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Sergiy Lyagushyn and Alexander Sokolovsky 
Oles’ Honchar Dnipropetrovs'k National University 

Ukraine 

1. Introduction 

Modern physics deals with the consistent quantum concept of electromagnetic field. 
Creation and annihilation operators allow describing pure quantum states of the field as 
excited states of the vacuum one. The scale of its changes obliges to use statistical 
description of the field. Therefore the main object for full description of the field is a 
statistical operator (density matrix). Field evolution is reflected by operator equations. If the 
evolution equations are formulated in terms of field strength operators, their general 
structure coincides with the Maxwell equations. At the same time from the point of view of 
experiments only reduced description of electromagnetic fields is possible. In order to 
analyze certain physical situations and use numerical methods, we have the necessity of 
passing to observable quantities that can be measured in experiments. The problem of 
parameters, which are necessary for non-equilibrium electromagnetic field description, is a 
key one for building the field kinetics whenever it is under discussion. The field kinetics 
embraces a number of physical theories such as electrodynamics of continuous media, 
radiation transfer theory, magnetic hydrodynamics, and quantum optics. In all the cases it is 
necessary to choose physical quantities providing an adequate picture of non-equilibrium 
processes after transfer to averages. It has been shown that the minimal set of parameters to 
be taken into account in evolution equations included binary correlations of the field. The 
corresponding theory can be built in terms of one-particle density matrices, Wigner 
distribution functions, and conventional simultaneous correlation functions of field 
operators. Obviously, the choice depends on traditions and visibility of phenomenon 
description. Some methods can be connected due to relatively simple relations expressing 
their key quantities through one another. The famous Glauber’s analysis (Glauber, 1966) of a 
quantum detector operation had resulted in using correlation functions including positive- 
and negative-frequency parts of field operator amplitudes in the quantum optics field. 
Herewith the most interesting properties of field states are described with non-simultaneous 
correlation functions. Various approaches in theoretical and experimental research into field 
correlations are compared in the present chapter. 

Our starting point is investigation of the Dicke superfluorescence (Dicke, 1954) on the basis 
of the Bogolyubov reduced description method (Akhiezer & Peletminskii, 1981). It paves the 
way to constructing the field correlation functions. We can give a relaxation process picture 
in different orders of the perturbation theory. The set of correlation functions providing a 
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rather full description of the superfluorescence phenomenon obeys the set of differential 
equations. The further research into the correlation properties of the radiated field requires 
establishing the connection with the behavior of Glauber functions of different orders. 

2. Electromagnetic field as an object of quantum statistical theory 

A statistical operator   of electromagnetic field should take into account the whole variety 

of field modes and statistical structure abundance for each of them. Proceeding from the 

calculation convenience provided by using coherent states z  of field modes, the Glauber-

Sudarshan representation for the statistical operator of field (Klauder & Sudarshan, 1968) 

footholds in physics. We refer to the following view of this diagonal representation 

  2 *, | |d zP z z z z    (1) 

where *( , )P z z  is so called P -distribution ( { }kz z  and these variables are numbered by 

polarization   and wave vector k of the field modes). Since coherent states form an 

overcrowded basis in the state space of the mode with the completeness condition 

 21 ˆ| | 1d z z z


  , (2) 

the most general representation for the statistical operator should include not only 

projection operators | |z z , but also more general operator products | |z z . Nevertheless it 

can be shown (Glauber, 1969; Kilin, 2003) that a P-distribution can be obtained as a two-
dimensional Fourier transformation of the generating functional  

  
*

*, Sp
k k k k

k k

u c u c

F u u e e
   

 
  

  (3) 

which is a generating one for all normally ordered field moments and can be calculated 
directly with an arbitrary statistical operator  . Here we use standard notation of quantum 

electrodynamics: kc
 , kc  are Bose amplitudes (creation and annihilation operators) of the 

field. 

So we can use the representation (1) in all cases when the Fourier integral for (3) exists. Such 
situation embraces a great variety of states that are interesting for physicists. More general 
cases reveal themselves in singularities of the P-distribution, the representation (1) still 
being prospective for using if the P-distribution can be expressed via generalized functions 

of slow growth, i.e.  -function and its derivatives. The term “ P -distribution” is relatively 

conventional: function *( , )P z z is a real but non-positive one. Nevertheless, the field state 

description with the Glauber-Sudarshan P-distribution remains the most demonstrative and 
consumable. For example, a proposed definition of non-classical states of electromagnetic 
field (Bogolyubov (Jr.) et al., 1988) uses the expression (1) for the statistical operator. A state 
is referred to as non-classical one if one of two requirements is obeyed: either average 
number of photons in a mode is less than 1, or P-function is not positively determined or has 

singularity that is higher than the  -function.  
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For a multi-mode field the statistical operator takes the form of a direct product of one-mode 
statistical operators. In Schrödinger picture the Liouville equation  

 ˆ( ) [ , ( )]t

i
t H t   


 (4) 

describes the evolution of an arbitrary physical system. In the case when electromagnetic 
field interacting with matter is under consideration the problem is reduced to the correct 
account of the matter influence, so some kinds of effective Hamiltonians may appear in an 
analogue of (4) for the statistical operator of field. Evolution description in Heisenberg 
picture seems to be closer to the classical one. We come to operator Maxwell equations for 
field operators with terms corresponding to the matter influence and demanding some kind 
of material equations. 

More graphic way to describing the electromagnetic field, its states, and their evolution is 
using correlation functions of different types, i.e. averaged values of physical quantities 
characterizing the field. The problem of choosing them will be discussed below. 

3. Correlation functions provided by methods of quantum optics  

Conventional classical optics was very restricted in measuring the parameters of fields. All 

conclusions about properties of light including its polarization properties were drawn from 

measurements of light intensity, i.e. from values of some quadratic functions of the field 

(Landau & Lifshitz, 1988).  Naturally, we speak now about transversal waves in vacuum. 

Regarding a wave, close to a monochromatic one, we use slowly varying complex amplitude 

 0nE t for its description: 

  0
i t

n nE E t e  . (5) 

Partially polarized light is characterized with the tensor of polarization 

 
________

*
0 0mn m nJ E E  (6) 

where m and n corresponds to two possible directions of polarization and quick oscillations 

of field are neglected. Averaging is performed over time intervals or (in the case of 

statistically stable situation) in terms of probabilities. A sum of diagonal components of mnJ  

is a real value that is proportional to the field intensity (the energy flux density in the wave 

in our case). Note that the discussion of field correlation functions by Landau in the earlier 

edition of the mentioned book was one of the first in the literature.  

A rather full analysis of the classical measurement picture is given in (Klauder & 
Sudarshan, 1968). It should be mentioned that real field parameters are obtained from 
complex conjugated values in this approach. Transition to the quantum electromagnetic 
theory (Scully & Zubairy, 1997) is connected with substitution of operator structures with 
creation and annihilation operators instead of complex conjugated functions and coming 
to positive- and negative-frequency parts of field operators. Such expressions will be 
shown later on. 
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Physical picture of field parameter registration in the quantum case can be reduced to the 

problem of photon detection. An ideal detector should have response that is independent of 

radiation frequency and be small enough in comparison with the scale of field changes. 

Generally accepted analysis of quantum photon detector (Glauber, 1965; Kilin, 2003) is 

based on using an atom in this role and regarding the operator of field-atom interaction in 

the electric dipole approximation 

  ˆ ˆˆ
n nV p E x     

with ˆ
np  standing for the operator of the electric dipole moment of an atom localized in a 

point with a radius-vector x  (we shall denote in such a simple way a three-dimensional 

spatial vector). The quantum theory derives the total probability w  of atom transition from 

a definite initial ground state |g  to an arbitrary final excited one |e  belonging to the 

continuous spectrum during the time interval from 0t  to t  on the basis of Dirac’s 

nonstationary perturbation theory in the interaction picture (Kilin, 2003)  

      
0 0

1,1
, ; ,

t t

mn mn
mnt t

w d d R G x x           (7) 

where  mnR     is a function of detector sensitivity and  

            1,1
1 1 1 1 1 1 1 1

ˆ ˆ, ; , , ,mn m nG x t x t E x t E x t
        (8) 

is field correlation function of the first order (we use the notation ˆ ˆSpA A    for an 

arbitrary operator Â ). Here and further we use standard expressions for operators of the 

vector potential, electric and magnetic field in the Coulomb gauge (Akhiezer A. & 

Berestetsky V., 1969) 

  
1 2

,

2ˆ ( ) ikx
n kn k k

kk

A x c e c c e
V

  








 
  

 
 

; (9) 

  
1 2

,1 2

(2 )ˆ ( ) ikxk
n kn k k

k

E x i e c c e
V

  


  
  

,   (10) 

  
1 2

,1 2

(2 )ˆ ( ) ikxk
n nlm l km k k

k

B x i k e c c e
V

  


   
   

  

In these formulas kne  are vectors of the circular polarization ( 0kn ne k  ), /l lk k k , 

k ck  , V  is field volume. Field operators in (8) are the positive- and negative-frequency 

parts of electric field operator in the picture of interaction 

 ( ) ( )ˆ ˆ ˆ( , ) ( , ) ( , )n n nE x t E x t E x t   , (11) 
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  
1 2

( )( )
1 2

(2 )ˆ , ki kx tk
n kn k

k

E x t i e c e
V


 



     
,            ( ) ( )ˆ ˆ( , ) ( , )n nE x t E x t   .  

The correlation function of detector sensitivity in the suggestion that matrix elements of the 
dipole moment operator between the ground and excited states (so called dipole moment of 

transition) ˆ| |n ne p g p   are independent of a final state takes the form 

      *
2mn m n mnR p p s
              


 (12) 

where   stands for the spectral density of states in the continuous spectrum. It is expedient 

to notice that the dependence of matrix elements of electric dipole moment on time in the 
interaction picture results in positive- and negative-frequency parts of field operators 
appearing in calculated averages.  

It follows from (7) and (12) that the rate of counting for the considered model of an ideal 
photon detector makes 

 (1,1)( ) ( , ; , )mn mn
mn

dw
p t s G x t x t

dt
   (13) 

The problem of correlation of modes with different polarizations is a complicated one from 

the point of view of quantum measurements. So in most cases theoretical consideration goes 

to the presence of polarization filter. For such case the correlation  (13) takes the form 

        (1,1)( ) ( , ; , ) , ,p t sG x t x t s E x t E x t
     ,      ˆ ˆ( , ) ( , )n nE x t E x t e  (14) 

confirming that an ideal detector measures a correlation function of the first order with 

coinciding space-time arguments, i.e. field intensity in a fixed point ( ne  is polarization 

vector depending on the filter). 

Correlation properties of radiation manifest themselves in interference experiments. The 

well-known Young scheme with signals from two apertures interfering can be analyzed   in 

quantum terms. Schematically, we regard (in accordance with Huygens-Fresnel principle) a 

field value in an observation point x at some time t  as a linear combination of field 

parameters in aperture points 1x  and 2x  at proper time moments. Using our previous 

considerations concerning quantum detectors, we put down, for example, for negative-

frequency part of the electric field strength for a fixed field polarization 

            1 1 1 2 2 2
ˆ ˆ ˆ, , ,E x t E x t E x t      (15) 

where 1,2 1,2 /t t s c   and 1,2 1,2s x x  ; 1  and 2  are determined by the system 

geometry. Thus for readings of an ideal detector placed in x  we obtain an expression 

including an interference term 

    ( ) ( )*
1 2 1 1 2 2

ˆ ˆ2Re , ,E x t E x t     .  
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The most important conclusion at this stage is possibility of measuring a correlation function 

of the first order defined by (8) with arbitrary arguments on the basis of the Young scheme 

and one photon detector. The stability of the statistical situation is suggested, thus function 

(8) is transformed into the function of 1 1t t  . So, using polarization filters after apertures, 

we obtain a scheme for measuring a correlation function (8) in the most general form. 

We see that optical measurements with one quantum detector lead to considering a 

correlation function of the first order (8) with necessity. In order to obtain information about 

more complex correlation properties of electromagnetic fields, we should consider a more 

complicated model problem corresponding to the scheme of the famous pioneer 

experiments of Hanbury Brown and Twiss (Hanbury Brown & Twiss, 1956). We suppose 

that two ideal detectors of photons are located in points 1x  and 2x ; optical shutters are 

placed in front of the detectors. The shutters are opened at the time moment 0t  and closed 

at the moments 1t  and 2t . Calculation of probability of photon absorption in each detector 

gives the following result  

          
1 2 1 2

1 1 2 2 1 2 1 2

0 0 0 0

2,22
1 2 1 2 1 1 2 2 1 1 2 2 1 1 2 2, , ; , ; , ; ,

t t t t

m n m n m m n n
t t t t

w d d d d R R G x x x x                      (16) 

where  mnR     is a sensitivity correlation function determined by (12) and a correlation 

function of the second order 

                    
1 2 1 2 1 2 1 2

2,2
1 2 1 2 1 2 1 2,

ˆ ˆ ˆ ˆ, ; ,m m n n m m n nG y y y y E y E y E y E y
          (17) 

is introduced (we use here an abbreviated notation ( , )y x t ) . In the above-considered case 

of a broadband detector the rate of coinciding of photon registrations by two detectors 

makes 

  
 

   
1 1 2 2 1 2 1 2

22
2,22

1 1 2 2 1 1 2 2,
1 2

, ; , ; , ; ,m n m n m m n n

w
p s s G x t x t x t x t

t t


 
 

 (18) 

with detector parameters mns  introduced in (12). Therefore the Hanbury Brown–Twiss 

experimental scheme with registering the coincidence of photon absorption by two detectors 

obtaining signals from the divided light beam with a delay line in front of one of detectors 

provides measuring of the correlation function of the second order (17) if each detector 

operates with a certain polarization of the wave.  

Generalizations of the Hanbury Brown–Twiss coincidence scheme for the case of N detectors 

are considered as obvious. The rate of N-fold coincidences is connected with a correlation 

function of Nth order. The analysis of ideal quantum photon detector operation and 

coincidence scheme by Glauber has elucidated the nature of field functions measured via 

using the noted schemes – they are functions built with the set of normally ordered operators 

 
1 1

( ) ( ) ( ) ( )
1 1

ˆ ˆ ˆ ˆ( )... ( ) ( )... ( )
M MM Mm m n nE y E y E y E y      (19) 
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in the case of M  detectors. At last, the most general set of normally ordered correlation 

functions introduced by Glauber (Glauber, 1963) looks like 

 
1 1 1 1

( , ) ( ) ( ) ( ) ( )
1 1 1 1... , ...

ˆ ˆ ˆ ˆ( ... , ... ) ( )... ( ) ( )... ( )
M N M N

M N
M N M Nm m n n m m n nG y y y y E y E y E y E y         . (20) 

Functions (20) equal to zero usually at M N  except very special states with broken 

symmetry (Glauber, 1969). Such function complex provides the most full description of the 
field correlation properties. In this picture taking into account magnetic field amplitudes is 
not necessary since they are simply connected with electric field amplitudes for each mode 
of electromagnetic field. Notice that the electric-dipole mechanism of absorption really 
dominates in experiments. 

Method of photon counting corresponds to the general ideas of statistical approach; in its 
terms a number of quantum optics phenomena is described adequately, so the term 
“quantum optics” is used mainly as “statistical optics”. Traditional terminology concerning 
correlation properties of light is based on the notion “coherence”. In scientific literature 
coherences of the first and second orders are distinguished. It can be substantiated that, for 
example, the visibility of interference fringes in the Young scheme is determined by the 
coherence function of the first order that is a normalized correlation function of the first 
order (Scully & Zubairy, 1997) 

    
( ) ( )

1 1 2
1 2

( ) ( ) ( ) ( )
1 1 2 2

ˆ ˆ( , ) ( , )
, ,

ˆ ˆ ˆ ˆ( , ) ( , ) ( , ) ( , )

E x t E x t
g x x

E x t E x t E x t E x t


 

 

   

  


    
. (21) 

Similarly to (21), the photon grouping effect is determined by the coherence function of the 
second order  

    
               
               

2
ˆ ˆ ˆ ˆ, , , ,

,
ˆ ˆ ˆ ˆ, , , ,

E x t E x t E x t E x t
g x

E x t E x t E x t E x t

 


 

   

   

   

    

 (22) 

Coherences of higher orders (Bogolyubov (Jr.) et al., 1988) can be introduced in the same 
way. We shall refer to Glauber functions (20) as the main means of field description in 
quantum optics. Differences between time arguments play the decisive role in the physical 
interpretation of functions. Taking into account all difficulties and conditions for 
measurements, functions of lower orders are really urgent for experimental work. 

4. Superfluorescence in Dicke model as an important example of collective 
quantum phenomena 

The Dicke model of a system of great quantity of two-level emitters interacting via 
electromagnetic field (Dicke, 1954) is a noticeable case of synergetics in statistical system 
behavior during the relaxation processes. Its research history is very informative. R. Dicke 
came to the conclusion about superradiant state formation proceeding from the analysis of 
symmetry of quantum states of emitters described with quasispin operators. For long time 
equilibrium properties of the Dicke model were under discussion and the possibility of 
phase transition has been established; it was associated with field states in lasers. At the next 
step it has become clear that self-organizing takes place in the dynamical process and 
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presents some kind of a “dynamical phase transition” (Bogolyubov (Jr.) & Shumovsky, 
1987). N excited atoms come to coordinated behavior without the mechanism of stimulated 

emission and a peak of intensity, proportional to 2N , appeared for modes that were close to 

the resonant one in a direction determined by the geometry of the system (Banfi & Bonifacio, 
1975). So we have a way of coherent generation that is alternative to the laser one. This way 
can be used hypothetically in X- and γ-ray generators opening wide possibilities for physics 
and technology.  

Collective spontaneous emission in the Dicke quasispin model proved to be one of the most 
difficult for experimental observations collective quantum phenomena. That is why taking 
into account real conditions of the experiment is of great importance. Thus great quantity of 
Dicke model generalizations has been considered. There are two factors dependent of 
temperature, namely the own motion of emitters and their interaction with the media. The 
both factors are connected with additional chaotic motion, thus they worsen the prospects of 
self-organizing in a system. The last factor is discussed traditionally as an influence of a 
cavity (resonator) since experiments in superradiance use laser technology (Kadantseva et 
al., 1989). The corresponding theoretical analysis is based on modeling the cavity with a 
system of oscillators (Louisell, 1964). The problem of influence of emitter motion (which is of 
different nature in different media) can be solved with taking into account this motion via a 
nonuniform broadening of the working frequency of emitters (Bogolyubov (Jr.) & 
Shumovsky, 1987). The dispersion of emitter frequencies results in an additional fading in a 
system and elimination of singularities in kinetic coefficients.  

Traditional investigations obtain conclusions about a superfluorescent impulse generation 
on the basis of calculated behavior of the system of two-level emitters. The problem of light 
generation in the Dicke model can be investigated in the framework of the Bogolyubov 
method of eliminating boson variables (Bogolyubov (Jr.) & Shumovsky, 1987) with the 
suggestion of equilibrium state of field with a certain temperature. The correlation 
properties of light remain unknown in such picture. Good results can be obtained by 
applying the Bogolyubov reduced description method (Lyagushyn et al., 2005) to the model. 
The reduced description method eliminates some difficulties in the Dicke model 
investigations and allows both to take into account some additional factors (the orientation 
and motion of emitters, for instance) and to introduce more detailed description of the field. 
A kind of correlation functions to be used in such approach will be of interest for us. 

5. Quantum models for electromagnetic field in media 

The main problem of quantum optics is diagnostics of electromagnetic field ( f -system) 

interacting with a medium ( m -system). In this connection we have considered a number of 

models of medium and medium-field interaction. From various points of view the Dicke 

model of medium consisting of two-level emitters is very useful for such analysis. In the 

Coulomb gauge it is described by the Hamilton operator (Lyagushyn & Sokolovsky, 2010b) 

 f m mf
ˆ ˆ ˆ ˆH H H H   ,   f

ˆ
k k k

k

H c c 


  ,   m
1

ˆ
âz

a N

H r
 

  , (23) 

 3
mf

ˆ ˆ ˆ( ) ( )t
n nH d xE x P x    
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Here ânr  is a quasispin operator, a  is emitter’s number,   is polarization index, ˆ ( )nP x  is 

the density of electric dipole moment (polarization) of emitters 

  
1

ˆ ˆ( ) 2n an ax a
a N

P x d r x x
 

  . (24) 

We neglect emitter-emitter interaction in (23). Operators of vector potential, transversal 
electric field and magnetic field are expressed via creation and annihilation boson operators 

,k kc c 
 by formulas (9), (10) and commutation relations 

 ˆ ˆ[ ( ), ( )] 0t t
m nE x E x  ,    ˆ ˆ[ ( ), ( )] 0m nB x B x  ,    

( )ˆ ˆ[ ( ), ( )] 4t
m n mnl

l

x x
B x E x i c

x

 
  


  (25) 

are valid (we use the notation ˆ ( )t
nE x  for electric field operator (10) in the discussion of the 

field-emitters system).   

It is very convenient to use operator evolution equations for investigating the dynamics of 
the system (23). The Maxwell operator equations have a known form 

      ˆ ˆ ˆrot 4n n nE x c B x J x  ,             ˆ ˆ( ) rotn nB x c E x 
 (26) 

where  total electric field  and  electromagnetic current  

 ˆ ˆ ˆ( ) ( ) 4 ( )t
n n nE x E x P x  ,       ˆˆ ˆ( ) 2n n an ay a

a

J x P x d r x x    
 (27) 

are introduced. Energy density of emitter medium  

 
1

ˆ ˆ( ) ( )az a
a N

x r x x  
 

    

obeys the evolution equation  

    ˆ ˆ ˆ( ) t
n nx J x E x   (28) 

which describes the Joule heat exchange between the emitters and field. Since the field 
parameters are considered in different spatial points, we obtain the possibility of 
investigating the field correlation properties. 

Also the model of electromagnetic field in plasma medium plays a significant role. The 
Hamilton operator of such system in the Coulomb gauge was taken in the paper 
(Sokolovsky & Stupka, 2004) in the form 

 f m mf
ˆ ˆ ˆ ˆH H H H   ,      f

ˆ
k k k

k

H c c 


  ,      mf 1 2
ˆ ˆ ˆH H H  , (29) 

    1

1 ˆ ˆˆ
n nH dxA x j x

c
   ,       2

2 2

1 ˆˆ ˆ( ) ( )
2

H dxA x x
c

              (
2

ˆ ˆ( ) ( )a
a

aa

e
x n x

m
  ).  
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Here ˆ
mH is the Hamilton operator of plasma particles with account of Coulomb interaction, 

ˆ ( )nj x is electric current, ˆ ( )an x  is density operator of the a th component of the system.  

6. Reduced description of electromagnetic field in medium. Role of field 
correlations  

Here we discuss kinetics of electromagnetic field in a medium. This theory must connect 
dynamics of the field with dynamics of the medium. The problem can be solved only on the 
basis of the reduced description of a system. One has to choose a set of microscopic 
quantities in such way that their average values describe the system completely. Therefore, 
the Bogolyubov reduced description method (Akhiezer & Peletminskii, 1981) can be a basis 
for the general consideration of the problem. In this approach its starting point is a quantum 

Liouville equation for the statistical operator ( )t of a system including electromagnetic 

field and a medium 

 ˆ( ) [ , ( )]t

i
t H t   


,                  f m mf

ˆ ˆ ˆ ˆH H H H   . (30) 

The method is based on the functional hypothesis describing a structure of the operator 

( )t  at large times (Bogolyubov, 1946) 

 ( )
0 0( ) ( ( , ), ( , )) ( )

ot
t t t t               ( 0 ( 0)t   )                  (31) 

where reduced description parameters of the field 0( , )t   and matter 0( , )a t   are defined 

in a natural way 

 ( )
0

ˆ( , ) Sp ( )t t     ,            ( )
0

ˆ( , ) Sp ( )a at t     (32) 

( 0  is a characteristic time determined by an initial state of the system 0  and a used set of 

reduced description parameters). The set of parameters 0( , )t  , 0( , )a t   is determined by 

the possibilities and traditions of experiments as well as by theoretical considerations (for 

simplicity we will drop 0  in the parameters). The development of the problem 

investigation has resulted in finding the main approximation for the statistical operator 

( , )   , so called a quasiequilibrium statistical operator ( ( ), ( ))q Z X   (though it describes 

states which are far from the equilibrium) defined by the relations 

 f m m( , ) ( ) ( )q mZ Z Z Z   ; (33) 

 f
ˆ( ) exp{ ( ) }Z Z Z 


    ,     f fSp ( ) 1Z  ,     f f

ˆSp ( ( ))Z      ; (34) 

 m
ˆ( ) exp{ ( ) }a a

a

X X X    ,     m mSp ( ) 1X  ,     m m
ˆSp ( ( )) a aX    . (35) 

According to the common idea, electromagnetic field in medium is usually described by 

average values of electric ( , )nE x t  and magnetic ( , )nB x t  fields. So, it seems possible to 
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choose operators ˆ
  in (32) as ˆ ( )n x : 1

ˆ ˆ( ) ( )t
n nx E x  ,  2

ˆ ˆ( ) ( )n nx B x  .  However, in this case 

the statistical operator f ( )Z  does not exist (its exponent contains only linear in Bose 

amplitudes form and f ( )Z  is non-normalized). Therefore, one has to use a wider set of 

parameters ˆ
  in conformity with the observation made in (Peletminkii et al., 1975).  At 

least, exponent in (34) should contain quadratic terms.  So the simplest quasiequilibrium 

statistical operator of the field can be written as 

 f
, ,

( ) exp{ ( ) ( . .)}kk k k kk k k k k
k k k k k

Z Z Z c c Z c c Z c h c  
    

    
     

     
   

       
 (36) 

Kinetics of the field based on this statistical operator describes states with zero average 

fields at 0kZ  . Quadratic terms in (36) correspond to binary fluctuation of the field 
x x
m n t   

  (or two binary correlations ( )x x
m n t   

 ) as additional reduced description 

parameters 

 ( ) 1 ˆ ˆSp ( ) { ( ), ( )}
2

x x
m n m n tt x x        

     ,      ( ) ( , ) ( , )x x x x
m n t m n t m nx t x t           

        (37) 

In other words, the quasiequilibrium statistical operator (34) corresponds to field 
description by average values of operators  

 ˆ
 :     ˆ ( )n x ,    

1 ˆ ˆ{ ( ), ( )}
2

m nx x     . (38) 

The theory can be significantly simplified in the Peletminskii-Yatsenko model (Akhiezer & 
Peletminskii, 1981) in which 

 f

1 ˆ ˆ ˆ[ , ]H c  


  



,                      m

1 ˆ ˆ ˆ[ , ]a aa a
aa

H c  



 (39) 

where c  , aac   are some coefficients. Operators of electromagnetic field ˆ ( )t
nE x , ˆ ( )nB x  and 

operator ˆ( )x  satisfy these conditions 

 f
ˆ ˆ ˆ[ , ( )] rot ( )t

n nH E x ic B x   ,             f
ˆ ˆ ˆ[ , ( )] rot ( )t

n nH B x ic E x  ,               (40) 

 m
ˆ ˆ[ , ( )] 0H x  ,  

therefore, relations (39) are valid for all field operators in (38).  

In usual kinetic theory nonequilibrium states of quantum system are described by one-

particle density matrix ( )kkn t 
  

 ( )( ) Sp ( )kk k kn t t c c
   

   . (41) 

States, for which parameters  

 ( )( ) Sp ( )kk k kn t t c c
  

   ,          ( )( ) Sp ( )k kx t t c    (42) 
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are not equal to zero, are considered as states with a broken symmetry. Therefore, ( )kkn t 
  is 

called an anomalous one-particle density matrix. However, average electromagnetic fields 

are expressed through ( )kx t .  Instead of density matrices Wigner distribution functions are 

widely used (de Groot, S. & Suttorp L., 1972) 

 ( ) ˆf ( , ) Sp ( )f ( )k kx t t x   ,          ( ) ˆ
f ( , ) Sp ( )f ( )k kx t t x     (43) 

where 

 , /2 , /2f̂ ( ) iqx
k k q k q

q

x c c e
 

 
  ,             , /2 , /2

ˆ
f ( ) iqx
k k q k q

q

x c c e
 


   . (44) 

Simple relations between average field, correlations of the field, density matrices and 
Wigner distribution functions can be established by the formula 

 1 2 3* ˆ ˆ(8 ) { ( ) / ( )}t ikx
k k kn n nc V e d x Z x k iE x e     ,     ˆ ˆ( ) rot ( )n nZ x B x .    (45) 

Further on kinetics of electromagnetic field in medium consisting of two-level emitters with 

the Hamilton operator (23) is considered in more detail. According to the general theory 

(Akhiezer & Peletminskii, 1981), an integral equation for the statistical operator ( , )    

introduced by the functional hypothesis (31) can be obtained (Lyagushyn & Sokolovsky, 

2010b) 

  0
0 ˆ

f m mf
ˆ( , ) ( ( )) ( ( )) [ , , ]

i
H i

Z X d e H


          


  
 
  (46) 

 
0

ˆ
3( , ) ( , )

( , ) ( , , )
( ) ic

i
H

e

M d x M x e
x 




  

        
  





   
 

     

where functions ( , )M   , ( , )M    are defined as right-hand sides of evolution equations 

for the reduced description parameters 

 ( ) ( ) ( ( ), ( ))t t i c t M t t   


    


   ,                         ( , ) ( , ( ), ( ))t x t M x t t    ; (47) 

 mf
ˆ ˆ( , ) Sp ( , )[ , ]

i
M H      


,                     mf

ˆ ˆ( , , ) Sp ( , )[ , ( )]
i

M x H x     


  

(see notations in (39)). Quasiequilibrium statistical operator of the emitters 

 3
m

ˆ( ) ( ) ( )exp{ ( ) ( ) ( )}dX w d w X d xX x x       (48) 

describes a state of local equilibrium of the emitter medium with temperature 1( ) ( )T x X x   

in the considered case. Function ( )dw d  describes distribution of orientations of emitter 

dipole moments (Lyagushyn et al., 2008). Further it is assumed for simplicity that 
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correlations of dipole orientations are absent and their distribution is isotropic one.  

Function ( )w   is defined by formulas 

 
2 2

0

( ) ( )
( )

w c
 

  


 
,                   

0

( ) 1d w 


       ( 1  ) (49) 

and phenomenologically accounts for non-resonant interaction between the field and 
emitters.  

The obtained integral equation is solved in perturbation theory in emitter-field interaction 

mf
ˆ ~H   ( 1  ). Important convenience is provided by the structure of f ( ( ))Z   allowing 

to use the Wick–-Bloch–-de Dominicis theorem. However, one needs this theorem for 

calculating contributions of the third and higher orders of the perturbation theory to the 

statistical operator ( , )   . Averages that are linear and bilinear in the field can be 

calculated on the basis of relations: 

 f f
ˆSp ( ( )) ( ) ( )n nZ x x     , (50) 

 
f f

1ˆ ˆ ˆ ˆSp ( ( )) ( ) ( ) ( ) ( ) ( ) [ ( ), ( )]
2

x x
m n m n m n m nZ x x x x x x                

        .  

Moreover, according to the general theory of the Peletminskii-Yatsenko model (Akhiezer & 

Peletminskii, 1981) the same formulas are valid for calculations with the statistical operator 

( , )   : 

 ˆSp ( , ) ( ) ( )n nx x      , (51) 

 1ˆ ˆ ˆ ˆSp ( , ) ( ) ( ) ( ) ( ) ( ) [ ( ), ( )]
2

x x
m n m n m n m nx x x x x x                 

        .  

Averages with a quasiequilibrium statistical operator of the medium are calculated by the 

method developed for spin systems (Lyagushyn et al., 2005). It gives, for example, an 

expression for energy density of emitter medium via its temperature ( )T x  and density ( )n x  

 ( ) ( )th
2 2 ( )

x n x
T x

   
 

         (
1

( ) ( )a
a N

n x x x
 

  ). (52) 

Integral equation (46) solution gives evolution equations for all parameters of the reduced 
description. Average electric and magnetic fields satisfy the Maxwell equations 

 ( , ) rot ( , ) 4 ( , ( ), ( ))t n n nE x t c B x t J x t t     ,           ( , ) rot ( , )t n nB x t c E x t    (53) 

where average current density in terms of the total electric field is given by the relation 

 3( , , ) ( , ( )) ( ) ( , ( )) ( ) ( )n n nJ x dx x x x E x c dx x x x Z x O                  (54) 

 2( , ) ( , ) ( )t
n nE x t E x t O   ,              ( , ) rot ( , )n nZ x t B x t   
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(for all parameters ˆ( , ) Sp ( , )A A     ). This material equation takes into account spatial 

dispersion and Fourier transformed functions ( , )x  , ( , )x   give conductivity ( , )k   and 

magnetic susceptibility ( , )k   of the emitter medium 

 
2

2

2
( , ) ( )

3
k

d
k w

    


,     
2

2 2 2
0

4 1
( , ) ( )P

3 k

d
k d w

   
 



 


. (55) 

Average density of the dipole moment of emitters is given by expression  

 3( , , ) ( , ( )) ( ) ( , ( )) ( ) ( )n n nP x dx x x x E x c dx x x x Z x O                   (56) 

where 

 ( , ) ( , )k k    ,               2( , ) ( , ) kk k      .  (57) 

Evolution equation for energy density ( , )x t  of emitters has the form  

 ( , ) ( , ( ), ( ))t x t L x t t    , (58) 

 ( , , ) ( , ( )){( ) ( ) ( )}x x
n n n nL x dx x x x E E E x E x            

 3( , ( )){( ) ( ) ( )} ( ( )) ( )x x
n n n nc dx x x x E B E x B x R n x O         .  

The last term describes dipole radiation of the emitters 

 

2
4

3
0

2
( ) ( )

3

d
R n n d w

c
 





  
 (59) 

and for small   gives a known expression 

 

2 4
0

3

2
( )

3

d
R n n

c




 
. (60) 

Evolution equations for correlation functions of electromagnetic field in terms of the total 

electric field can be written in the form 

 ( ) rot ( ) rot ( ) 4 ( ) 4 ( )x x x x x x x x x x
t m n t m n t n m t m n t m n tE E c B E c E B J E E J          , (61) 

 ( ) rot ( ) rot ( ) 4 ( )x x x x x x x x
t m n t m n t n m t m n tE B c B B c E E J B       ,  

 ( ) rot ( ) rot ( ) 4 ( )x x x x x x x x
t m n t m n t n m t m n tB E c E E c B B B J        ,  

 ( ) rot ( ) rot ( )x x x x x x
t m n t m n t n m tB B c E B c B E      .  
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Current-field correlation functions are defined analogously to (37). Material equations for 

these correlations are given by expressions in terms of the total electric field 

 ( ) ( , ( , ))( )x x x x
m n t m n tE J dx x x x t E E         (62) 

 3( , ( , ))( ) ( , ( )) ( )x x
m n t mnc dx x x x t E Z S x x n x O            ,  

 ( ) ( , ( , ))( )x x x x
m n t m n tB J dx x x x t B E          

 3( , ( , ))( ) ( , ( )) ( )x x
m n t mnc dx x x x t B Z T x x n x O            ,  

where Fourier transformed functions ( , )mnS x n , ( , )mnT x n  are given by expressions 

 2 22
( , ) ( ) ( )

3
mn mn m n k kS k n d n k k w

        , (63) 

 2
2 2

0

4
( , ) ( )P

3
mn mnl l

k

i
T k n cd ne k d w

  
 




   

Quantities ( , )mnS k n , ( , )mnT k n  determine equilibrium correlations of the electromagnetic 

field. Comparing relations (54) and (62) shows that the Onsager principle is valid for the 

considered system. 

Hereafter we consider kinetics of electromagnetic field in plasma medium with the 

Hamiltonian (29) in more detail. We restrict ourselves by considering equilibrium plasma 

(Sokolovsky & Stupka, 2004) and states of the field described by average fields ( , )t
nE x t , 

( , )nB x t  and one-particle density matrix ( )kkn t 
  defined in (41). The problem for plasma 

medium in terms of hydrodynamic states has been investigated in (Sokolovsky & Stupka, 

2005). Instead of average fields and matrix ( )kkn t 
  one can use average Bose amplitudes 

( )kx t  defined in (42) and correlation function 

 
*( ) ( ) ( ) ( )kk kk k kg t n t x t x t 
 

 
    

. (64) 

So, for this problem in above notations we have parameters  : kkn  , kx , *
kx  and 

corresponding operators ˆ
 : k kc c 


  , kc , kc

 . A statistical operator of the system 

introduced by the functional hypothesis depends in this case only on the field variables and 

satisfies the integral equation 

 
0 0

0 ˆ ˆ

f m mf

( )ˆ( ) ( ( )) [ ( ), ] ( )
ic

i i
H H

e

i
Z w d e H M e



 


  

        
 



 

    
 

  


, (65) 

where quasiequilibrium statistical operator f ( )Z  is given by formula (36) with 0kkZ 
  , 

mw  is a statistical operator  of equilibrium plasma 
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 m
ˆ ˆ( )

m
a aa

H N T
w e

        ( ˆ ˆ ( )a aN dxn x  ). (66) 

Functions ( )M   define the right-hand sides of evolution equations for the reduced 

description parameters 

 ( ) ( ) ( ( ))t t i c t M t   


   


   ,            mf
ˆ ˆ( ) Sp ( )[ , ]

i
M H    


. (67) 

Integral equation (65) is solvable in a perturbation theory in plasma-field interaction based 

on estimations 1
1

ˆ ~H  , 2
2

ˆ ~H   (see (29)). As a result, evolution equations for the reduced 

description parameters take the form (Sokolovsky & Stupka, 2004) 

 3( ) ( )( ) ( )t kk k k kk k k kk k kkg i g g n O  
      

              , (68) 

 3*
,( ) ( ) ( )t k k k k k k k kx i x i x O                

where k  is photon spectrum in the plasma, kn  is the Planck distribution with the plasma 

temperature, k  is a frequency of photon emission and absorption.  These quantities are 

given by formulas  

 {1 2 ( )}k k k    ,   2 ( )k k  . (69) 

The second equation in (68) is a form of the Maxwell equations (53) with similar to (54) 
material equation  

 
3( , ) ( ) ( ) ( ) ( ) ( )n n nJ x dx x x E x c dx x x Z x O              . (70) 

This material equation takes into account spatial dispersion and Fourier transformed 

functions ( )x , ( )x  give conductivity ( )k  and magnetic susceptibility ( )k  of the 

plasma medium. Their values are given by relations 

 

 Im ,
( ) k

k

G k
k





 

,              

 Re ,
( ) k

k

G k
k

c

 





 
, (71) 

where ( , )G k  is a transversal part of current-current Green function:  

 
1

( , ) ( , )( )
2

mn mn m nG k G k k k      ,             m m
ˆ ˆ, Sp [ ( , ), (0)]mn m n

i
G x t t w j x t j 


; (72) 

 

2 2

4
a a

aa

n e

m





  .  

In fact, the obtained results are valid for kc   where   is Langmuir frequency.  
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7. Connection between correlation functions of different nature and some 
suitable representations for them 

One can notice that simultaneous correlation functions of field amplitudes of (37) type arise 
in a natural way in the framework of the reduced description method. At the same time 
Glauber correlation functions of (19) type (including positive-frequency and negative-
frequency parts of the electric field operator (11) in the interaction picture) seem to be 
observable quantities from the point of view of experimental possibilities. The most 
interesting effects of quantum optics can be described with non-simultaneous Glauber 
functions (Lyagushyn & Sokolovsky, 2010a; Lyagushyn et al., 2011). Nevertheless we can 
insist that there are no real contradictions between the approaches. Correlation functions 
(19) characterize properties of electromagnetic field described by the statistical operator  . 

In the previous section we have been constructed a reduced description for electromagnetic 
field in emitter medium and in plasma medium. These theories lead not only to equations 
for the reduced description parameters but also to the expression for corresponding 
nonequilibrium statistical operators. For the field-emitters system a nonequilibrium 
statistical operator has the form    

 
0

2
f m f m

ˆ ˆ( , ) ( ( )) ( ( )) [ ( ( )) ( ( )), ( , ) ( , )] ( )t
n n

i
Z X d dx Z X E x P x O              



   
. (73) 

where ˆ ( , )t
nE x  , ˆ ( , )lP x   are operators ˆ ( )t

nE x , ˆ ( )nP x  in the interaction picture. Analogously, a 

nonequilibrium statistical operator for the field-plasma system is given by the formula 

 
0

2
f m f m

ˆ ˆ( ) ( ( )) [ ( ( )) , ( , ) ( , )] ( )n n

i
Z w d dx Z w A x j x O

c
         



   
 (74) 

where ˆ ( , )nA x  , ˆ ( , )nj x   are operators ˆ ( )nA x , ˆ ( )nj x  in the interaction picture. According to 

general theory of the Peletminskii-Yatsenko model (Akhiezer & Peletminskii, 1981), the 

following relations for the field-emitters system 

 fSp ( , ) Sp ( ( ))k kc Z c      ,        fSp ( , ) Sp ( ( ))k k k kc c Z c c        
    , (75) 

 fSp ( , ) Sp ( ( ))k k k kc c Z c c             

and for the field-plasma system 

 f fSp ( ) Sp ( ( ))k kc Z c     ,         f fSp ( ) Sp ( ( ))k k k kc c Z c c       
     (76) 

are valid. Average of products of three and more Bose operators should be calculated with 

taking into account the second term in expressions (73), (74) and using the Wick–Bloch–de 

Dominicis theorem. It is convenient to perform the calculation of correlation functions (23) 

for the field-plasma system through using formulas (11), (74). For the field-emitters system 

the following formula  

 ( ) 1ˆ ˆ ˆ( , ) { ( , ) ( ) ( , ) ( )}t
n n nE x t i dx D x x t Z x D x x t E x

c


           (77) 
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can be useful. Here ( , )D x t  is a standard function widely used in electromagnetic theory 

(Akhiezer A. & Berestetsky V., 1969) and defined by expression   

 
3

( )
3

1 1
( , )

2 (2 )
ki kx td k

D x t e
k






   . (78) 

Calculation of the simplest correlation function (1,1)
1 1( , )nlG y y  can be done according to (75), 

(76) exactly. For example, for the field-plasma system one has 

 1 2 ( ) ( )(1,1) *

,

2
( , ; , ) ( ) k ki t kx i t k x

mn km k n kk
k k

c
G x t x t kk e e e e n

V
  

 
 


      

  
 

    
 (79) 

An exact expression for this correlation function of the field-emitters system is given by the 

formula 

  1 1(1,1) *
1 1 1 1( , ; , ) ( , ) ( , ) x x

mn m nG x t x t dx dx D x x t D x x t Z Z 
             (80) 

 1 1*
1 12

1
( , ) ( , ) x x

m nD x x t D x x t E E
c


             

 * *
1 1 1 1

1
[ ( , ) ( , ) ( , ) ( , )]D x x t D x x t D x x t D x x t

c
                  

 1 1

2

1 1 1
1 1

[ 2 ( ) ( )]x x
m n mn

m n

E Z i c x x
x x

           
  

 .  

Correlation function (2 ,2)
1 2 1 2( , )nlG y y y y  can be calculated only approximately. For example, 

for the field-plasma system the formula 

 
1 1 2 2 1 2 2 1

(1,1) (1,1) (1,1) (1,1)(1,1) 1
1 2 1 2 1 1 2 2 1 2 2 1( , ; , ) ( , ) ( , ) ( , ) ( , ) ( )mn m n m n m n m nG y y y y G y y G y y G y y G y y O         . (81) 

is obtained.  

So, the method of the reduced description of nonequilibrium states allows calculating 
Glauber correlation functions in important models. It gives possibility to analyze correlation 
properties of electromagnetic field interacting with emitters and plasma in the considered 
examples. Such analysis can be performed in terms of average electromagnetic field and 
binary correlations of the field. 

Quantum theory of radiation transfer is an important part of quantum optics (Perina, 1984). 
The problem is: to choose parameters that describe radiation transfer in a medium and 
obtain a closed set of equations for such parameters. This problem can be solved in the 
reduced description method. 

In the theory of radiation transfer (Chandrasekhar, 1950) energy fluxes in medium and 

polarization of the radiation are problems of interest. Operator of energy flux is given by the 

formula 
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 ˆ ˆˆ ( ) { ( ), ( )}
8

n nlm l m

c
q x E x B x


 . (82) 

In the developed above theory average values of binary in the field quantities can be 
calculated exactly. For the field-plasma model the following result can be obtained in terms 
of the one-particle density matrix and Wigner distribution function 

 
2 2

/2, /2
, ,

( ) ( , ) ( , )f ( )iqx
n k q k q n n k

kq k

c c
q x n k q e k i x

V V x
   

 
    

 
 


  

  
 (83) 

where 

 ( , ) ( / 2, / 2)n nk q k q k q      , (84) 

 1 2

1 1 2 2 1 1 2 2

1 2 * *
1 2 1 2 1 2

1
( , ) ( )( ) { }

2
n nl ms ml ns l k s k m l k m k sk k k k k e e k e e 

           .  

For a weakly nonuniform states of the field formula (82) can be simplified and gives (at 
V  ) a classic expression 

 
3

3
( ) f ( )

(2 )
k

n k k
n

d k
q x x

k










  . (85) 

Formula (83) should be put in the basis of the theory of radiation transfer. The simplest 
consideration is based on the approximate expression (85). Radiation transfer can be 
described with specific intensity of radiation in the form   

 
3

3 2
( , ) f ( )

(2 )
k

k n
c

I n x x
c

 





 





       (| | 1n  ) (86) 

Therefore, an equation of radiation transfer can be based on the kinetic equation for the 
Wigner distribution function of the field. According to definition (43) and equation (68), for 
weakly nonuniform states in the absence of the average field this kinetic equation is written 
as follows  

 
2 2

'

f f1
f 2 (f )

4
k k k k

t k k k k kk
n n n l n l

n
k x k k x x

 
 




  
 

 


   
     

     
. (87) 

The radiation transfer equation follows from the definition (86) and kinetic equation (87)  

 
2( , ) ( , )

( , ) 2 { ( , ) } { }
a

t l l m lm
l l m

I n x I n x
I n x c n I n x I a n n b

x x x

 
  
         

 
 


 

      
  

, (88) 

where the notations 

 k
l

l k n
c

c n
k














,       
2

k
l m lm

l m k n
c

a n n b
k k

 


 



 

 
,       

k k n
c

  


 ; (89) 

www.intechopen.com



 
Quantum Optics and Laser Experiments 

 

22

 
3
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1

(2 ) 1T
I

c e
 







   

are introduced. Usually this equation is written for stationary states and given without 
correction with the last term. So, the reduced description method provides an approach in 
which it is possible to justify the radiation transfer theory. 

In quantum optics functional methods are widely used. Starting point of such methods is a 
definition of a generating functional (3) for average values calculated with considered statistical 
operator  . This functional gives possibility of calculating all necessary average values 

 
1 1 s s 1 1 s s

*1 1 s s 1 1 s s

s+s *
+ + s
α k α k α k α k * *

α k α k α k α k , =0u u

F(u,u )
Sp c ...c c ...c = (-1)

u ... u u ... u


 

 




   
   


   

. (90) 

Hence, the generating functional gives complete description of a system and evolution 
equation for this functional is equivalent to the quantum Liouville equation. Definition (3) 
shows that the functional obeys the property 

 ** *F(u,u ) = F(-u,-u ) . (91) 

Let us suppose that effective photon interaction in a system has the form 

 
1 1 1 1 2 3

1 123

{ (12,3) . .}H c c c c c h c       


 (92) 

where notations 

 
i ii kc c ,      

i ii kc c
  ,      

ii k c  ,      1 1 2 2 3 3(12,3) ( , ; )k k k     ,      
i ii k

   (93) 

are introduced. The following evolution equation for *( , , )F u u t  can be easily obtained 

analogously to (Akhiezer & Peletminskii, 1981) from the Liouville equation 

 * **
1 1 1 *

11 1

( , , ) ( ) ( , , )ti F u u t u u F u u t
u u

  
   

 
  (94) 

 
2

* * *
3 1 2 **

1 2 1 2123 3 3

(12,3) ( ) ( )( ) . . ( , , )u u u c c F u u t
u u u uu u

                       
   

Instead of the generating functional the Glauber-Sudarshan distribution (Glauber, 1969; 
Klauder & Sudarshan, 1968) 

 

* *( )
* 2 *1

( , ) ( , )
k k k k

k

u z u z

P z z d uF u u e
   






  ,    

* *( )
2 **( , ) ( , )

k k k k
k

u z u z

F u u d zP z z e
   




   (95) 

is widely used. Formula (95) shows that this distribution is the Fourier transformed 
generating functional. Note that an evolution equation for the Glauber-Sudarshan 
distribution can be easily obtained by substituting the second formula in (95) into equation 
(94). Such evolution equations can be a starting point for constructing the reduced 
description of a system (Peletminskii, S. & Yatsenko A., 1970). Obtaining the field evolution 
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picture in terms of P-function is very attractive from the point of view of analysis of field 
properties under consideration in quantum optics.  

8. Conclusions 

Kinetic theory of electromagnetic field in media has choosing a set of parameters describing 
nonequilibrium states of the field as a starting point with necessity. The minimal set of such 
parameters includes binary correlations of field amplitudes. The corresponding 
mathematical apparatus uses different structures of averages: one-particle density matrices, 
Wigner distribution functions, and conventional simultaneous correlation functions of field 
operators. All approaches can be connected with each other due to the possibility of 
expressing the main correlation parameters in various forms. The reduced description 
method elucidates the construction of kinetic equations in electrodynamics of continuous 
media (field-plasma, field-emitters systems) and radiation transfer theory. Electromagnetic 
field properties are discussed in quantum optics in terms of Glauber correlation functions 
measured in experiments. Theoretical calculation of such functions requires information 
about the statistical operator of the system under investigation. In the framework of the 
reduced description method we have succeeded in obtaining the statistical operator of the 
field in the form that is convenient for calculations in a number of interesting cases. 
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