of open quantum systems

Quantum theory — as a description of properties of microsystems — was born more then

a hundred years ago. But for a long time it was merely a theory of isolated systems. Only

around fifty years ago the theory of quantum systems was generalized. The so-called theory of

open quantum systems (systems interacting with their environments) was established, and the

main sources of inspiration for it were quantum optics and the theory of lasers. This led to the

generalization of states (now density operators are considered to be a natural representation

of quantum states), and to generalized description of their time evolution. At that time the

concept of so-called quantum master equations — which preserve positive semi-definiteness of

density operators — and the idea of a quantum communication channel were born, cf. e.g. (Gorini

et al., 1976; Kossakowski, 1972; Kraus, 1971; Lindblad, 1976). On the mathematical level, this

approach initiated the study of semigroups of completely positive maps and their generators.

Now, for the convenience of the readers, we summarize the main ideas and methods of

description of open quantum systems and the so-called stroboscopic tomography.

The time evolution of a quantum system of finitely many degrees of freedom (a qudit) coupled

with an infinite quantum system, usually called a reservoir, can be described, under certain

limiting conditions, by a one-parameter semigroup of maps (cf. e.g. (Gorini et al., 1976;

Jamiołkowski, 1974; Kossakowski, 1972)). Let H be the Hilbert space of the first system

(dimH = N) and let

Φ(t) : B⋆(H) → B⋆(H), t ∈ R
1
+, (22)

be a dynamical semigroup, where B⋆(H) denotes the real vector space of all self-adjoint

operators on H. If one introduces the scalar product of operators A, B by the formula

〈A, B〉 = Tr(A∗B), then B⋆(H) can be considered as yet another inner product space, namely

the so-called Hilbert-Schmidt space with the norm defined by ‖ ρ ‖2= Tr(ρ∗ρ). States of the
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system are described by density operators ρ ∈ S(H), where

S(H) := {ρ ∈ B⋆(H); ρ ≥ 0, Tr ρ = 1} . (23)

Usually one assumes that the family of linear superoperators Φ(t) satisfies

1. Φ(t) is trace preserving, t ∈ R1
+,

2. ‖ Φ(t)ρ ‖≤ ‖ ρ ‖ for all ρ ∈ B⋆(H),

3. Φ(t1) ◦ Φ(t2) = Φ(t1 + t2),

for all t1, t2 in R1
+, and if t → 0, then lim Φ(t) = I. Since such defined Φ(t) is a contraction, it

follows from the Hille-Yosida theorem that there exists a linear superoperator K : B⋆(H) →
B⋆(H) such that Φ(t) = exp(tK) for all t ≥ 0 and

dρ(t)

dt
= Kρ(t), (24)

where ρ(t) = Φ(t)ρ(0). One should stress that the above conditions for semigroup Φ(t)
imply preservation of positivity of density operators, ρ(0) ≥ 0 ⇒ ρ(t) = Φ(t)ρ(0) ≥ 0 for all

t ∈ R1
+. Now, the above equation (usually called the master equation) defines an assignment

(the trajectory of ρ(0))
R

1
+ ∋ t �→ ρ(t) ∈ S(H), (25)

provided that we know the initial state of the system ρ(0) ∈ S(H). The fundamental question

of the stroboscopic tomography reads: What can we say about the trajectories (initial state

ρ(0)) if the only information about the system in question is given by the mean values

Ei(tj) = Tr (Qiρ(tj)), (26)

of, say, r linearly independent self-adjoint operators Q1, . . . , Qr at some instants t1, . . . , tp,

where r < N2 − 1 and tj ∈ [0, T] for j = 1, . . . , p, T > 0. In other words, the problem

of the stroboscopic tomography consists in the reconstruction of the initial state ρ(0), or a

current state ρ(t) for any t ∈ R1
+, from known expectation values (26). To be more precise

we introduce the following description. Suppose that we can prepare a quantum system

repeatedly in the same initial state and we make a series of experiments such that we know the

expectation values EQ(tj) = Tr (Qρ(tj)) for a fixed set of observables Q1, . . . , Qr at different

time instants t1 < t2 < · · · < tp. The basic question is: can we find the expectation value of

any other operator Q ∈ B⋆(H), that is any other observable from B⋆(H), knowing the set of

measured outcomes of a given set Q1, . . . , Qr at t1, . . . , tp, i.e. knowing Ej(tk) for j = 1, . . . , r

and where 0 ≤ t1 < t2 < · · · < tp ≤ T, for an interval [0, T]?

If the problem under consideration is static, then the state of a N-level open quantum system

(a qudit) can be uniquely determined only if r = N2 − 1 expectation values of linearly

independent observables are at our disposal. However, if we assume that we know the

dynamics of our system i.e. we know the generator K or L := (K)∗ (in the Heisenberg

picture) of the time evolution, then we can use the stroboscopic approach based on a discrete

set of times t1, ..., tp. In general, we use the term “state-tomography” to denote any kind of

state-reconstruction method.

74 Quantum Optics and Laser Experiments
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With reference to the terminology used in system theory, we introduce the following

definition: An N-level open quantum system S is said to be (Q1, . . . , Qr)-reconstructible on

the interval [0, T], if for every two trajectories defined by the equation (24) there exists at least

one instant t̂ ∈ [0, T] and at least one operator Qk ∈ {Q1, . . . , Qr} such that

Tr (Qkρ1(t̂)) �= Tr (Qkρ2(t̂)). (27)

The above definition is equivalent to the following statement. An N-level open quantum

system S is (Q1, . . . , Qr)-reconstructible on the interval [0, T] iff there exists at least one set of

time instants 0 < t1 < · · · < tp ≤ T such that the state trajectory can be uniquely determined

by the correspondence

[0, T] ∋ tj �−→ Ei(tj) = Tr (Qiρ(tj)), (28)

for i = 1, . . . , r and j = 1, . . . , p.

Let us observe that in the above definition of reconstructibility we discuss the problem of

verifying whether the accessible information about the system is sufficient to determine the

state uniquely and we do not insist on determining it explicitly.

The positive dynamical semigroup {Φ(t), t ∈ R1
+} is determined by the generator K :

B⋆(H) → B⋆(H) (the Schrödinger picture) and it is related to the generator L of the

semigroup in the Heisenberg picture by the duality relation

Tr[Q(Kρ)] = Tr[(LQ)ρ]. (29)

For a given set of observables Q1, . . . , Qr, the subspace spanned on the operators

Qi, LQi, . . . , (L)k−1Qi,

will be denoted by

Kk(L, Qi) := Span
R1

{
Qi, LQi, . . . , L

k−1Qi

}
, (30)

as the Krylov subspace in the Hilbert-Schmidt space B⋆(H). If k = µ, where µ is the degree

of the minimal polynomial of the generator L, then the subspace Kµ(L, Qi) is an invariant

subspace of the superoperator L with respect to Qi. It can be easily seen that the subspace

Kµ(L, Qi) is essentially spanned on all operators of the form (L)kQi, where k = 0, 1, . . ..

Furthermore, it is the smallest invariant subspace of the superoperator L containing Qi (i.e.

the common part of all invariant subspaces of the operator L containing Qi).

One can now formulate the sufficient conditions for the reconstructibility of an N-level open

quantum system (c.f. Jamiołkowski (1983; 2000)).

Let S be an N-level open quantum system with the evolution governed by an equation of

the form Q̇(t) = LQ(t) (the Heisenberg picture), where L is the generator of the dynamical

semigroup Ψ(t) = exp(tL). Suppose that, by performing measurements, the correspondence

[0, T] ∋ tj �−→ Ei(tj) = Tr (ρ(0)Qi(tj)) (31)
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can be established for fixed observables Q1, . . . , Qr at selected time instants t1, . . . , tp. The

system S is (Q1, . . . , Qr)-reconstructible if

r

⊞
i=1

Kµ(L, Qi) = B⋆(H). (32)

The above condition has been obtained by using the polynomial representation of the

semigroup Ψ(t). Indeed, if µ(λ, L) denotes the minimal polynomial of the generator L and

µ = deg µ(λ, L), then Ψ(t) = exp(tL) can be represented in the form

Ψ(t) =
µ−1

∑
k=0

αk(t)L
k, (33)

where the functions αk(t) for k = 0, . . . , µ − 1 are particular solutions of the scalar linear

differential equation with characteristic polynomial µ(λ, L). Since the functions αk(t) are

mutually independent, therefore for arbitrary T > 0 there exists at least one set of moments

t1, . . . , tµ (µ = deg µ(λ, L)) such that

0 ≤ t1 < t2 < · · · < tµ ≤ T , (34)

and det[αk(tj)] �= 0. Taking into account these conditions one finds that the state ρ(0) can be

determined uniquely if operators of the form

fkl := (L)kQl (35)

for l = 1, . . . , r and k = 0, 1, . . . span the space B⋆(H). In other words, we can say that

ρ(0) can be determined if vectors (35) constitute a frame in Hilbert-Schmidt space B⋆(H) or,

equivalently, if Krylov subspaces Kµ(L, Ql) for l = 1, . . . , r constitute a fusion frame in B⋆(H).

It should be noted that almost all the above considerations can be generalized to infinite

dimensional Hilbert spaces (Lindblad, 1976, Jamiołkowski, 1982). Such approach is

also discussed in a recent literature on infinite dimensional Kraus operators describing

amplitude-damping channels and laser processes. For instance, the above techniques are used

in the description of such situations in which beamsplitters allow photons to be coupled to

another optical modes representing the environment (cf. e.g. Fan & Hu).

3.1 Minimal number of observables

The question of an obvious physical interest is to find the minimal number of observables

Q1, . . . , Qη for which an N-level quantum system S with a fixed generator L can be

(Q1, . . . , Qη)-reconstructible. It can be shown that for an N-level generator there always exists

a set of observables Q1, . . . , Qη , where

η := max
λ∈σ(L)

{dim Ker(λI − L)}, (36)

such that the system is (Q1, . . . , Qη)-reconstructible (Jamiołkowski, 2000). Moreover,

if we have another set of observables Q̃1, . . . , Q̃η̃ such that the system is

(Q̃1, . . . , Q̃η̃)-reconstructible, then η̃ ≥ η. The number η defined by (36) is called the
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index of cyclicity of the quantum open system S (Jamiołkowski, 2000). The symbol σ(L) in (36)

denotes the spectrum of the superoperator L.

In particular, if we consider an isolated quantum system characterized by Hamiltonian

H0, then the minimal number of observables Q1, . . . , Qη for which the system is

(Q1, . . . , Qη)-reconstructible is given by

η = n2
1 + n2

2 + · · ·+ n2
m , (37)

where ni = dim Ker (λi I − H0) for all λi ∈ σ(H0), i = 1, . . . , m (for details cf. Jamiołkowski

(1982; 2000)).

Now let us assume that the time evolution of an N-level quantum system S is described by

the generator L given by

Lρ =
1

2

{
[Rρ, R] + [R, ρR]

}
= −

1

2

[
R, [R, ρ]

]
, (38)

that is, we consider the so-called Gaussian semigroup. The symbol R in (38) denotes a

self-adjoint operator with the spectrum

σ(R) = {λ1, . . . , λm} . (39)

In the sequel ni stands for the multiplicity of the eigenvalue λi for i = 1, . . . , m. One can

assume that the elements of the spectrum of R are numbered in such a way that the inequalities

λ1 < λ2 < . . . < λm are fulfilled. The following theorem holds:

The index of cyclicity of the Gaussian semigroup with a generator L given by (38) is expressed

by the formula

η = max{κ, γ1, . . . , γr} , (40)

where r = (m − 1)/2 if m is odd or r = (m − 2)/2 if m is even, and

κ := n2
1 + n2

2 + . . . + n2
m , (41)

γk := 2
m−k

∑
i=1

ni ni+k . (42)

In order to prove the above theorem and to determine the value of η for the generator L

defined by (38) we must find the number of nontrivial invariant factors of the operator L. Let

us observe that if σ(N) = {λ1, . . . , λm}, then the spectrum of the operator L is given by

σ(L) =
{

νij ∈ R ; νij = (λi − λj)
2 , i, j = 1, . . . , m

}
. (43)

The above statement follows from the fact that the operator L can also be represented as

L = R2 ⊗ I + I ⊗ R2 − 2R ⊗ R , (44)

where I denotes the identity in the space H. Since R is self-adjoint therefore the algebraic

multiplicity of λi, i.e. the multiplicity of λi as the root of the characteristic polynomial of R,

77Fusion Frames and Dynamics of Open Quantum Systems

www.intechopen.com



12 Will-be-set-by-IN-TECH

is equal to the geometric multiplicity of λi, ni = dim Ker (λi I − R) . Of course, we have

n1 + . . . + nm = dimH.

From (44) we can see that the multiplicities of the eigenvalues of the operator L are not

determined uniquely by the multiplicities of λi ∈ σ(R). But if we assume that λ1 < . . . < λm

and λk = (k − 1)c + λ1, where k = 1, . . . , m, and c = const > 0, then the multiplicities of all

eigenvalues of L are given by

γ|i−j| = dim Ker [(λi − λj)
2
I − L] (45)

for i �= j and

dim Ker (L) = n2
1 + . . . + n2

m = κ (46)

when i = j. Now, as we know, the minimal number of observables Q1, . . . , Qη for which the

qudit S can be (Q1, . . . , Qη)-reconstructible is given by (36), so in our case

η = max
i,j=1,...,m

{
dim Ker [(λi − λj)

2
I − L]

}
, (47)

where λi ∈ σ(R). Using the above formulae and the inequality γk < κ for k > r, where r is

given by (m − 1)/2 if m is odd and (m − 2)/2 if m is even, we can observe that also without

the assumption λk = (k − 1)c + λ1 one obtains

η = max{κ, γ1, . . . , γr} . (48)

This completes the proof.

3.2 The choice of moments of observations

Another natural question arises: what are the criteria governing the choice of time instants

t1, . . . , tµ? The following theorem holds:

Let us assume that 0 ≤ t1 < t2 < . . . < tµ ≤ T. Suppose that the mutual distribution of time

instants t1, . . . , tµ is fixed, i.e. a set of nonnegative numbers c1 < . . . < cµ is given and tj := cjt

for j = 1, . . . , µ, and t ∈ R+ . Then for T > 0 the set

τ(T) :=

{
(t1, . . . , tµ) : tj = cjt, 0 ≤ t ≤

T

cµ

}

contains almost all sequences of time instants t1, . . . , tµ, i.e. all of them except a finite number.

As one can check, the expectation values Ei(tj) and the operators (L)kQi are related by the

equality

Ei(tj) =
µ−1

∑
k=0

αk(cjt)
(
(L)kQi, ρ0

)
, (49)

where we assume that tj = cjt and the bracket (·, · ) denotes the Hilbert-Schmidt product in

B∗(H). One can determine ρ0 from (49) for all those values t ∈ R+ for which the determinant

Ω(t) is different from zero, i.e.

Ω(t) := det [αk(cjt)] �= 0 . (50)
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One can prove that the range of the parameter t ∈ R+ for which Ω(t) = 0 consists only of

isolated points on the semiaxis R+, i.e. does not possess any accumulation points on R+. To

this end let us note that since the functions t → αk(t) for k = 0, 1, . . . , µ − 1, are analytic on

R, the determinant Ω(t) defined by (50) is also an analytic function of t ∈ R. If Ω(t) can be

proved to be nonvanishing identically on R, then, making use of its analyticity, we shall be in

position to conclude that the values of t, for which Ω(t) = 0, are isolated points on the axis R.

It is easy to check that for k = µ(µ − 1)/2

dkΩ(t)

dtk

∣∣∣
t=0

= ∏
1≤j<i≤µ

(ci − cj) . (51)

According to the assumption c1 < c2 < . . . < cµ, we have Ω(k)(0) �= 0 if k = µ(µ − 1)/2.

This means that the analytic function t → Ω(t) does not vanish identically on R and the set of

values of t for which Ω(t) = 0 cannot contain accumulation points. In other words, if we limit

ourselves to an arbitrary finite interval [0, T], then Ω(t) can vanish only on a finite number of

points belonging to [0, T]. This completes the proof.

4. Frames and fusion frames in stroboscopic tomography. Generalizations to

subalgebras

As we have seen the concepts of frames and fusion frames appear in stroboscopic tomography

in natural way. The conclusion is based on the discussed above polynomial representations

of semigroups which describe evolutions of open systems. The possibility to represent the

semigroup Φ(t) = exp(t L) in the form

Φ(t) =
µ−1

∑
k=0

αk(t)L
k, (52)

where µ stands for the degree of the minimal polynomial of the superoperator L and αk(t),
k = 0 . . . , µ − 1, denote some functions of the eigenvalues of L gives the equality (32) as a

sufficient condition for stroboscopic tomography. On the other hand, this equality means that

the Krylov subspaces Kµ(L, Qi), i = 1, . . . , r, constitute a fusion frame in the Hilbert-Schmidt

space B∗(H) of all observables. Moreover, this also means that the collection of vectors

f jk := L
kQj, (53)

for j = 1, . . . , r and k = 0, 1, . . . , µ − 1, constitute a frame in B∗(H) and the system in

question is (Q1, . . . , Qr)-reconstructible. In this case every element Q of the space B∗(H) can

be represented as

Q = ∑
j,k

〈F−1 f jk|Q〉 f jk = ∑
j,k

〈 f jk|Q〉F−1 f jk, (54)

where F denotes the frame operator of the collection of vectors (53). One can say even more.

If Q ∈ B∗(H) also has another representation Q = ∑j,k cjk f jk for some scalar coefficients cjk,
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j = 1, . . . , r and k = 0, 1, . . . , µ − 1, then

∑
jk

|cjk|
2 = ∑

jk

|〈F−1 f jk|Q〉|2 + ∑
j,k

|cjk − 〈F−1 f jk|Q〉|2. (55)

It is obvious that every frame in finite-dimensional space contains a subset that is a basis.

As a conclusion we can say that if { f jk} is a frame but not a basis, then there exists a set of

scalars {djk} such that ∑j,k djk f jk = 0. Therefore, any fixed element Q of B∗(H) can also be

represented as

Q = ∑
j,k

(
〈F−1 f jk|Q〉+ djk

)
f jk. (56)

The above equality means that every Q ∈ B∗(H) has many representations as superpositions

of elements from the set (53). But according to equality (55) among all scalar coefficients {cjk}
for which

Q = ∑
j,k

cjk f jk, (57)

the sequence {〈F−1 f jk|Q〉} has minimal norm. This is a general method in frame theory

(Christensen, 2008) and at the same time the main observation connected with the idea of

stroboscopic tomography.

In conclusion, one can say that the Krylov subspaces Kµ(L, Qi) in the space B∗(H) generated

by the superoperator L can be used in an effective way for procedures of stroboscopic

tomography if they constitute appropriate fusion frames in this space.

4.1 Generalizations to subalgebras

Now, we will discuss some problems of reconstruction of quantum states when the Krylov

subspaces playing such important role in the stroboscopic tomography are replaced by some

subalgebras of the Hilbert-Schmidt space B⋆(H). Just as the fundamental theorem of algebra

ensures that every linear operator acting on a finite dimensional complex Hilbert space has a

nontrivial invariant subspace, the fundamental theorem of noncommutative algebra asserts the

existence of invariant subspaces of H for some families of operators from B(H). It is an

obvious observation that an algebra generated by any fixed operator Q and the identity on

H can not be equal to B⋆(H). This statement is based on the Hamilton-Cayley theorem.

However, already for two operators Q1, Q2 and the identity we can have Alg(I, Q1, Q2)
=B(H) (for details cf. below).

In general, the famous Burnside’s theorem states (cf. e.g. (Farenick, 2001)) that an operator

algebra on a finite-dimensional vector space with no nontrivial subspaces must be the algebra

of all linear operators. In the sequel we will use the following version of this theorem:

Fundamental theorem of noncommutative algebras. If A is a proper subalgebra of B(H) containing

identity, and the dimension of the Hilbert space H is greater or equal to 2, then A has a

proper nonzero invariant subspace in H (i.e., the subspace is invariant for all members Q

of the algebra A).

We will apply the above theorem for the following problem. Given a set F = {Q1, . . . , Qr} of

observables, we would like to establish conditions, when the operators Q1, . . . , Qr generate the
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whole algebra B(H). In other words, we want to determine whether every element in B(H)
can be represented in the form π(Q1, . . . , Qr), where π is a polynomial in noncommutative

variables.

Let us observe that according to the fundamental theorem if A is a subalgebra of the full complex

algebra B(H), then a nontrivial invariant subspace in H exists if and only if

dimA < dimB(H). (58)

If a set of generators of A is known, then the above inequality can be verified by a finite

number of arithmetic operations. The procedures possessing such property are called effective.

A very important example of an effective procedure can be formulated when we discuss the

problem of the existence a common one-dimensional invariant subspace for a pair of operators

Q1, Q2. In other words, we ask about a common eigenvector for two operators Q1, Q2. An

answer to this question is given by the following procedure. Let the symbol [Q1, Q2] denote,

as usual, the commutator of the operators Q1, Q2. Then a common eigenvector for Q1 and Q2

exists if and only if the subspace K of H defined by

K :=
N−1⋂

j=1
k=1

Ker[Q
j
1, Qk

2] , (59)

where N = dimH, satisfies the condition dimK > 0 (this is the so-called Shemesh criterion

(Shemesh, 1984)). A short proof of this condition is possible.

First of all, let us observe that if |ψ〉 is a common eigenvector of the operators Q1 and Q2, i.e.,

Q1|ψ〉 = α|ψ〉 and Q2|ψ〉 = β|ψ〉, (60)

then |ψ〉 belongs to Ker[Q
j
1, Qk

2] for all j, k greater then 1. This fact and the inequality

dimK > 0 means that the gist of the Shemesh condition is in observation that the subspace K
is invariant under Q1 and Q2. Indeed, if |ψ〉 belongs to K, then by the definition of subspaces

Ker[Q
j
1, Qk

2] one can check that Q1|ψ〉 ∈ K and Q2|ψ〉 ∈ K. Now, let us choose a basis for K
and extend it to a basis in H. We then observe that there exists a nonsingular matrix S such

that matrices SQ1S−1 and SQ2S−1 have block-triangular forms and the submatrices which

correspond to subspace K commute. This means that these submatrices have a common

eigenvector and therefore the same is true for Q1 and Q2. D. Shemesh observed that the

condition dimK > 0 is equivalent to the singularity of the matrix

M :=
N−1

∑
j=1
k=1

[Q
j
1, Qk

2]
∗[Q

j
1, Qk

2], (61)

where * denotes complex conjugate transpose. For our purposes, on the basis of Burnside’s

theorem, more interesting is the case when matrices Q1, Q2 do not have common eigenvectors

and the algebra A(Q1, Q2) generated by them coincides with B(H). This situation may be
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expressed by the following inequality

det M > 0, (62)

which can be checked by an effective procedure, that is, by a finite number of arithmetic

operations. It is obvious, that the matrix M is in general semipositive definite, and the above

condition means the strict positivity of M.

4.2 Examples

In order to illustrate algebraic methods in reconstruction problems, we will discuss some

algebraic procedures in low dimensional cases. For quantum systems of qubits and qutrits one

can formulate an explicit form of some conditions in a matrix form which is sometimes more

transparent then the general operator form. We will use the so-called vec operator procedure

which transforms a matrix into a vector by stacking its columns one underneath the other. It is

well known, that the tensor product of matrices and the vec operator are intimately connected.

If A denotes a N × N matrix and aj its j-th column, then vec A is the N2-dimensional vector

constructed from a1, . . . , aN . Moreover if A, B, C are three matrices such that the matrix

product ABC is well defined, then

vec(ABC) = (CT ⊗ A) vec B. (63)

In the above formula CT denotes the transposition of the matrix C. In particular we have

vec A = (I ⊗ A) vec I = (AT ⊗ I) vec I. (64)

Let us agree that when we say that a set of matrices generates the set B(H), we are thinking

about B(H) as an algebra, while when we say that a set of matrices forms a basis for B(H), we

are talking about B(H) as a vector space (here we identify B(H) with the set of all matrices

on H = CN).

For qubits, that is for two-dimensional Hilbert space, one can show by a direct computation

that

det(vec I, vec Q1, vec Q2, vec(Q1Q2)) = det([Q1, Q2]) (65)

and

det(vec I, vec Q1, vec Q2, vec[Q1, Q2]) = 2 det([Q1, Q2]), (66)

where on the left hand side we have the determinants of the 4 × 4 matrices and on the right

hand sides [Q1, Q2] denotes the commutator of the two 2 × 2 matrices.

From the last equality it follows, that if matrices I, Q1, Q2 and [Q1, Q2] are linearly

independent, then the algebra which is spanned by them has the dimension 4, so Q1, Q2 and

I generate B(H). In other words, two operators Q1, Q2 and the identity generate B(H) if

and only if the matrix [Q1, Q2] has the determinant different from zero. In a similar way one

can show that the matrices Q1, Q2, Q3, such that no two of them generate B(H), can generate

B(H) if and only if the double commutator [Q1, [Q2, Q3]] is invertible. In general, the matrices

Q1, . . . , Qr generate B(H) iff at least one of the commutators [Qi, Qj] or double commutators

[Qi, [Qj, Qk]] is invertible (Aslaksen & Sletsjøe, 2009).
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In the case of qutrits, that is for a three-dimensional Hilbert space, one can show by direct

calculation that if [Q1, Q2] is invertible and ω([Q1, Q2]) �= 0, where for Q ∈ B(H) the

symbol ω(Q) denotes the linear term in the characteristic polynomial of Q, then one can

construct an explicit basis for B(H). Indeed, if Q1, Q2 belong to B(H), and (dimH) = 3,

then the determinant of the 9-dimensional matrix Ω build from vec transformations of

I, Q1, Q2, Q2
1, Q2

2, Q1Q2, Q2Q1, [Q1, [Q1, Q2]], [Q2, [Q2, Q1]] satisfies the equality

det Ω = 9 det([Q1, Q2])ω([Q1, Q2]). (67)

That is, if det([Q1, Q2]) �= 0 and ω(Q) �= 0, then the columns of the matrix Ω correspond to a

basis for B(H).

Of course, one can also use the Shemesh criterion to characterize pairs of generators for B(H),
where dimH = 3.

5. Conclusions

Papers written by mathematicians are usually focused on characterization of various

properties of discussed objects and search for necessary and sufficient conditions for desired

conclusion to hold. Concrete constructions offen play a minor role. The problems of frames

and fusion frames are no exceptions. The main purpose of this paper was to discuss properties

of some Krylov subspaces in a given Hilbert space as a natural examples of fusion frames and

their applications in reconstruction of trajectories of open quantum systems.
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