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Targeting DAMP Activation of Toll-Like 
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Kennedy Institute of Rheumatology, Imperial College of Science, 

Technology and Medicine, London 
UK 

1. Introduction 

Inflammation is a necessary response to infection and injury by which the invading 

pathogen and/or damaged cells are cleared. Under normal circumstances this is a tightly 

controlled and transient process. However, in conditions such as rheumatoid arthritis (RA) 

these regulatory mechanisms appear inactive or ineffective such that inflammation 

progresses unchecked. This results in the pain, swelling and bone and cartilage destruction 

that define this disease.  

The etiology of RA initiation is still uncertain, but increasing evidence points to a key role 

for the toll-like receptor (TLR) family in driving aberrant inflammation in the joint. TLRs 

were originally identified as receptors for exogenous pathogen associated molecular 

patterns (PAMPs) of bacterial, fungal or viral origin, which initiate inflammation in 

response to microbial infection.  Perhaps of more interest in the context of RA however, is 

the role that these molecules play in the recognition of endogenous danger signals or 

DAMPs (damage associated molecular patterns).  

DAMPs are generated by both infection-induced and sterile tissue damage. They include 

a wide range of molecules including intracellular proteins such as high mobility group 

protein 1 (HMGB1), cell derived nucleic acids and extracellular matrix molecules such 

 as tenascin-C and fibrinogen. High levels of DAMPs are present in both the RA synovium 

and in the peripheral circulation in RA patients. Accumulating evidence from both 

human studies and experimental animal models now suggests that these molecules may 

be critical to the persistence of the inflammatory state in RA. Moreover, targeting TLRs 

and their downstream signalling pathways is emerging as a potentially tractable means 

for treating a range of inflammatory conditions, including RA and its associated 

pathologies. 

Here we focus on the current literature that demonstrates a role for DAMPs in driving 

chronic inflammation in RA. We will discuss the mechanistic differences between PAMP 

and DAMP mediated activation of TLRs; and highlight how these data have already 

informed novel pathways to develop improved therapies for RA and how future therapeutic 

strategies may further evolve. 
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2. The cellular basis of RA and current therapies  

RA is a systemic, chronic, progressive autoimmune inflammatory disease which affects 
approximately 1% of the population worldwide. The disease is polyarticular, and is 
characterised by synovitis, pannus formation, neovascularisation and hyperplasia caused by 
the infiltration of leukocytes. This in turn leads to the destruction of cartilage, tendon and 
bone, and the associated joint stiffness, swelling and pain that is the hallmark of this disease. 
Systemic symptoms also include inflammation in distil areas of the body, including the 
lungs, pericardium and pleura. Vasculitis, atherosclerosis, myocardial infarction and stroke 
are consequently commonly linked to RA. 
The cells infiltrating the affected joint space are central to the pathology of RA, and include 
B cells, T cells, and cells of the monocyte/macrophage lineage as well as fibroblast-like 
synoviocytes. In their activated state within the affected joint these cells produce auto-
antibodies such as those against citrullinated proteins (CCP) and immunoglobulin 
(Rheumatoid factor (RF)), tissue degrading enzymes such as the matrix metalloproteaes 
(MMPs), as well as pro-inflammatory molecules such as TNF, Interleukin (IL)-6 and IL-1 
that are central to tissue destruction, disease chronicity, and the maintenance of the 
inflammatory state. The ability of some cell types (B cells and RA synovial fibroblasts) to 
migrate to other sites has also been proposed as a precipitating event in the spread of 
disease to other joints (Lefevre et al., 2009).  
 

TARGET NAME FORM STATUS 
All rapidly 
dividing cells 

Methotrexate 
Other DMARDs eg 

Sulphalazine, 
Cyclosporin, 

Corticosteriods 

Drugs (anti-
metabolites, anti-

inflammatory) 
Clinical use 

B cells 1Rituximab (CD 20), 
2MDX-1342 (CD19), 
3anti-BAFF, 4anti-
CD16, 5Eculizumab 
(complement C5),  

1, 2, 5Humanised Ig, 
2human non-
glycosylated Ig,  

1Clinical use 
2,3,4 Pre-clinical 
5Approved for 
human use – not 
RA 

T cells Abatacept (CTLA4) Fusion protein Clinical use 
Cytokines 
1-5TNF, 6IL-
6R, 7IL-1, 
8VEGF 

1Etanercept, 
2Adalimumab, 
3Infliximab, 
4Golimumab, 
5Certolizumab, 
6Tocilizumab, 
7Anakinra, 
8Bevacizumab 

1Fusion protein. 
2,4,5,6Human Ig, 
3chimeric 
mouse/human Ig, 7IL-
1R antagonist 

Clinical use 

Signalling 
molecules 
1IKK2, 2PDE4, 
3p38, 4Btk, 
5Syk, 6JAK3 

1, 2,3 Multiple, 
4CG11746, 4PC132765, 
6CP-690550, 5R788 
(anti-Syk) 

Small molecule 
inhibitors 

Pre-clinical 

Table 1. Current RA therapies 
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Knowledge of the processes responsible for disease activity and progression has lead to 
significant advances in the treatment of RA in the last 30 years. Early treatment, within 
months of the onset of persistent symptoms, is recommended, and at the present time 
usually takes the form of disease modifying anti-rheumatic drugs (DMARD) such as 
methotrexate. In more recent years however, the choice of treatment for RA has expanded 
significantly, and importantly now utilises agents that are less globally immunosuppressive 
than methotrexate (Weinblatt et al., 1985) (Table 1). These newer therapies target either 
specific cell types, such as B and T cells that present within the inflamed synovium, or their 
products (Genovese et al., 2008; Tedder, 2009; Townsend et al., 2010; Buch et al., 2011). 
Indeed, anti-cytokine therapies have revolutionised the treatment of RA in recent years. In 
particular, the use of anti-TNF biologicals such as Adalimumab, Etanercept and Infliximab 
have become the treatment of choice in those who do not respond to conventional DMARDs 
(Taylor et al., 2009), although biologicals that target other pro-inflammatory cytokines are 
also approved for use. These include Tocilizumab (anti-IL-6R) (Fleischmann et al., 2006; 
Jones et al., 2010) and Anakinra, a recombinant IL-1 receptor antagonist, as well as 
Bevacizumab, an antibody that targets vascular endothelial growth factor (VEGF) and hence 
may reduce neovascularisation that pannus formation depends upon. A variety of small 
molecule inhibitors designed to target critical elements of the B cell receptor, T cell receptor 
or cytokine signalling pathways such as inhibitors of IKK2, PDE4 and Btk (Bruton’s tyrosine 
kinase), have shown interesting results in some animal models of arthritis, as have clinical 
trials with the syk inhibitor R788 (Podolin et al., 2005; Lindstrom et al., 2010; Di Paolo et al., 
2011). The p38 inhibitors however, which showed such promise in animal models have not 
lived up to expectations in clinical trials and have not progressed beyond phase II 
(Genovese, 2009).  
Despite the significant advances made with this arsenal of therapies, the goal of achieving 
sustained remission of RA has remained elusive and even with long term DMARD and 
biologic therapy is relatively uncommon. The efficacy of treatments is also unpredictable. 
Thus, a significant proportion of patients do not respond adequately to first line DMARD 
treatment and are then moved on to biologics. Even here, approximately 40% of patients do 
not respond to anti-TNF therapy for example. Moreover, many of these treatments are 
accompanied by significant side-effects, ranging from injection site reactions, increased 
infection rates and neutropenia to the potential for an increased risk of malignancies (van 
Vollenhoven, 2009).  
When taking a global view of all the therapies for RA, either in use in the clinic, in early 
trials, in animal models, or in in vitro studies, it becomes clear that all are designed to target 
the ongoing process of inflammation. Namely the cells present in the joint during the 
inflammatory process, or their soluble products (cytokines), rather than targeting a 
causative agent for RA. However, for RA sufferers a single causative agent has not, and 
probably will never, be defined. Rather, RA is a complex disease with a multi-factorial 
etiology. It’s prevalence in women (3:1 female to male ratio) suggests a hormonal 
contribution, and there are clear links to environmental factors such as smoking as well as a 
predisposition to RA with certain HLA haplotypes (Bax et al., 2011). Genetic and twin 
studies also suggest a strong environmental influence as well as a genetic link. As a tractable 
causative agent or single predisposing gene is therefore unlikely to be identified, a therapy 
that will treat disease in the early stages, that will prevent progression to a chronic state and 
thereby allow the inflammatory state to resolve, thereby preventing tissue damage, bone 
and cartilage destruction and progression, remains the holy grail of many researchers. 
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Given that RA is an inflammatory condition it is likely that a precipitating event initiates a 
state of inflammation. In the normal individual, inflammation is invariably initiated in 
response to danger signals sensed by a series of cellular receptors known as pattern 
recognition receptors (PRRs). PRRs were originally defined by their ability to recognise and 
respond to invading pathogens (bacterial, viral, fungal) but are now increasingly linked to 
the detection of damaged ‘self’ molecules known as DAMPs. A large body of evidence has 
emerged in the last decade implicating one particular family of PRRs, the TLRs, in driving 
inflammation during RA. 

3. The toll-like receptors  

TLRs are a highly conserved family of PRRs. With the most recent addition of murine TLR13 
(Shi et al., 2011), 14 mammalian TLRs have been reported to date, with 10 human subtypes.  
All TLRs are type I transmembrane proteins comprising an extracellular domain of multiple 

leucine rich repeats (LRRs), a single membrane spanning -helix and a cytoplasmic Toll/IL-
1 receptor (TIR) homology signalling domain. 
TLRs can be classified according to their subcellular localization: the endosomal TLRs 3, 7, 8 
and 9 reside in intracellular compartments, whilst the others are found at the plasma 
membrane. This distribution also reflects the ligand specificity of TLRs; the cell surface 
receptors predominantly recognize pathogenic and self surface elements, whereas 
endosomal receptors primarily sense nucleic acids. Recognition of ligand triggers receptor 
dimerization which in turn triggers a multitude of signalling cascades leading to the 
expression of pro-inflammatory mediators such as cytokines and chemokines, which are 
designed to combat the perceived danger.  In this way the body mounts an effective 
immune response (reviewed in (Piccinini et al., 2010). The TLR ligands that induce such a 
response include both PAMPs and DAMPs, and a more detailed list of them, with particular 
reference to those found in RA, can be found in Table 2.  Thus, TLRs are critical for both the 
response to invading pathogens and the response to ‘sterile’ tissue damage. 

3.1 TLRs and RA pathology  

TLRs are expressed on a variety of different cell types, many of which are found within the 
inflamed rheumatoid joint, including myeloid cells, fibroblasts, epithelial and endothelial 
cells. In humans the first evidence linking the presence of TLRs with RA pathology arose 
from the comparison of TLR expression between normal or non-inflamed joints and RA 
joints.  Significant up-regulation of a number of TLRs was observed in both synovial tissue 
and circulating immune cells isolated from RA patients. Table 3 depicts the specific pattern 
of expression of these TLRs in RA.   
 

TLR PAMP SOURCE DAMP SOURCE 

TLR1 Triacyl lipoprotein Bacteria -defensin 3 Released from 
activated/necrotic 

cells 

TLR2 Lipoprotein Bacteria, 
Viruses, 
Parasites 

HSP60, 70, Gp96, HMGB1, 
HMGB1-nucleosome 

complexes, -defensin 3, 
surfactant proteins A and 

Released from 
activated/necrotic 

cells 
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D, eosinophil derived 
neurotoxin, 

antiphospholipid 
antibodies, serum amyloid 
A,cardiac myosin, PAUF, 
CEP, monosodium urate 

crystals 
 

Biglycan, versican 
 

Hyaluronic acid fragments

 
 
 
 

 
 
 

Induced upon tissue 
damage 

 

Degradation of 
tissue 

TLR3 dsRNA Viruses mRNA Released from 
activated/necrotic 

cells 

TLR4 Lipopolysaccharide
(LPS) 

Bacteria, 
Viruses 

HMGB1, surfactant 

proteins A and D, -
defensin 2, HSP60, 70, 72, 
22, Gp96, S100A8, S100A9, 

neutrophil elastase, 
antiphospholipid 

antibodies, lactoferrin, 
serum amyloid A, oxidised 
LDL, saturated fatty acids, 

resistin, PAUF, 
monosodium urate crystals

 

Biglycan, fibronectin EDA, 
fibrinogen, tenascin-C 

 

Heparin sulphate 
fragments, hyaluronic acid 

fragments 

Released from 
activated/necrotic 

cells 
 
 
 
 
 
 

 
 

Induced upon tissue 
damage 

 
 
 
 

Degradation of 
tissue 

TLR5 Flagellin Bacteria Unknown Unknown 

TLR6 Diacyl lipoprotein Bacteria, 

Viruses 

Unknown Unknown 

TLR7/8 ssRNA Bacteria, 

Viruses 

Antiphospholipid 

antibodies, ssRNA, cardiac 

myosin 

Released from 

activated/necrotic 

cells 

TLR9 CpG-DNA Bacteria, 

Viruses, 

Protazoa 

IgG-chromatin complexes, 

mitochondrial DNA 

Released from 

activated/necrotic 

cells 

TLR10 Unknown Unknown Unknown Unknown 

TLR11 Profilin-like 

molecule 

Protazoa Unknown Unknown 

DAMPs in red have been reported in the RA joint. 

Table 2. Exogenous and endogenous activators of human TLRs. 
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TLR EXPRESSION F REFERENCE 

TLR1 Protein in DCs> macrophages > fibroblasts from RA 
joint 

nd (Tamaki et al., 2011) 

TLR2 mRNA in RA synovial tissue, protein in DCs and 
macrophages but not T cells or fibroblasts from RA 
joint 

yes (Sacre et al., 2007) 
(Tamaki et al., 2011). 

mRNA in RA > OA or non arthritic joints, at synovial 
lining, sites of attachment and invasion into cartilage 
or bone, around small vessels and in areas of 
infiltrating lymphocytes (fibroblasts not macrophages 
or T cells) 

yes (Seibl et al., 2003) 

Protein in RA > OA or healthy joints in synovial 
lining, sublining and perivascular regions  

nd (Radstake et al., 
2004) 

Protein in RA blood monocytes, tissue macrophages yes (Iwahashi et al., 
2004; Huang et al., 
2007) 

Protein in fibroblasts from RA > OA joints > healthy 
skin 

yes (Kim et al., 2007) 

TLR3 mRNA and protein in RA > OA or healthy synovium, 
in fibroblasts of the synovial lining and sublining, 
and in the perivascular areas 

yes (Brentano et al., 
2005; Roelofs et al., 
2005) 

Protein in fibroblasts from early RA > OA or healthy 
synovium  

yes (Ospelt et al., 2008) 

TLR4 mRNA in RA synovial tissue, protein in DCs and 
macrophages but not T cells or fibroblasts from RA 
joint 

yes (Sacre et al., 2007) 
(Tamaki et al., 2011) 
(Huang et al., 2007) 

Protein in synovial tissue from RA > OA > healthy 
joints, in early and longstanding RA 

yes (Radstake et al., 
2004) (Ospelt et al., 
2008) 

Protein in RA synovial fibroblasts yes (Kim et al., 2007; 
Wu et al., 2010) 

TLR5 Protein in DCs> macrophages > fibroblasts from RA 
joint 

nd (Tamaki et al., 2011) 

TLR6 Protein in DCs> macrophages > fibroblasts from RA 
joint 

nd (Tamaki et al., 2011) 

TLR7 Protein in RA synovium > OA or healthy joints yes (Roelofs et al., 2005; 
Roelofs et al., 2009) 

TLR9 Protein in DCs> macrophages > fibroblasts from RA 
joint 

nd (Tamaki et al., 2011) 

nd = not determined 
F= function = the ability of the TLR to respond to its cognate ligand in each cell/tissue type 

Table 3. Distribution of TLR expression in the RA joint  
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Further studies using ex vivo human disease models have provided evidence of a functional 

role for TLRs in driving inflammation in RA. Adenoviral over expression of dominant 

negative Myd88, an adaptor molecule required for signalling by all TLRs except TLR3, 

inhibited cytokine synthesis in RA synovial cells (Sacre et al., 2007). The naturally occurring 

TIR signalling antagonist single-immunoglobulin interleukin-1 receptor-related (SIGIRR) is 

also efficacious in suppressing cytokine synthesis in these cells (Drexler et al., 2010). 

Together these data suggest that TLRs may contribute to synovial inflammation but do not 

rule out the possibility that IL-1-mediated signalling, which shares the TIR-myd88 derived 

framework, is responsible for these findings, nor do they pinpoint any specific TLR.  

3.2 Which TLRs are important in RA? 

Evidence of a role in RA for both cell surface TLRs and endosomal TLRs in human disease is 

accumulating. In particular, over expression of dominant negative Mal, an adaptor protein 

required exclusively by TLR2 and 4, has been shown to inhibit cytokine and protease 

synthesis in RA synovial cells, supporting the contribution of these two family members to 

the synthesis of pro-inflammatory mediators in the RA joint (Sacre et al., 2007). Blockade of 

the function of TLR2 and 4 using neutralizing antibodies has also been reported, and while 

commercially available antibodies to either TLR2 or TLR4 had no effect on cytokine 

production in isolated RA synovial cells at 10 g/ml (Sacre et al., 2007), 1 g/ml of an anti-

TLR2 antibody (OPN301) inhibited spontaneous cytokine release in RA tissue explants as 

effectively as anti-TNF antibodies (Nic An Ultaigh et al., 2011). Inhibition of TLR4 by the 

naturally occurring antagonist LPS isolated from Bartonella Quintana, also partially inhibited 

cytokine release in RA synovial biopsies (Abdollahi-Roodsaz et al., 2008). Stimulation of 

TLRs 2, and 4 has also been shown to induce cytokine synthesis in cell cultures isolated from 

RA synovia (Sacre et al., 2008). While the same workers found that TLRs 7 and 9 were not 

responsive to their respective ligands in RA cultures, stimulation of TLRs 3 and 8 did 

increase cytokine production.  

The contribution of endosomal TLRs to cytokine synthesis in RA is also supported by other 

studies; chloroquine, which prevents intracellular TLR function by inhibiting endosomal 

acidification, reduces cytokine release in synovial cells (Sacre et al., 2008). The selective 

serotonin reuptake inhibitors, antidepressant drugs fluoxetine and citalopram and the 

antidepressant small molecule mianserin are also efficacious in inhibiting synovial cell 

cytokine release (Sacre et al., 2010).  These drugs also inhibit TLR3, -7, -8 and -9 activity, by 

mechanisms which are yet unknown. More specifically, the small molecule imiquimod, 

which targets TLR8, also inhibited the production of TNF from human RA synovial 

membranes (Sacre et al., 2008).  There have also been anecdotal reports of improved 

symptoms in RA patients taking anti-depressants (Krishnadas et al., 2011). Taken together 

these studies suggest a significant role for TLR2 and 4 as well as the endosomal TLRs 3 and 

8 in human disease. 

3.3 The role of TLRs in animal models of RA 

In addition to studies in human tissue, the contribution of TLRs to inflammation and joint 

destruction has been examined in rodent models of arthritis. Mice with targeted deletions in 

TLRs have demonstrated that specific family members are important in driving disease 

pathogenesis in vivo.  
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Many experimental models of joint disease utilize TLR ligands to initiate or sustain disease 
induction, making interpretation of the contribution of each TLR to disease induction or 
progression difficult (Joosten et al., 2003; Frasnelli et al., 2005; Lee et al., 2005). However, in a 
serum transfer model where induction of arthritis occurs independently of TLR 
administration, disease was not sustained in TLR4 null mice (Choe et al., 2003). Likewise, 
the severity of spontaneous, IL-17 driven arthritis in mice lacking IL-1RA is significantly 
reduced when crossed with TLR4 null mice, concomitant with blunted expression of IL-17 
suggesting a key role for TLR4. In this model TLR2 null mice showed increased disease 
severity whereas TLR9 knockout had no effect on disease (Abdollahi-Roodsaz et al., 2008).  
Whilst most data point towards a role for TLR4 in disease progression in mice in vivo, recent 

data have also suggested a role for the endosomal TLRs. Fluoxetine and citalopram reduce 

disease progression in murine collagen induced arthritis (Sacre et al., 2010). TLR3 was found 

to be the most significantly up-regulated TLR during pristine induced arthritis in rats, 

where it appeared in the spleen early after disease initiation. Stimulation of TLR3 with 

polyI:C also exacerbated disease severity and silencing TLR3 expression reduced disease 

severity in these animals (Meng et al., 2010).  

Despite evidence from human studies highlighting the contribution of TLR8 in synovial 

inflammation, the lack of activation of murine TLR8 by its cognate ligand suggests this 

PRR is not biologically active in mice (Heil et al., 2004). Nor is TLR10 present in mice 

(Hasan et al., 2005). This makes investigation of the in vivo function of these TLRs 

challenging. Combined with the fact that TLR signalling and gene activation is species-

specific, notably most recently highlighted by examination of the differences in human 

and murine TLR4-mediated nickel recognition that confers contact hypersensitivity 

specifically to man (Schmidt et al., 2010), extrapolation of data between species should be 

undertaken cautiously. 

3.4 Targeting TLRs as a therapy in RA 

Studies examining the blockade of TLRs in mouse models have confirmed the importance of 
TLRs in disease and have provided evidence that TLR antagonism may be a viable means to 
reduce inflammation in RA. Treatment with LPS from Bartonella quintana and ST2 protein 
expressed by mast cells and T helper cell type 2 (Th2) inhibits TLR4-mediated signalling in 
experimental models of arthritis, resulting in disease amelioration (Leung et al., 2004; 
Abdollahi-Roodsaz et al., 2007). Further evidence for a role for the endosomal TLRs in CIA 
has also come from studies with short DNA oligonucleotides (ODNs). These act as 
Immunoregulatory Sequences (IRS) and inhibit endosomal TLR activity (Barrat et al., 2005; 
Ranjith-Kumar et al., 2008; Lenert, 2010). Prophylactic administration of ODNs in CIA and 
CpG-induced arthritis has been shown to abrogate disease progression (Zeuner et al., 2002; 
Dong et al., 2004).   
In the light of the wealth of evidence implicating TLRs in both animal models of RA and in 

human disease considerable commercial, pharmaceutical activity has also been focused on 

designing TLR inhibitors for use in treating RA. TLR antagonists in preclinical development 

for RA include NI-0101, a TLR4 specific antibody developed by NovImmune, OPN305, a 

TLR2 specific antibody developed by Opsona, VTX-763, a small molecule inhibitor targeting 

TLR8 developed by VentiRx Pharmaceuticals and DV-1179, a DNA based TLR7/9 

antagonist, developed by Dynavax. There are also several compounds currently in trial. For 

example, Heat shock protein 10 (HSP10) (chaperonin 10) which can inhibit LPS mediated 
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TLR4 activation, has improved symptoms in all RA patients tested, causing disease 

remission in 3 out of 23 in a small clinical trial (Vanags et al., 2006).  Cbio et al are also 

examining the recombinant analogue of HSP10, XToll®, in a phase II clinical trial for RA. 

The DNA-based TLR7/9 antagonist, IMO-3100, developed by Idera, has also shown 

promising results in vivo for several autoimmune disease models. Phase I clinical trials of 

IMO-3100 in healthy subjects are underway and it appears to be well tolerated with no 

major adverse effects; in addition to reducing the release of cytokines such as TNF and IL-1 

in these subjects.   

Taken together, data from human, animal and pharmaceutical studies suggests a 

significant role for TLRs 2 and 4, in addition to the endosomal TLRs in synovial 

inflammation, in RA. Intriguingly however, the identity of the factor or factors that 

mediate this activation is not clear.  

4. Which TLR activators drive chronic inflammation in RA? 

Infection has long been purported to be a key underlying factor in RA pathogenesis. 

However, whilst pathogenic stimuli may trigger inflammation in RA, a causative infectious 

agent for RA has not been found and there is little evidence to suggest that PAMPs generate 

sustained joint inflammation (Schumacher et al., 1999; Chen et al., 2003). In contrast, data 

implicating DAMPs in RA pathogenesis have emerged from a number of independent 

studies in which factors derived from the serum, synovial fluid or synovial cells of RA 

patients can activate TLR mediated signalling pathways (Brentano et al., 2005; Roelofs et al., 

2005; Sacre et al., 2007).  

DAMPs are endogenous molecules that are immunologically silent in healthy tissues but 

become active upon tissue injury. They include intracellular molecules released from 

necrotic cells or secreted from activated cells, extracellular matrix molecule fragments 

created by tissue damage or proteolysis and extracellular matrix molecules that are 

specifically expressed upon tissue injury. In normal circumstances they act as danger signals 

that alert the organism to tissue damage and initiate the process of tissue repair. In addition 

to this physiological role however, there is evidence which indicates that DAMPS also 

contribute to the pathogenesis of many inflammatory and autoimmune diseases 

characterized by aberrant TLR activation including RA.  

High levels of some DAMPs are detected in the destructive milieu of the RA joint (Table 2) 

(reviewed in (Piccinini et al., 2010), where they are hypothesized to drive chronic 

inflammation by invoking a perpetual destructive cycle where inflammation leads to the 

creation of new stimulators of inflammation (Roelofs et al., 2008). A number of approaches 

have been taken to examine the effect of DAMP administration, deletion or blockade in 

animal models of arthritis and data supporting the role of specific molecules in such models 

are summarized in Table 4.   

In particular, the administration of the fibronectin EDA domain (FNEDA), fibrinogen, 

HMGB-1 and tenascin-C intra-articularly to mice provokes pathological inflammation in 

vivo, (Pullerits et al., 2003; Gondokaryono et al., 2007; Midwood et al., 2009). Moreover, 

targeted deletion of tenascin-C protects mice from experimental disease; synovial 

inflammation is induced but is transient and little tissue destruction occurs in contrast to 

wild type mice (Midwood et al., 2009) suggesting that tenascin-C plays a crucial role in 

disease chronicity.  

www.intechopen.com



 
Rheumatoid Arthritis – Treatment 

 

220 

DAMP Effect of intra-articular administration in mice Reference 

Fibrinogen Induced joint inflammation that is inhibited by 
CTLA4-Ig 

(Ho et al., 2010; Yue 
et al., 2010) 

FNEDA  Induced TLR4 dependent transient ankle 
swelling, cytokine synthesis, synovial 
inflammation 

(Gondokaryono et al., 
2007) 

HMGB1  Induced synovial inflammation, some pannus 
formation 

(Pullerits et al., 2003) 

Tenascin-C  Induced TLR4 dependent joint inflammation and 
tissue erosion 

(Midwood et al., 
2009) 

 Effect of targeted deletion in mice  

Tenascin-C Protected from persistent synovial inflammation, 
joint erosion and tissue destruction in antigen 
induced arthritis 

(Midwood et al., 
2009) 

 Effect of blockade in murine disease model  

HMBG1 Polyclonal antibodies or the DNA binding box A 
domain reduced severity of established joint 
disease in collagen induced arthritis 

(Andersson et al., 
2004) 

HSP90 SNX-7081 (inhibitor) ameliorated disease, joints 
returned to normal in collagen induced arthritis 

(Rice et al., 2008) 

Neutrophil 
elastase 

ONO-5046 (inhibitor) reduced incidence and 
severity of disease, ablated cartilage destruction 
in collagen induced arthritis 

(Kakimoto et al., 
1995) 

Table 4. Evidence supporting the role of specific DAMPs in driving inflammation in RA 

5. The role of citrullination 

The mechanism underlying the switch from DAMPs that initiate controlled tissue repair, to 

those that mediate chronic, uncontrolled inflammation is still unclear, but recent evidence 

suggests that the process of citrullination may play a key role in this event. Citrullination is 

a post-translational event whereby peptidyl arginine deaminase enzymes convert arginine 

residues on susceptible molecules to citrulline. 
Fibrinogen, a DAMP and TLR4 agonist, has been shown to be citrullinated in the RA joint 
(Sebbag et al., 2006; van Beers et al., 2010), which potentiates its activation of TLR4 and 
enhances its activity within immune complexes (Sokolove et al., 2011). Moreover, 
immunization with citrullinated, but not native, fibrinogen induces a T cell dependent 
murine arthritis (Ho et al., 2010; Yue et al., 2010). In addition, citrullination modifies the 
antigenicty of fibrinogen by creating new epitopes preferentially recognized by HLA DR 
(James et al., 2010). Whilst the accumulation of citrullinated proteins is a hallmark of many 
autoimmune diseases, unique to RA is the loss of tolerance to these epitopes. Anti-
citrullinated protein antibodies (ACPAs) are present in ~65% of RA patients but are found in 
only <1% of individuals who do not have RA. Appearing before any evident symptoms, 
they correlate with poor prognosis; progressive joint destruction and low remission (Scott et 
al., 2010). Largely used diagnostically, emerging evidence suggests that ACPAs actively 
contribute to disease pathogenesis as their adoptive transfer enhances experimental murine 
arthritis (Kuhn et al., 2006; Uysal et al., 2009). Investigation of which DAMPs are 
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pathologically post translationally modified in this and other ways may reveal the antigens 
that drive autoimmunity; thereby shedding light on RA disease pathogenesis. 
 In summary therefore, the presence of DAMPs within the RA synovia or their elevated 
levels within the peripheral circulation of patients, implicates their involvement in disease 
pathology. This hypothesis is now underscored by evidence in animal models of RA that 
includes the effects on disease after targeted deletion of DAMPs, the induction of disease by 
administration of DAMPS as well as the manipulation of DAMP function / expression. 
However, whilst targeted deletion of a particular DAMP is possible in the mouse it is clearly 
not a viable therapeutic option in the clinic. A more achievable goal is to target the receptors 
or signalling pathways involved in DAMP activity, an approach that requires a detailed 
understanding of both. 

6. Distinct mechanisms of DAMP versus PAMP-mediated TLR activation 

Whilst there is now clear evidence for a role for endosomal TLRs -3 and -8, their ligands are 
still to be defined; all DAMPS that have been implicated in RA to date mediate their effects 
via either TLR2 or 4 (Tables 2 and 4).  However, despite considerable evidence implicating 
TLRs -2 and -4 in RA, there is also conflicting evidence. In particular, the inability of some 
function blocking antibodies to prevent spontaneous cytokine production in isolated RA 
synovial cells (Sacre et al., 2007), and the protective effect of TLR2 deletion in murine 
arthritis (Abdollahi-Roodsaz et al., 2008) might suggest that these TLRs are not important in 
RA. Moreover, SNPs of TLR2 and TLR4 or polymorphisms in human TLR4 that prevent LPS 
responsiveness do not correlate with RA disease susceptibility. For example, the Asp299Gly 
mutation in TLR4 (Kilding et al., 2003; Radstake et al., 2004) or Arg677Trp and Arg753Gln 
polymorphisms in TLR2 (Sanchez et al., 2004) that prevent PAMP induced activation of cells 
show no significant association with RA. 
However, the apparent discordance with SNP data and some antibody studies may be 
accounted for by the idea that the mechanism of TLR activation by DAMPs is unlikely to be 
the same as that used by the pathogenic activation of TLRs. LPS-relevant SNPs and 
antibodies that prevent LPS-TLR4 association may therefore not be applicable to 
TLR4:DAMP association. Indeed, studies with HMGB1, HSPs and tenascin-C, all DAMPS 
that have been implicated in RA, have revealed differences in the gene expression profiles 
and cytokines produced by these DAMPs when compared to LPS. This disparity was 
despite the uniform use of the TLR4 receptor. Thus, whilst HMGB1 and LPS induce many of 
the same genes in neutrophils from septic patients, there are also distinct differences, in 
particular in the expression of IL-8 (Silva et al., 2007). HSP60 is able to induce IFN alpha 
production in peritoneal macrophages and bone marrow derived DCs where LPS cannot 
(Osterloh et al., 2007), and tenascin-C exhibits a different profile of cytokine induction in RA 
synovial fibroblasts to LPS, being unable to induce IL-8 in these cells (Midwood et al., 2009). 
The induction of different gene patterns implies that the DAMPS are using TLR4 in a 
different way from the PAMPs. This is perhaps not surprising when we consider that TLR4 
recognises a wide variety of ligands, ranging from HSPs to lipids to breakdown products of 
the extracellular matrix (Piccinini et al., 2010) and it is unlikely that the TLR4 molecule 
would be able to recognise such a diverse repertoire of molecules in the same way. This is 
borne out by findings from crystallography studies which have revealed three basic 
mechanisms for TLR:PAMP association. Thus, the crystal structure of the extracellular 
domain of TLR3 complexed with ds RNA reveals that this molecule interacts directly with 
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residues on the external surface of the TLR3 homodimer (Liu et al., 2008). More recent 
modelling of TLRs 7 and 9 also suggests direct ligand binding to the TLR molecule 
(Kubarenko et al., 2010). In contrast, TLR1:TLR2 hetero-dimerisation results in the formation 
of a hydrophobic pocket into which the lipopeptide PAM3Cys fits (Jin et al., 2007). Lastly, 
the structure of the TLR4:MD2:LPS complex reveals that LPS does not initially make direct 
contact with TLR4, but rather first binds to MD2, altering its conformation and allowing it to 
bind to and cause homodimerisation of TLR4 (Park et al., 2009). In this case, TLR4 residues 
important for LPS activity include those required for MD2 binding and those required for 
receptor homodimerisation. TLR4 responses to LPS also require the presence of CD14 which 
facilitates the transfer of LPS to MD2.  
Our knowledge of the receptor complexes used by DAMPs is far from complete, but it is 

already clear that these molecules have a further level of complexity in their receptor 

organisation. Thus, of those that require TLR4, some, such as HSP70, biglycan and s100 also 

require both CD14 and MD2 for activity. Others, such as Gp96, HMGB1 and fibronectin 

EDA require only MD2, whilst another group that includes surfactant protein A and 

lactoferrin require only CD14 (Piccinini et al., 2010). The last, and probably the most diverse 

group of DAMPs use co-receptors or accessory molecules that are distinct from CD14 and 

MD2. Immune complexes of citrullinated fibrinogen for example have recently been shown 

to use a combination of Fcgamma receptors and TLR4 (Sokolove et al., 2011), and may also 

use CD11b/ CD18 (Barrera et al., 2011). A-SAA, which has been associated with RA and 

uses the TLR2 receptor has been shown to also use both CD36 and FPRL-1 as co-receptors, 

while low molecular weight hyaluronan forms complexes with TLR2 and CD44, and 

biglycan, which may use both TLR2 and TLR4, uses a variety of molecules including CD14, 

MD2, P2x4 and NLRP3 (Babelova et al., 2009). Other DAMPs such as tenascin-C do not use 

CD14 or MD2 (Midwood et al., 2009). Whether they bind directly to TLR4 or use an as yet 

undefined co-receptor molecule(s) is unclear at present. 

Because of their alternative use of co-receptor molecules, DAMPs are therefore likely to use 

different residues on the TLR4 molecule than those used by LPS, so it may not be surprising 

that SNPs that affect LPS binding and antibodies designed to prevent LPS activation of 

TLR4 are inactive in RA where DAMP mediated activation of TLR4 may be critical to 

disease pathology. This hypothesis is confirmed by studies of the D299G and T399I 

mutations in TLR4. These have been shown to prevent LPS activation, but to enhance the 

ability of TLR4 to respond to fibrinogen. (Hodgkinson et al, 2008) 

The signalling mechanisms used by DAMPs are also not well defined, and there is very little 

data available at present to suggest therapeutic targets for DAMPs. However, the use of TLR 

molecules suggests that many of the same pathways activated by PAMPs may be relevant. 

This has been confirmed by recent studies of oxidised LDL signalling (a TLR4 DAMP), which 

shows activation of many familiar pathways such as those involving IKK and the MAP 

kinases. Studies with tenascin-C also show that MyD88 signalling is important in response to 

this molecule (Midwood et al., 2009). Any differences between DAMP and LPS mediated 

signalling pathways are likely to come from the DAMP use of alternative co-receptors. 

Molecules such as CD36, CD44 and integrins already have defined signalling pathways. 

Whether DAMP signalling will prove to be simply a combination of TLR:MyD88 driven 

pathways and those emanating from any co-receptor molecules remains to be defined. It is 

more likely however, that the signal transduction mechanism of DAMPs will be a result of a 

combination of both pathways, where each is able to modulate / modify the other.  
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Examples of other molecules able to modify TLR signalling pathways, and consequently 
TLR-induced cytokine production are already established in the literature, and in particular 
a number of molecules that contain ITAM motifs have been shown to modulate TLR 
signalling pathways (Ivashkiv, 2008). Some such as TREM1 appear to cooperate with TLR 
molecules, amplifying the production of pro-inflammatory cytokines (Bleharski et al., 2003) 

whilst others such as the FcR and the CD300F molecule inhibit TLR signalling (Wang et al., 
2010). Other cell surface molecules able to modulate TLR activity include the TAM (Tyro3, 
Axl, Mer) receptors and SIGIRR (Rothlin et al., 2007; Drexler et al., 2010). The mechanisms 
responsible for these activities are varied and include ITAM mediated changes in IL-10 
production and the induction of inhibitory signalling molecules. Conversely, recent data has 
emerged detailing a requirement for TLR4 in CD16 signalling revealing that TLRs in their 
turn can modulate other signalling pathways (Rittirsch et al., 2009).  

7. Conclusion 

In conclusion, it is clear that whilst the advent of specific biological therapies for the 
treatment of RA has significantly improved treatment of this disease in the last 10 years, 
there is still a significant un-met clinical need for therapies that target the cause of disease 
chronicity rather than its consequences.  
 Increasing evidence from in vitro studies, murine models of disease, and human studies, 
suggests that the TLRs play a significant role in RA. In particular, TLRs 2 and 4 and the 
intracellular TLRs 3 and 8 are increasingly regarded as key to the pathogenesis of this 
disease. However, PAMPs derived from infectious agents are not found in RA joints and are 
unlikely to be the causative TLR ligands in RA. Rather, there is now increasing evidence that 
endogenously derived DAMPs, either in their native form or in a citrullinated state, are able 
to drive the chronicity of RA. DAMPs comprise an enormously diverse subset of molecules 
and targeting them as a form of RA therapy could be achieved in a number of different 
ways. Many of these approaches have already found some success in other fields, but have 
yet to be tested in RA.  
For example, for DAMPs whose expression is specifically up-regulated during inflammation it 

may be possible to manipulate this induction of expression at the genetic level. This approach 

has been taken in a murine lung carcinoma model where knockdown of versican expression in 

Lewis lung carcinoma cell lines (LLC) ablated their tumorigenic capability, promoting mouse 

survival and reduced metastasis. Conversely, over expression of versican in LLC lines with 

low innate metastatic potential increased lung metastasis (Kim et al., 2009).  

The use of micro RNAs (miRNAs) to manipulate gene expression is also attracting 
considerable attention. MicroRNAs are endogenous RNAs that post-transcriptionally 
modulate gene expression (reviewed in (Guo et al., 2010). Not surprisingly, regulation of 
gene expression by microRNAs has also been extended to the TLR signalling paradigm 
(reviewed in (O'Neill et al., 2011)) where they impose several levels of regulation on the TLR 
signalling axis. For example, miR-155, miR-21 and miR-147 regulate the expression of TLRs 
2-4, downstream signalling mediators such as MyD88 and TRIF, as well as transcription 

factors NF-B and IRF3 (reviewed in (O'Neill et al., 2011)). Recent studies have reported that 
miR-155, miR-146a and miR-203 are upregulated in RA synovial fibroblasts, resulting in 
altered cytokine and MMP synthesis (Stanczyk et al., 2008; Li et al., 2010; Stanczyk et al., 
2011). These insights may create a novel approach to limiting excessive TLR activation 
during inflammation.  
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A second method of modulating DAMP activity in RA may be to block their production or 
level of expression. Indeed, ethyl pyruvate, stearoyl lysophosphatidylcholine and nicotine 
have already been shown to be efficacious in ameliorating experimental sepsis by 
preventing HMGB1 release (Ulloa et al., 2003; Wang et al., 2004; Chen et al., 2005). However, 
the mechanism by which they do so is unclear and these compounds are likely also to affect 
numerous other cell processes. HMGB1 is released from cells by two distinct mechanisms: it 
is either liberated from cells undergoing necrosis (Scaffidi et al., 2002), or it is 
hyperacetylated and then actively secreted from stimulated cells. Other DAMPs including 
the S100 proteins are also secreted in the same way (Foell et al., 2007) and targeting this 
pathway therefore may potentially offer a means to modulate the release of intracellular 
DAMPs. Other DAMPs are generated by the degradation of extracellular matrix and 
inhibition of this process may also be therapeutically beneficial. This has already been tested 
in the case of immune stimulatory heparin sulphate (HS) fragments which are released from 
the ECM as a result of elastase activity (Brunn et al., 2005). Injection of elastase into the 
peritoneal cavity of mice caused the release of HS and induced sepsis, nearly as effectively 
as direct injection of HS or LPS (Johnson et al., 2004). Thus therapeutic measures aimed at 
 

 

Red star = Potential site of DAMP manipulation. 

Fig. 1. Potential sites at which DAMP activity could be modulated for therapeutic 
advantage.  
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blocking elastase could reduce the production of endogenous TLR4 activators. Indeed, pre-

treatment with neutrophil elastase inhibitor before induction of hepatic ischemia-

reperfusion injury has already been shown to ameliorate liver damage (Uchida et al., 2009).  

Thirdly, as we have discussed here, targeting the TLRs that are critical for DAMP 

recognition is increasingly considered as a viable therapeutic option in RA. This can take the 

form of agents that antagonise DAMP:TLR association as has been tested with the 

antagonistic TLR2 and TLR4 antibody studies and the DNA based TLR7/9 antagonist IMO-

3100 and with the studies on Bartonella Quintana LPS and the ST2 protein. Other approaches 

tested so far include the use of antagonistic bent oligonucleotides that have a high affinity 

for HMGB1 and suppress HMGB1-induced proliferation and migration of smooth muscle 

cells in vitro (Musumeci et al., 2007). An engineered mutant fragment of HMGB1 (HMGB1 

Mut (102-105)) that carries two glycine substitutions has also been shown to decrease TNF 

release induced by the full-length HMGB1 protein in human monocyte cultures (Yuan et al., 

2008). In addition, the N-terminal domain of thrombomodulin, an endothelial anticoagulant 

cofactor, has been shown to exert anti-inflammatory effects in a model of lethal endotoxemia 

partly by binding to and sequestering HMGB1 (Abeyama et al., 2005). Targeting the DAMP 

co-receptor molecules may also prove to be a viable therapeutic approach.  

TLR signalling pathways, activated during DAMP recognition, would also represent 

tractable targets in RA and the success in in vitro studies and animal models of RA of small 

molecule inhibitors directed against signalling molecules such as p38, IKK2, PDE4, Syk and 

Btk may in large part be due to their effect on DAMP mediated signalling pathways. In 

addition, it will be interesting to see if DAMP-mediated signalling pathways are subject to 

the same control mechanisms as PAMP-mediated TLR signals. The role of naturally 

occurring molecules such as SIGIRR and SARM which are reported to modulate TLR 

signalling, as are the TAM receptors Tyro3, Axl and Mer. Many of these have not been 

examined in the context of DAMP:TLR activity and may yield further areas of study. 

In summary, it is now clear that the TLR:DAMP axis represents a key point in RA 

pathology that will be susceptible to therapeutic attack. However, in order to mount such 

an attack we need to understand a number of key points: which DAMPs are relevant to 

RA pathology?; how are these DAMPs produced and / or modulated to become 

pathogenic?; how do the TLRs recognise DAMPs, including the role of co-receptor 

molecules?; and which signals are generated? The field of DAMP research in RA should 

prove to be an exciting one for many years. 
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