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Discipline of Physiology, School of Medical Sciences, University of Adelaide 
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1. Introduction 

Ulcerative colitis and Crohn’s disease are defined by a common term of inflammatory bowel 

disease. These chronic diseases result in significant morbidity and mortality. While there are 

no cures for these diseases, the last two decades have been a period of major advancement 

in our understanding of the biology of intestinal inflammation. This can be attributed to a 

steadily increasing number of experimental animal models with some clinical manifestation 

similar to those observed in human inflammatory bowel disease. These experimental animal 

models have also contributed greatly to our current understanding of the immunological, 

pathological and physiological features of chronic intestinal inflammation. However, 

specific causes of ulcerative colitis and Crohn’s disease remain unknown. Conventional 

treatments for the disease include corticosteroids and immunosuppressives, however 

treatments in many patients are not entirely effective with many therapies associated with 

significant adverse effects. Thus, treatments that are effective and have little or no side 

effects remain an unmet need. There are numerous emerging therapeutic strategies which 

may be useful in the alleviation of chronic intestinal inflammation and this chapter will 

focus on novel therapies that may be effective for ulcerative colitis in the future. 

2. Etiology of ulcerative colitis 

While the precise etiology of inflammatory bowel disease is unknown, genetic susceptibility, 

environmental factors, impaired barrier function, imbalances or disruption to the 

commensal host microflora and an abnormal intestinal immune response are thought to 

play an important role in its manifestation.  

2.1 The immune response 

It is clear that not one single component of inflammatory bowel disease pathogenesis can 

trigger and maintain the disease. Understanding mucosal immunity in Crohn’s disease and 

ulcerative colitis is fundamental in unraveling the complex mechanisms of chronic gut 

inflammation which can then provide some insight into the treatment of inflammatory 

bowel disease. The immune response is divided into two components, innate immunity and 

adaptive immunity. 
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2.2 Innate immunity 

In the normal intestine, macrophages are conditioned by the mucosal microenvironment 
to express a non-inflammatory phenotype which is translated by a down-regulated 
expression of innate immunity receptors and constrained production of pro-inflammatory 
cytokines (1). In contrast, in inflammatory bowel disease-affected intestinal tissue, 
macrophages newly recruited from the peripheral blood still express monoctyic CD14 
markers but are primed for the production of various pro-inflammatory cytokines such as 

interleukin (IL)1α, IL1β, and tumour necrosis factor (TNF)α (2-3). It has been reported that 
in Crohn’s disease these CD14+ pro-inflammatory macrophages are increased and 

subsequently result in more IL23 and TNFα production compared to controls and 

ulcerative colitis and contribute to the production of interferon (IFN)γ by T cells (4). 
Intestinal dendritic cells (DC) are antigen-presenting cells involved in the initiation and 
regulation of local innate immune response but also play a role in adaptive immunity (5). 
Similar to macrophages, their function is dependent on the mucosal microenvironment and 
function to provide protection and defense, induce tolerance or mediate inflammation (6). It 
has been shown that in inflammatory bowel disease, intestinal DC is activated, increasing 
the expression of microbial receptors and production of pro-inflammatory cytokines like 
IL12 and IL6 (7). 

2.3 Adaptive immunity 

B cell immunity 

There is limited focus given to B cell immunity in inflammatory bowel disease even though 
in active inflammatory bowel disease there is antibody production and secretion of 
immunoglobulin (Ig)M, IgG and IgA, by both peripheral blood and mucosal mononuclear 
cells (8). The patterns of antibody class production differ in ulcerative colitis and Crohn’s 
disease; in ulcerative colitis there is a disproportional increase in IgG1 secretion, whereas in 
Crohn’s disease IgG1, IgG2 and IgG3 are increased compared to control cells (9). 

T cell immunity 

There has been a considerable increase in our understanding of adaptive immunity since the 
identification of CD4+ T helper 1 (Th1) and T helper 2 (Th2) subsets in mice (10) and humans 

(11). The T cell immunity field is still evolving and in addition to IFNγ-producing Th1 cells 
and IL4, IL5 and IL13-producing Th2 cells, new Th subsets have been identified including 

IL17 producing Th17 cells (12) and dual IFNγ- and IL17-producing Th17 cells (13). More 
recently, two new subsets of CD4+ effector Th cells have been described, Th9 and Th22, 
however, their function are not clearly understood (14). Furthermore, Cosmi et al. (15) 
reported that Th cells can produce both IL17 and IL4 which is a dual Th17 and Th2-
mediated immune response. 
In addition to Th cells, another major subset is made up of T regulatory (Treg) cells whose 
function is to monitor the immune response and prevent an excessive and potentially 
harmful immune response (16-17). It has been speculated that Th17 and Treg cells share 
common pathways, suggesting developmental and functional links between Treg and Th17 
cells (18-19). Regulatory T cells are accepted to be key players in the maintenance of 
tolerance and prevention of autoimmunity (20). Of particular interest are the CD4+ 
CD25bright Foxp3+ Regulatory T cell (Treg), where mutations of the transcription factor 
Foxp3, crucial in the development and function of Tregs, manifest in multiple autoimmune 
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diseases in both mice and humans (21). In both cases a severe early onset of inflammatory 
bowel disease is observed as part of the pathology. A deficiency of number and/or function 
of Tregs are also seen in other autoimmune diseases including multiple sclerosis and 
systemic lupus, and the transfer of Tregs has been shown to treat experimental murine 
colitis and type 1 diabetes. 
The Th17 effector cell is a relatively new effector cell lineage distinct from the Th1/Th2 

dichotomy, and is driven by the transcription factor retinoic acid-related orphan receptor-γt, 

(RORγt). Th17 cells secrete predominately IL17 and potentially provide critical protection 

against fungi and extra cellular bacteria which are not covered by Th1/Th2 immunity (22). 

There is good evidence that Crohn’s disease has a dominant Th1 component as shown by an 

elevated production of IFNγ and IL12 by lamina propria mononuclear cells (23-24). As well 

there is an increased production of IL-17 by Th17 cells and dual IFNγ- and IL17-producing 

mucosal Th cells (13, 25). In contrast, ulcerative colitis is considered an atypical Th2 

response based on studies demonstrating increased IL5 and IL13 production of Th cells and 

also IL13 by natural killer (NK) T cells in the inflamed mucosa (26). The increased production 

of IL13 has been shown to induce cytotoxicity and apoptosis and impair mucosal barrier 

function (27), which may be a contributor to the overall pathogenesis of ulcerative colitis. 

3. Characteristics of ulcerative colitis 

The remainder of the chapter will focus on animal models of ulcerative colitis and novel 

therapeutic approaches in treating this condition. The clinical symptoms of ulcerative colitis 

consist of severe abdominal pain and increased frequency of bloody diarrhoea. Unlike 

Crohn’s disease, ulcerative colitis is characterized by inflammation contained to the large 

intestine, which affects only the mucosal layer and is superficial in comparison to the 

inflammation seen in Crohn’s disease. Inflammation commonly extends proximally from the 

rectum, and extensive superficial ulceration is typical (28). Inflammation is accompanied by 

ulceration, edema, and hemorrhage along the length of the colon. Complications of 

ulcerative colitis differ from Crohn’s disease, with increased risk of perforation, toxic 

megacolon and a higher incidence of bowel cancer. Histopathological features include the 

presence of neutrophil infiltrates which form crypt abscesses (29).  

4. Animal models of experimental ulcerative colitis 

Even with a wealth of information on the etiology of ulcerative colitis there is still no cure. 

As a consequence numerous animal models of ulcerative colitis have been established to 

elucidate the potential mechanism of ulcerative colitis and to develop therapeutic strategies 

within the preclinical phase. 

5. Chemical-induced colitis 

5.1 Dextran Sulphate Sodium(DSS)-induced colitis 

Features of DSS-induced colitis 

The DSS model of experimental colitis (30) is one of the most popular and widely utilized 
and characterized animal models of ulcerative colitis. DSS is a synthetic sulphated 
polysaccharide composed of dextran and sulphated anhydroglucose unit (31). 
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Supplementing the drinking water of rodents with low molecular weight DSS (54,000 mol. 
wt.) results in histopathological and symptomatic features resembling ulcerative colitis (31-
32). Histologically, DSS-induced colitis resembles the damage manifested in human 
ulcerative colitis patients with an inflammatory response consistent with human 
inflammatory bowel disease (33). DSS administration also produces visual signs of disease 
activity including rectal bleeding, weight loss and diarrhea (32), all common features of 
ulcerative colitis. 
The DSS-induced ulcerative colitis model has been well characterized morphologically and 
biochemically (34-35). After a four-day treatment with 3% DSS in the drinking water, mice 
show signs of acute colitis including weight loss, bloody stools, and diarrhoea (34). 
Histologically, DSS produces submucosal erosions, ulceration, inflammatory cell infiltration 
and crypt abscesses as well as epithelioglandular hyperplasia (35). The luminal bacteria in 

the colon induce the production of the inflammatory cytokines, IL6 and TNFα, which cause 
colitis. The damage induced by DSS has been reported to affect the distal colon and caecum 
preferentially, with lesser damage evident in the proximal colon (32). This model is 
particularly useful to study the contribution of the innate immune mechanism towards 
colitis as well as for the study of epithelial repair mechanisms. 

Mechanism of action 

The mouse model of colitis induced by DSS histologically resembles human ulcerative colitis, 

and although the exact mechanism of DSS-induced mucosal injury is not fully understood, a 

topical toxic effect of DSS on the colonic epithelial cells has been proposed (36). This results in 

loss of barrier function which would likely result in an increased uptake of luminal antigens 

(bacteria and bacterial products) as well as activation of lamina propria immune cells and the 

inflammatory response (37). It has been reported that DSS-induced colitis alters the tight 

junction complex resulting in the loss of barrier function thereby facilitating the development 

of the inflammatory infiltrate and development of intestinal inflammation (38). 

Chronic model of DSS-induced colitis  

DSS is commonly administered in a dose range of 3-10% for 7-10 days to induce an acute 

inflammation depending on the susceptibility of the species or the molecular weight of DSS 

(39). The DSS-induced acute colitis model may be extrapolated to a chronic colitis model by 

simply prolonging the administration of DSS. It has been suggested that to induce 

chronicity, DSS is normally administered in three to five cycles with a 1- to 2-week rest 

between cycles (40-41). This is useful in understanding disease progression as well as 

pathological inflammatory changes observed in ulcerative colitis. Interestingly, in inbred 

rats administered 5% DSS for 215 days, intestinal tumors (adenomas, adenocarcinomas as 

well as papillomas) were seen (42) predominantly in the colon and caecum.  

5.2 2, 4, 6-Trinitrobenzene sulfonic acid (TNBS)-induced colitis 

Features of TNBS-induced colitis 

Another model that has been used widely is the well characterized haptene reagent TNBS-
induced colitis. This model of chronic colitis also resembles human ulcerative colitis in its 
various histological features including infiltration of colonic mucosa by neutrophils and 
macrophages. There is also increased production of inflammatory mediators including Th1 

profile of cytokines (IFNγ, TNFα and IL12) resulting in substantial inflammation and tissue 
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injury (43). Studies (44-45) have indicated that the TNBS-induced colitis model is useful for 
testing therapeutic strategies for humans. More specifically, when TNBS is introduced into 
the colon of susceptible mice it induces a T cell-mediated immune response within the 
colonic mucosa, leading to dense infiltration of T cells and marcophages throughout the 
entire wall of the large bowel (46). In addition, this histopathologic characteristic is 
accompanied by clinical features of progressive weight loss, bloody diarrhoea, rectal 
prolaspe and large bowel wall thickening (47). The TNBS-induced colitis model has been 
very useful in studying many important aspects of gut inflammation, including cytokine 
secretion patterns, mechanisms of oral tolerance, cell adhesion and immunotherapy. 

Induction of TNBS colitis 

In 2001, Scheiffele and Fuss (48) described the induction of TNBS colitis in mice. Colitis is 
induced by the administration of TNBS through a trocar needle using a rubber catheter 
inserted via the anus (49). Scheiffele and Fuss (48) recommended using 0.5 to 4.0 mg TNBS 
in 45% to 50% ethanol intra-rectally. Inherent in this model and other similar models is the 
need for ethanol at high concentrations as a vehicle for intra-colonic administration of the 
hapten. It seems that ethanol is a prerequisite since it acts as a barrier breaker, and allows 
TNBS to enter the mucosa to induce colitis (50). Ethanol by itself causes severe inflammation 
in the intestinal mucosa therefore it is difficult to distinguish between the ethanol-induced 
inflammation and hapten-induced inflammation (51). There are no standard practices for 
this model subsequently a critical appraisal of the various studies using TNBS colitis and a 
recommendation for future use of this model has been extensively reviewed by te Velde et 
al. (52). Intra-rectal administration of TNBS results in ulceration and thickening of the bowel 
wall which may persist for at least 8 weeks (53). Furthermore, granulomas and Langhans-type 
giant cells were also observed at the site of ulceration and inflammation. The inflammation 
was characterized by high myeloperoxidase and decreased glutathione levels (53). 

Mechanism of action 

TNBS dissolved in ethanol is required to break the mucosal barrier. TNBS can bind 

covalently to the E-amino group of lysine and modify cell surface proteins. Colitis may 

develop when pre-sensitized T lymphocytes lyse hapten-modified autologous cells (54-55). 

T-lymphocytes will lyse hapten-modified autologous cells only if the animal has been pre-

sensitized, whereas macrophages will destroy TNBS-modified autologous cells in the 

absence of pre-sensitization (56). In addition, TNBS may be metabolized to yield O2- and 

H2O2 from the interaction between ascorbate and TNBS (57) indicating that TNBS-induced 

colitis may partly be mediated by cytotoxic reactive oxygen species generated by the 

oxidative metabolism of TNBS. 
A variety of inflammatory mediators may be involved in TNBS-induced colitis. The 
predominant arachidonate metabolites found in TNBS colitis are leukotriene B4 (LTB4) and 
the monhydroxyl fatty acids 5-HETE, 12-HETE and 15-HETE (58). The synthesis of LTB4 
increased within 4 h and peaked 24-72 h after the administration of TNBS and this increase 
is correlated with colonic myeloperoxidase activity (59). Furthermore, it has been shown 
that a significant level of luminal eicosanoids such as prostaglandin E2 (PGE2), 6-keto 

PGF1α, TXB2 and LTB4 were increased 3 days after intracolonic instillation of TNBS (59) 
suggesting that eicosanoids play an important role in the pathogenesis of TNBS-induced 
colitis. Another potential mechanism of TNBS-induced colitis may be the increased level of 
platelet-activating factor (PAF). High PAF production was not seen during the time of 
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maximal neutrophil infiltration (1-4 days after TNBS) but was seen 1-3 weeks after the 
induction of colitis (60). This finding suggests that PAF is unlikely to play an important role 
in the acute inflammatory response but may be important in the prolongation of the 
inflammation in this model. 

Types of TNBS-induced colitis models 

The TNBS-induced colitis model may be used in 3 different scenarios, (i) in acute TNBS-
induced colitis in which the primary phase of the induction of Th1 response, a nonspecific 
inflammatory response, is analyzed (ii) established TNBS-induced colitis in which the local 
delayed-type hypersensitivity response is mimicked and a specific response can be analyzed 
and (iii) chronic TNBS-induced colitis in which repeated local induction of DTH response 
will lead to fibrotic lesions and a Crohn’s disease-like cytokine profile (52). These forms are 
not well described and documented in current practices therefore it is essential to predefine 
the objective for using this type of experimental colitis to better understand the 
pathophysiology of the chosen type of colitis.  

5.3 Dinitrobenzene sulfonic acid (DNBS) model of colitis 

Features of DNBS-induced colitis 

DNBS is another hapten which can be used to induce colonic inflammation. DNBS is less 

hazardous than TNBS and can be used safely in a well-ventilated room with personnel 

wearing protective gloves, clothing and goggles. The DNBS model produces acute and 

chronic inflammation and ulceration in the colon similar to TNBS (61). The feature of colitis 

in this model is similar to that of the TNBS model with bloody diarrhea and significant loss 

of body weight evident. Four days after DNBS administration, colon damage was 

characterized by areas of mucosal necrosis and neutrophil infiltration and the colon 

appeared flaccid and filled with liquid stool. The macroscopic inspection of caecum, colon 

and rectum showed presence of mucosal congestion, erosion, and hemorrhagic ulcerations 

(62). The histopathological features included a transmural necrosis and oedema and diffuse 

leukocyte cellular infiltrate in the submucosa. 

In comparison, rats treated with DNBS have no granulomas whereas about half of the TNBS 

rats have granulomas (53). In the rat, DNBS causes an overproduction of nitric oxide (NO) 

due to induction of inducible nitric oxide synthase (iNOS), which contributes to the 

inflammatory process (63-64). As in the TNBS model, DNBS induces a strong inflammatory 

response and a significant increase in myeloperoxidase (MPO) activity compared to controls 

(60). Since TNBS is no longer available in the United States, DNBS can be an alternative 

compound for inducing experimental models of ulcerative colitis. 

Induction of TNBS colitis 

Colitis was induced by using a technique of acid-induced colon inflammation as described 

by Morris et al., (53). In fasted rats lightly anaesthetized with isoflurane, a 3.5 F catheter was 

inserted into the colon via the anus until the splenicflexure was reached (approximately 8 

cm from the anus). 2,4-dinitrobenzenesulphonic acid (DNBS; 25 mg/rat), dissolved in 50% 

ethanol (total volume, 0.8 ml) was administered as an enema. While other investigator have 

modified the method that was first described (53), where colitis was induced in lightly 

anesthetized mice by an intra-rectal injection of 3 mg of DNBS in 100 µl of 50% ethanol, 

delivered 3 cm into the colon via a polyethylene catheter (65). 
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Mechanism of action 

DNBS and TNBS both bind to proteins, but TNBS has an additional active nitro group and 
binds more readily at lower concentrations. However, DNBS is more selective and binds 

only to the ε-amino group of lysine (61). 

5.4 Oxazolone-induced colitis 

Features of oxazolone-induced colitis 

A number of experimental models of colitis have been proposed. However, there are 
limited colitis models that have a Th2 profile. The oxazolone-induced colitis model is Th2-
mediated and has important implications for investigating the pathogenesis and 
treatment of ulcerative colitis (66-67). The administration of low intrarectal doses of a 
inducing agent (oxazolone) in ethanol to BALB/c mice every 7 days for 10 weeks showed 
that in the first 3 weeks of this treatment, the mice lost about 10-15% of their starting 
weight and exhibited ruffled coats, hunched posture, and restricted movement. During 
this period 10-15% of animals died. Over the next 3 weeks the surviving mice regained 
weight and no longer exhibited obvious signs of chronic illness. Repetitive administration 
of intra-rectal ethanol alone led to a weight loss of up to 5% in the early phase of the 
disease (68).  

Induction of oxazolone colitis 

The oxazolone-induced colitis model is established by painting the skin with 0.2 ml 3% 
oxazolone in 100% ethanol on days 0 and 1 followed by intrarectal administration of 0.15 ml 
1% oxazolone in 50% ethanol on day 7 (66). However, another study (51) used carmellose 
sodium/peanut oil as a non-irritating vehicle in place of ethanol and found that the 
oxazolone-induced colitis model was still a reproducible animal model of human colonic 
inflammation. The oxazolone challenge resulted in rapid development of inflammation 
characterized by diarrhoea, mild ulcerations, hyperemia, infiltration of inflammatory cells, 
epithelial damage and submucosal edema. 
More recently, oxazolone-induced colitis has been established as a chronic model via 
repeated intrarectal administration of oxazolone in ethanol. This allows the model to be 
used to define specific features of the inflammatory milieu that favors tumor development 
(69). Chronic oxazolone-induced colitis begins as severe inflammation with corresponding 
weight loss, which transforms into chronic inflammation and partial weight recovery. The 
inflammation is marked by the rapid increase in the production of IL13 in the lamina 
propria and the appearance of NK T cells, which are both immunologic features of acute 
oxazolone-induced colitis (69). The authors also concluded that the chronic oxazolone-
induced colitis model supports epithelial tumour development induced by administration of 
a carcinogenic agent, azoxymethane. 

Mechanism of action 

Similar to the TNBS-induced colitis model, oxazolone, a hapten, induces delayed-type 
hypersensitivity and contact hypersensitivity reactions to subsequently induce 
inflammation. Oxazolone-induced colitis has been suggested to be dependent on the 
presence of IL13 producing invariant NK T cells (70). Thus the oxazolone-induced colitis 
model is one of the few models suitable for the study of the Th2 dependent immune 
response in intestinal inflammation. 
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5.5 Carrageenin-induced colitis 

Carrageenan is a high molecular weight sulfated polygalactan, derived from several species 

of red seaweeds (Rhodophyceae) including Gigartina, Chondrus, and Eucheuma (71). The most 

common forms of carrageenan are lambda (λ), kappa (κ), and iota (ι) (71). Carrageenans are 

used by the food industry to improve the texture of food products by thickening, stabilizing, 

or emulsifying dairy products, salad dressings, infant formulas, processed meat, soy milk, 

and other food products (72-73). Its use has increased markedly during the last half century, 

and is known to induce inflammation in rheumatological models and in intestinal models of 

colitis (71).  

Features of carrageenan-induced colitis 

Early work in animal models has demonstrated that carrageenan may cause gastrointestinal 

pathology, including ulcerations and tumours of the gastrointestinal tract (71-72). In guinea 

pigs deprived of ascorbic acid, the oral administration of degraded E. spinosum carrageenan 

induced mild to moderate colitis, while E. cottonii carrageenan consistently induced severe 

colitis. The severe colitis induced by E. cottonii in scorbutic animals markedly affected the 

mid and distal colon and showed histological changes similar to human ulcerative colitis 

(74). Delivery of 10% carrageen (degraded carrageenan) for 10 days in the drinking water of 

CF1 mice induced bloody diarrhoea and pericryptal inflammation, and produced marked 

dilatation of the cecum and ascending colon (75). Histologically, the mucosa was 

characterized by distorted crypt architecture, inflammatory infiltration of the lamina 

propria, and ulceration, conditions which were more pronounced in the proximal colon but 

were also present in the distal colon. 

Induction of carrageenan colitis 

Carrageenan causes a reproducible inflammatory reaction and remains a standard chemical 

for examining acute inflammation and effects of anti-inflammatory drugs. With or without 

sensitizing the animals with carrageenan, colitis is induced by supplementing the drinking 

water of 2-10% degraded carrageenan (74-75).  

Mechanism of action 

Carrageenan has been widely used to induce inflammation in experimental models of colitis 

in animal models (72-73), that resemble human ulcerative colitis. NFκB is a key determinant 

of the intestinal epithelial inflammatory cascade and occupies a central role in the 

transcriptional activation of pro-inflammatory genes (76). Furthermore, Borthakur et al. (71) 

suggested that activation of NFκB in the intestinal cells following carrageenan exposure is 

largely attributable to an increase in Bcl10. Bcl10 resides in the cytoplasm which relays 

receptor mediated signals to activate NFκB (77). 

6. Genetic-induced colitis 

More recently, various experimental animal model of colitis, especially transgenic mice 

models with spontaneous colitis (78-79) have been reported and demonstrated that T 

cells are necessary for involvement and initiation of intestinal inflammation. New 

genetically engineered animals with spontaneous colitis, such as IL2 and IL10 knockout 

mice models, are promising tools for further understanding of the etiology of intestinal 

inflammation. 
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6.1 IL2 knockout mice 

When reared and maintained under conventional specific pathogen-free conditions, IL2 

deficient (IL2-/-) mice spontaneously develop disorders of the hemopoietic and immune 

system characterized by anemia, lymphocytic hyperplasia, progressive loss of B cells, and 

disturbances in bone marrow hemopoietic cells. Animals that survive more than 8-9 weeks 

of age also develop a chronic, non-granulomatous inflammation of the colonic and caecal 

submucosa and mucosa. (80). 

Features of IL2 deficiency-induced colitis 

The histopathology of colitis observed in IL2-/- mice seems to vary depending on the 

method of induction and the location of animal housing. The original paper (80) described 

the features of spontaneously developing colitis in IL2-/- mice which included ulceration, 

crypt abscesses, destruction of the mucosal layer with epithelial dysplasia, but also 

mononuclear cell infiltration of the mucosa and submucosa. However, the histopathology of 

immunization-induced colitis and spontaneously-developing colitis in mice reared at the 

NIH animal facility, seem to resemble human Crohn’s disease (transmural inflammation, 

lymphoid hyperplasia) (81). These findings suggest that the histopathological characteristics 

in these animals may not only be dependent on genetic but also on environmental factors. 

Mechanism of action 

IL2-/- mice reared and maintained under gnotobiotic conditions do not develop intestinal 

lesions (82). Furthermore, colitis that develops in IL2-/- mice under conventional conditions 

suggests a direct result of an abnormal immune response in the colonic mucosa to intestinal 

bacterial flora. It is not known specifically how the absence of IL2 accounts for colitis in IL2-

/- mice and the role this cytokine plays in homeostatic regulation of mucosal immunity. 

However, Baumgart et al. (83) suggests that IL2 is required for the generation and the 

function of a regulatory population of mucosal T cells or is directly involved in preventing 

the development of inflammatory responses to enteric antigens. 

6.2 IL10 knockout mice 

Only a small number of spontaneous models of chronic colitis have been employed by 

researchers to yield detailed information on the penetrance, severity and reproducibility of 

the gut inflammation (84). The most widely used of the gene-targeted models of 

spontaneous colitis is the IL10 deficient (IL10-/-) mouse model. The IL10-/- model is a well 

established Th1-mediated model of transmural colitis (85). IL10-/- mice were generated by 

disrupting the IL10 gene in embryonic stem cells and although the mice were considered to 

have normal lymphocyte development and antibody response, growth retardation and 

anemia were observed (86). 

Features of IL-10 deficiency-induced colitis 

Mice with targeted disruption of the IL10 gene develop spontaneous pancolitis and caecal 
inflammation by 2-4 months of age (85). Histopathological examination of the colons 
obtained from mice with active disease show many of the same characteristics as those 
observed in human inflammatory bowel disease. The initial changes in intestinal 
inflammation consisted of small, focal infiltrates of inflammatory cells in the lamina propria 
with minimal or no epithelial hyperplasia (85, 87). Inflammatory infiltrates consisted of a 
mixture of lymphocytes, plasma cells, and macrophages with smaller numbers of 
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neutrophils and eosinophils. IL10-/- mice also develop ulcers and crypt abscesses, exhibit 
epithelial hyperplasia, mucin production is reduced, an increased numbers of mitotic 
figures were observed and increased expression of major histocompatibility complex class II 
molecule were also observed in the intestinal epithelial cells (85-87). As mice become older, 
inflammation involved the submucosa or less frequently became transmural (87).  

Mechanism of action 

It has been demonstrated that there is a lower number of caecal bacteria observed before 
colitis (7 weeks of age) in IL10-/- compared to C57Bl/6J mice. This suggests differences in 
intestinal bacteria that might be associated with the genotype which could contribute to the 
development of colitis in this mouse model (88). 

6.3 CD45RB
Hi

 T cell transfer model of colitis 

CD4+ T cells can be separated on the basis of their CD45RB expression into populations 
expressing high (CD4+ CD45RBHi) or low (CD4+ CD45RBLo) levels of this antigen (89). CD4+ 
CD45RBHi T cells isolated via fluorescence activated cell sorting from spleens of donor mice 
transferred to immuno-deficient SCID or RAG1/2-/- recipient mice cause a wasting 
syndrome with transmural intestinal inflammation primarily in the colon starting 5-10 
weeks after cell transfer (90-91).  

Features of CD45RBHi T cell transfer model of colitis 

Initial lesions consisted of minimal multifocal or diffuse inflammatory cell infiltrates in the 
lamina propria.In mice with more severe colitis, changes were diffuse and sometimes 
transmural (90). Inflammatory infiltrates consisted of macrophages and lymphocytes, 
accompanied by smaller numbers of neutrophils and eosinophils (90-91). Occasional 
multinucleated giant cells and ulcers were observed, whereas crypt abscesses were sparse 
(90-91). Epithelial changes included hyperplasia with lengthening and branching of glands, 
mucin depletion, increased numbers of mitotic figures, and enhanced levels of major 
histocompatibility complex class II molecule expression on intestinal epithelial cells (90). 

Mechanism of action 

Recipient mice repopulated with the CD+CD45RBLo T cell subset or both populations 

(CD+CD45RBHi and CD+CD45RBLo T cell subsets) do not develop colitis. CD25+FoxP3+ cells 

within the CD+CD45RBLo population account for the prevention of colitis since depletion of 

CD25+ cells from CD45RBLo cells abrogates their colitis prevention potential (92). Treg cells 

which produce IL-10 due to co-culture with IL-10, prevent the onset of gut inflammation 

and antigen-specific immune responses when transferred together with pathogenic CD4+-

CD45RBHi T cells. Furthermore, SCID mice administered both CD45RBHi T cells and Treg 

cells together with anti-IL10 receptor antibodies develop colitis (93). These results suggest 

that the progeny of CD45RBHi T cells mount a pathogenic Th1-like response in the colon of 

these immuno-deficient mice. 

6.4 Which colitis model to use? 

As increasingly more sophisticated experimental colitis models are being described and 
characterized, researchers have the potential to exploit the unique potential of each model to 
ask specific questions. No single experimental model of colitis recapitulates all of the 
pathogenic and clinical features of human ulcerative colitis, however each animal model has 
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contributed to our understanding of the mechanisms underlying initiation and perpetuation 
of chronic intestinal inflammation. 

7. Current treatments for ulcerative colitis 

At present, conventional therapies or pharmaceutical treatments have remained the 
mainstay of treatment for most patients suffering from ulcerative colitis. However, these 
treatments are variably effective with significant adverse effects and approximately 25 to 
40% of patients will eventually require colectomy (94). The aim of these treatments is to 
induce and maintain the patient in remission. First line therapy for mild to moderate 
ulcerative colitis comprise of anti-inflammatory drugs containing 5-aminosalycylic acid (5-
ASA), such as oral and rectal mesalamine. Sulfasalazine, the archetype for this class of 
medications, is cleaved upon reaching the colon releasing mesalamine. Second generation 5-
ASA medications include olsalazine and balsalazide (95). Approximately 60 and 80% of 
patients are adequately treated with these medications and the remainder who exhibit 
severe ulcerative colitis are treated with a combination of corticosteriods (prednisolone). 
Immunosuppressives or immunomodulators such as a azathioprine and mercaptopurine 
that treat severe inflammatory bowel disease and/or administered to patients who have 
inadequate response to corticosteroids can be beneficial but there is little information about 
their effectiveness in treating ulcerative colitis and are also associated with risks of infection 
and malignancy (96). Up to 20% of inflammatory bowel disease sufferers discontinue 
immunosuppressant therapy because of side effects (97). Biologic drugs that interfere with 
the inflammatory response such as the anti-TNFǂ agent infliximab can be effective in 
inducing remission for ulcerative colitis patients that are refractory to initial treatments.  
It has been demonstrated that colonic bacteria may initiate inflammation of inflammatory 
bowel disease (97-98) and a combination therapy with antibiotics has been shown to offer 
significant benefit in ulcerative colitis (99-100). Most clinicians use antibiotics as an adjuvant 
therapy for severe ulcerative colitis despite relatively few trials conducted on their use. 
Although recent advances have been made in understanding the etiology and 
pathophysiological mechanisms underlying the pathogenesis of ulcerative colitis, the 
problem still remains for patients refractory to conventional treatments or not responding 
and being able to maintain remission effectively with maintenance treatments (101).  
Currently, there is no cure for ulcerative colitis and there is increasing evidence that 
alternative therapies (102-103) may provide some insights into developing a potential 
successful treatment. The remainder of this chapter will focus on the potential therapeutic 
interventions which target various aspects of the etiology of ulcerative colitis including the 
use of pre- and probiotics to manipulate the gut microflora and molecules that mediate the 
action of inflammatory cells (104). Biological therapies for ulcerative colitis will not be 
covered in this chapter as this area is reviewed by Rutgeerts et al. (105). 

8. Novel therapies for ulcerative colitis 

8.1 n-3 fatty acids 

Over the years, dietary n-3 fatty acids have gained a reputation in preventing and treating 

several disorders including cardiovascular diseases, rheumatoid arthritis and Alzheimer’s 

disease by way of anti-inflammatory, antithrombotic, antiarrythmic, hypolipidemic and 

vasodilatory activities (101, 106-111). It has been shown in human and animal studies that 
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these n-3 fatty acids have potent immunomodulatory and anti–inflammatory effects by 

inhibiting the production of inflammatory mediators, eicosanoids, PGE2 and LTB4 and 

cytokines, TNFǂ and IL1ǃ (112). It stands to reason that supplemental n-3 fatty acids might 

therefore be beneficial in treating or preventing relapse in chronic inflammatory diseases 

such as ulcerative colitis (113).  

Animal studies 

There have been numerous studies utilising experimentally induced colitis animal models to 
define the role of dietary n-3 fatty acids in disease prevention and progression. In a severe 
combined immunodeficient (SCID) mouse model of colitis, Whiting et al. (114) found that 
dietary n-3 fatty acids reduced clinical colitis and colonic immunopathology by decreasing 
the synthesis of proinflammatory cytokines, reducing myeloid cell recruitment and 
activation, and enhancing epithelial barrier function and mucosal wound healing 
mechanisms. Li et al. (115) demonstrated within the TNBS rat colitis model that rats 
pretreated with n-3 fatty acids showed significant attenuation of colonic injury and 
protection. Compromised epithelial barrier in ulcerative colitis by chronic immune cell 
activation might be explained by the altered expression and distribution of tight junction 
proteins in tight junction membrane microdomains of the intestinal mucosa, and n-3 fatty 
acids have been shown to positively affect this altered expression and distribution (115). 
Many studies have shown adiponectin, a protein hormone produced and secreted primarily 
by adipocytes and more recently by colonic myofibroblasts to play a beneficial role in 
ulcerative colitis due to it’s anti-inflammatory effect (116-118). Interestingly, Matsunaga et 
al. (119) who found a decrease in adiponectin expression in DSS-induced colitic mice also 
found a further decrease in adiponectin expression in colitic mice fed with n-3 fatty acids, 
which could have contributed to the observed exacerbated colitis for this group. This is in 
contrast to the beneficial effects other studies have shown regarding dietary n-3 fatty acids 
and colitis.   

Human studies 

Fish oil is the best source of n-3 fatty acids. Although numerous studies have focused on 
oral supplementation in patients with inflammatory bowel disease which ultimately results 
in the incorporation of n-3 fatty acids into the gut mucosal tissue thereby modifying 
inflammatory mediators (120-121), the evidence of clinical benefits remains unclear due to 
conflicting results. A systematic review of the effects of fish oil in human ulcerative colitis by 
MacLean et al. (113) found significant improvements in clinical scores in three studies at one 
or more time points relative to the comparative study arm. Studies that were restricted to 
patients with ulcerative colitis (122-123) reported a statistical improvement in the 
endoscopic score with fish oil relative to comparative treatment. Together with studies that 
observed induction of remission (122, 124), prevention of relapse (124-128) and the 
requirement for immunosuppressive agents (122, 124, 129). MacLean et al. (113) deduced 
that there were insufficient data to draw any conclusions. However, the observed efficacy of 
fish oil delivered by enteric coated capsule on reducing steroid requirements did warrant 
more attention (113). 
Another systematic review and meta-analyses by Turner et al. (101) looked at the efficacy 
and safety of n-3 fatty acid or fish oil therapy in maintaining remission in inflammatory 
bowel disease. Of the nine studies eligible for inclusion, only three involved ulcerative 
colitis. There was no difference in the relapse rate between the n-3 fatty acid therapy (fish 
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oil) and control groups. Pooled analysis showed an increase in diarrhea and symptoms of 
the upper gastrointestinal tract in the n-3 fatty acid group (fish oil) suggesting troublesome 
side effects.  In short, there was insufficient data to recommend the use of n-3 fatty acids for 
the maintenance of remission of ulcerative colitis. Given the biologic rationale and the 
benefit of n-3 fatty acid therapy derived from tissue samples and animal models, it is 
difficult to explain the lack of clinical benefit in inflammatory bowel disease, although it has 
been suggested that the dosing regimen may be inadequate or the formulation not optimal 
(101). Enterically coated n-3 fatty acid that has a timed release of 60 minutes upon ingestion 
was found to be more beneficial with the lowest adverse events compared with other timed 
release points and triglyceride compounds (130). In conclusion, further studies are 
warranted to address appropriate dosing and delivery systems of fish oil for the treatment 
of ulcerative colitis. 

8.2 Plant derived therapies 

Other novel therapies that possess anti-oxidant, anti-inflammatory and immuno-
modulatory properties have been investigated in experimentally-induced animal colitis 
models and to some extent in human trials for the treatment of ulcerative colitis. Persistent 
ulcerative colitis is associated with a 10-fold increased risk of colorectal cancer (131) and 
therefore limiting chronic colonic inflammation will appear to reduce this risk. 

Resveratrol 

Resveratrol is a natural polyphenol found in fruits and vegetables and abundantly in grapes 
and red wine. Sanchez-Fidalgo et al. (132) investigated the protective/preventive effects of 
dietary resveratrol in the DSS-induced colitis mouse model. There were significant 
attenuations of clinical signs of colitis such as loss of body weight, diarrhea and rectal 
bleeding. All mice fed the resveratrol diet survived and finished the treatment while mice 
fed the standard diet showed a 40% mortality rate. Resveratrol caused significant reductions 

in TNFα and IL1ǃ and an increase in IL10, an anti-inflammatory cytokine. Expression of 
prostaglandin E synthase-1 (PGES-1), cyclooxygenase (COX-2) and iNOS, proteins involved 
in the inflammatory response, were also reduced. Cui et al. (133) investigated the 
protective/preventive effects as well as the chemopreventive properties of dietary 
resveratrol in the chronic DSS-induced colitis mouse model. Resveratrol was shown to 
ameliorate colitis in a dose dependant manner and reduce the tumour incidence by 60%. The 
number of tumours per animal was also reduced. Resveratrol is tolerated at high doses and 
a diet rich in this polyphenol could represent a novel approach to treating ulcerative colitis 
and preventing colon cancer associated with ulcerative colitis. 

Andrographis paniculata 

Andrographis paniculata, a member of the plant family Acanthaceae, is used extensively in 
Asian countries, Sweden and Chile for the treatment of various inflammatory and infectious 
diseases. HMPL-004, an aqueous ethanol herbal extract of Andrographis paniculata has 

been shown to inhibit TNFα and IL1β and prevent colitis in animal models. A pilot human 
clinical trial conducted by Tang et al. (134) investigated the efficacy and safety of HMPL-004 
in patients with mild to moderate ulcerative colitis. In comparison to a parallel group 
treated with the standard first line therapy, mesalazine, there were no significant differences 
observed for clinical remission and disease activity. 13% of patients treated with HMPL-004 
and 27% treated with mesalazine had at least one adverse event although the majority of 
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events were not strongly linked to the study medications. In conclusion, HMPL-004 could be 
an efficacious alternative to mesalazine for the treatment of ulcerative colitis. 

Black raspberries  

As well as exhibiting ability to limit the inflammatory response in cell culture (135-137), 

black raspberries (BRB) have the highest concentration of antioxidant polyphenols 

compared to other dark berries (138-139). These antioxidants (anthocyanins and ellagic acid) 

have been shown to scavenge free radicals, increase expression of detoxification enzymes 

and increase the capacity of the cell to absorb radicals (140-143). A study conducted by 

Montrose et al. (144), the first to utilise a DSS-induced mouse model of ulcerative colitis to 

explore the effects of freeze-dried BRB on disease severity, demonstrated the high anti-

inflammatory potency of BRB. Dietary BRB markedly reduced colonic injury to the 

epithelium and tissue levels of TNFǂ and IL1ǃ were suppressed. Biomarkers of oxidative 

stress remained unaffected by BRB treatment, however the findings still demonstrated 

potent anti-inflammatory properties which support a possible therapeutic role for the 

treatment of ulcerative colitis. 

American ginseng 

American ginseng (AG), a natural herb, has been shown to improve mental performance 

and end points associated with conditions such as cardiovascular disease, cancer and 

diabetes (145-147). In a study by Jin et al. (148), AG extract was mixed in with the chow of 

DSS-induced colitic mice and given before and after the onset of colitis. Results showed 

prevention and treatment of colitis with AG along with the downregulation of iNOS and 

COX-2 and p53 (induced by inflammatory stress). In part, leukocyte activation in colitis 

causes mucosal and DNA damage which was shown to be inhibited by AG in vitro and in 

vivo. A dysfunctional intestinal immune system is a major mechanism by which chronic 

inflammation occurs in ulcerative colitis and defects in apoptosis of mucosal inflammatory 

cells is critical in the pathogenesis of ulcerative colitis. Another study conducted by Jin et al. 

(149), showed that AG extract can drive apoptosis of inflammatory cells through the p53 

mechanism in vitro which is consistent with dietary AG protecting against DSS-induced 

colitis in the mouse model. 

Ginkgo biloba 

Ginkgo biloba extract (EGB) is derived from the green leaves of the Gingko biloba tree and 

has been used extensively in conditions associated with inflammatory mediators such as 

acute pancreatitis, central neural system disorders, heart and intestine injury/reperfusion 

injury (150-152). Zhou et al. (153) investigated the mechanism by which EGB ameliorates 

inflammation in TNBS-induced colitic rats and its effects on the production of inflammatory 

mediators. Four weeks of EGB therapy provided protection in ulcerative colitis possibly by 

radical scavenging and down regulating some of the inflammatory mediators including 

TNFǂ, NFκBp65 and IL6. All inflammatory mediators in this study were affected by EGB in 

a dose dependant manner resulting in the improvement of ulcerative colitis. Another study 

by Kotakadi et al (154) showed that EGBs have anti-inflammatory properties in vitro and 

prevent and treat colitis in the DSS-induced mouse model. The mechanism underlying the 

treatment of ulcerative colitis is in part due to the ability of EGB to drive CD4+ effector T cell 

apoptosis which is fundamental in regulating many chronic inflammatory and autoimmune 

diseases (155-156).  
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8.3 Other potential therapies 

Crocetin 

Crocetin, a carotenoid compound derived from Crocus sativus L (saffron) has been used to 
treat different diseases (157).  In the TNBS-induced colitis mouse model, it was revealed that 
treatment with 50 mg/kg/day intragastrically for 8 days significantly ameliorated diarrhea, 
inflammation and colonic tissue injury (158). The mechanisms by which crocetin exerted 
these beneficial effects is through the reduction of neutrophil infiltration and MDA in the 
inflamed colon. Increased production of NO by iNOS and activation of NFκB, known to 
play a central role in the early steps of inflammation were also reduced. With further 
investigation, crocetin could prove to be an alternative therapy or perhaps be used 
alongside conventional therapies. 

Pomegranate 

Punica granatum or the pomegranate is used in traditional medicine in China, India, Europe 
and South Africa. Studies have shown that pomegranate has protective properties against 
liver fibrosis and ultraviolet-induced pigmentation (159-160). Furthermore, it has 
antibacterial, anti-inflammatory, anti-diabetic effects and is cardio-protective (161-163). 
Singh et al. (164) explored the effect of Punica granatum extract and its component, ellagic 
acid, in the DSS-induced colitis mouse model and found significant attenuation of colonic 
inflammation. Mast cell degranulation, which releases various inflammatory mediators, 
including histamine, has been implicated in the pathogenesis of ulcerative colitis and the use 
of mast cell stabilizers have been documented to attenuate the severity of ulcerative colitis in 
humans (165). Singh et al (164) found that Punica granatum extract and its ellagic acid 
component had anti-ulcerative effects comparable to sodium cromoglycate (mast cell 
stabilser) and sulphasalazine (standard first line treatment for ulcerative colitis). 

Helminths 

Immune-mediated diseases such as inflammatory bowel disease are becoming more 
prevalent in highly developed and industrialized countries (166). It is suggested that the 
adoption of hygienic lifestyles in these countries have contributed to a decline in helminths 
or parasitic worm infections (166). Epidemiological studies (167-169) have suggested that 
helminths may provide protection against some immune-mediated diseases and the 
eradication may in fact promote these diseases. Animal studies have shown helminth 
protection by promoting regulatory immune responses. In a DNBS-induced mouse colitis 
model Melon et al. (170) showed that mice infected with the tapeworm, Hymenolepis 
diminuta, increased the production of IL4 and IL10 that protected them from colitis, in 
contrast to steroid treatment (dexamethasone) which offered little benefit. Khan et al. (171) 
also showed protection with the nematode, Trichinella spiralis, in the TNBS- induced colitis 
mouse model. However, it was found that helminth infection enhanced disease severity in 
the oxazolone induced colitis mouse model (172). In a human randomized crossover trial 
conducted by Summers et al (173), a significant percentage of patients with ulcerative colitis 
receiving the porcine whipworm, Trichuris suis, improved when compared to placebo. As 
well, the treatment seemed to be safe with no reported side effects. In conclusion, there is 
potential value for helminth therapy for specific inflammatory bowel disease patients 
however further studies are needed to fully understand the mechanisms underlying the 
pathophysiology of ulcerative colitis and the type of helminth therapy required  to avoid the 
possibility of disease aggravation. 
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8.4 Prebiotics 

There is a diverse and large population of micro-organisms naturally living on the mucosal 
surfaces or in the lumen of the human intestine. The number of resident bacteria increases 
along the small bowel, with the colon being the most heavily populated region of intestine. 
The microbiota refers to the particular ecological niche of a host individual in which the 
community of living micro-organisms is assembled (174). A healthy or balanced microbiota 
has been considered to be predominantly saccharolytic and comprises of significant 
numbers of lactobacilli and bifidobacteria (175). A prebiotic can be defined as a non-
digestible food ingredient that exerts a beneficial effect on the host through the selective 
stimulation and metabolism in the intestine, thereby improving host health (176). Inulin and 
oligofructose are prebiotic carbohydrates that resist digestion by intestinal and pancreatic 
enzymes in the human gastrointestinal tract and are fermented by bacteria living in the 
intestinal ecosystem. Prebiotics increase saccharolytic activity within the gut and selectively 
promote the growth of bifidobacteria when administered in significant amounts (177-178). 

Animal models 

Videla et al. (179) investigated the effectiveness of inulin, which stimulates intracolonic 
generation of butyrate and growth of lactic acid bacteria, in the protection against colitis. In 
a rat model of DSS-induced colitis, oral inulin treatment significantly reduced colonic tissue 
MPO activity and mucosal release of inflammatory mediators (179). Histologically, oral 
inulin treatment reduced the extent of damaged mucosa, decreased the severity of crypt 
disruption and lowered histological damage severity scores compared with controls. Inulin 
induced an acidic environment from the caecum to the left colon and increased counts of 
Lactobacilli (179). 
Fructooligosaccharides (FOS) increase the growth of lactic acid bacteria and promote 
butyrate and lactate production, therefore possessing beneficial properties for intestinal 
inflammation (180). Intracolonic TNBS-induced colitic rats treated with intragastric 
infusions of FOS resulted in a reduction of pH and inflammation assessed by MPO activity. 
Furthermore, FOS treatment increased lactate and butyrate concentrations including lactic 
acid bacteria counts in the caecum (180). 
Madsen et al. (181) investigated the role of colonic aerobic luminal bacteria and lactobacillus 
species in IL10 gene-deficient mice that spontaneously develop colitis. These knockout mice 
have a decreased level of lactobacillus species in the colon and an increase in adherent and 
translocated bacteria in the neonatal period. Normalising Lactobacillus levels via oral 
lactulose therapy reduced colonic mucosal bacteria and prevented colitis (181). Similarly, 
lactulose treatment has demonstrated protective effects against DSS- and TNBS-models of 
colitis (182-183). Rumi et al. (182) demonstrated that lactulose therapy ameliorated DSS-
induced colitis in a dose-dependent manner and significantly reduced the severity of colonic 
lesions and decreased MPO activity. Furthermore, Camuesco et al. (183) indicated that 
lactulose treatment in TNBS-induced colitis exerted a preventive anti-inflammatory effect as 

evidenced by a significant reduction of MPO activity, a decrease of colonic TNFα and 
leukotriene B4 production and an inhibition of colonic inducible nitric oxygen synthase 
expression, which is a result of the inflammatory process (183). Furthermore, this effect was 
associated with increased levels of lactobacilli and bifidoacteria species in colonic content 
when compared with untreated colitic rats (183). Overall, the experimental evidence 
provides significant indications of the anti-inflammatory and beneficial properties of 
prebiotics in settings of ulcerative colitis. 
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Clinical studies 

Recently, Casellas et al. (184) tested the effect of oligofructose-enriched inulin, which 

promote the selective growth of saccharolytic bacteria with low inflammatory potential, in 

patients with active ulcerative colitis. Eligible patients in the randomized, placebo-

controlled double blinded pilot trial had been previously in remission with mesalazine as 

maintenance therapy or no drug, and presented with a relapse of mild to moderate activity 

(184). Nineteen subjects were treated with mesalazine and randomly allocated to receive 

either oligofructose-enriched inulin or placebo for two weeks. Patients treated with 

oligofructose-enriched inulin displayed a reduction of faecal calprotectin, a protein found in 

granulocytes that resist metabolic degradation (184).  

8.5 Probiotics 

Probiotics are defined as living, non-pathogenic bacteria which are able to exert beneficial 
therapeutic or physiologic activities when administered in sufficient numbers (185). Bacteria 
can be derived from various sources such as cultured food and the normal human 
microbiota. Lactobacillus or bifidobacterium genera are the most common strains of 
probiotic bacteria and have also been identified from enterococcus, streptococcus, and 
lactococcus species, while certain non-pathogenic Escherichia strains are also classified as 
probiotics (186). Furthermore, genetic engineering of probiotic strains can ensure the release 
of bioactive compounds16. The beneficial effects of probiotics are highly species and strain 
specific and therefore the mechanism of action is not well understood. Common 
mechanisms of action identified in probiotics include improvement of epithelial barrier 
function, inhibition of pathogenic enteric bacteria and manipulation of host 
immunoregulation (185). 

In vitro models 

The effects of probiotics have been investigated using recent comprehensive cell culture 

experiments which are model systems of inflammation and infection similar to ulcerative 

colitis. Schlee et al. (187) investigated the ability and mechanism by which different 

probiotic lactobacillus strains, including L. Acidophilus PZ1138, L. Fermentum PZ-1138, E. coli 

Nissle 1917 and VSL#3 (a combination of 8 bacterial strains), stabilize gut barrier function via 

induction of the anti-microbial peptide human beta defensin-2 (hBD2) gene. The expression 

of hBD2 gene by probiotic bacteria was both time- and dosage-dependent, and the promoter 

activation by probiotics was completely inhibited via deletion of NFκB and activator 

protein-1 (AP1) binding sites on the hBD-2 promoter (187). Furthermore, hBD-2 induction 

was also hindered by the inhibition of mitogen-activated protein kinase (MAPK). Overall, 

Schlee et al. (187) demonstrated that lactobacilli and the VSL#3 bacterial combination 

strengthened intestinal barrier functions via the up-regulation of hBD-2 through induction 

of MAPKs and pro-inflammatory pathways including NFκB and AP1. In support of the 

finding of Schlee et al. (187), E. coli Nissle 1917 was further demonstrated to strengthen 

intestinal barrier function using a polarized T84 epithelial monolayer model to monitor 

barrier disruption by E.coli infection (188). Co-incubation of the enteropathogenic E. coli 

strain with E. coli Nissle 1917 or addition of E. coli Nissle 1917 following infection abolished 

barrier disruption and restored barrier integrity (188). DNA-microarray analysis of T84 

cells incubated with the enteropathogenic E. coli identified altered expression of over 300 

genes, including the distribution of zonla occludens-2 (ZO-2) protein and of distinct 
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protein kinase C isotypes, all of which are involved in the maintenance of epithelial tight 

junctions (188).  

Furthermore, E. coli Nissle 1917 has been shown to exert anti-inflammatory effects on human 
colonic epithelial cells in vitro (189). Enzyme-linked immunosorbent assays and real-time 

quantitative PCR demonstrated that E. coli Nissle 1917 treatment in vitro suppressed TNFα-
induced IL8 transcription and production and inhibited IL8 promoter activity. These 
properties, in conjunction with the hBD2 results from Schlee et al (187) and T84 epithelial 
monolayer model results from Zyrek et al. (188) contribute to the reported efficacy in the 
treatment of inflammatory bowel diseases. Due to the unfortunate idiopathic nature of IBD, 
pre-treatment with probiotics may be more beneficial for either genetically susceptible 
individuals or to help IBD sufferers maintain remission.  

Animal models 

Several murine models of intestinal damage have been utilised to assess the efficacy of 
probiotics in vivo (190-192). Ukena et al. (191) orally administered the probiotic E. coli Nissle 
1917 to BALB/c mice with acute dextran sulphate sodium (DSS)-induced colitis. The 
probiotic treatment resulted in an upregulation of the tight junction molecule ZO-1 in 
intestinal epithelial cells at both mRNA and protein levels and reduced intestinal barrier 
permeability (191). Additionally, infiltration of the colon with leukocytes was ameliorated in 
E.coli Nissle 1917 inoculated mice (191). Furthermore, Grabig et al (193) demonstrated that 
E. coli Nissle 1917 treatment in a wildtype DSS-induced colitis mouse model significantly 
reduced pro-inflammatory cytokine expression, myeloperoxidase (found in the intracellular 
granules of neutrophils) activity and disease activity. The inability of E. coli Nissle 1917 to 
exert its beneficial effect in the absence of toll-like receptor (TLR)-2 and TLR4 signaling 
using TLR2 and TLR4 knockout mice indicates that the amelioration of experimentally-
indiced colitis in mice was elicited via TLR2- and TLR4-dependent pathways (193). This 
finding highlights the fact that E. coli Nissle 1917 may improve the ability of TLRs, which are 
key components of the innate immune system that trigger antimicrobial host defence 
responses, to recognise microbial pathogens, improving the host immune response. 
Lee et al. (194) demonstrated that oral L. plantarum HY115 treatment to mice with DSS-
induced colitis inhibited colon shortening and MPO production. Furthermore, L. plantarum 

HY115 repressed the mRNA expressions of IL1β, TNFα and IFNγ, including colonic IL1 beta 
and IL6 protein expression and reduced the degradation activities of chondroitin sulphate 
and hyaluronic acid of intestinal bacteria (194). Similarly, Schultz et al. (195) immune-
mediated colitic (induced by IL10 deficiency) mice treated with L. plantarum had decreased 

levels of mucosal IL12, IFNγ and immunoglobulin G2a (195). 
A study by Peran et al. (196) assessed the intestinal anti-inflammatory effects of probiotics 
with immunomodulatory properties in the TNBS rat model of colitis. L. casei, L. acidophilus 
and bifidobacterium lactis elicited intestinal anti-inflammatory effects, evidenced 
macroscopically by a decreased colonic weight/length ratio and biochemically, all 
probiotics restored colonic glutathione levels, depleted due to oxidative stress (196). 
Interestingly, each probiotic displayed a unique anti-inflammatory profile; bifidobacterium 

lactis reduced colonic TNFα production, L. casei decreased colonic COX-2 expression and L. 
acidophilus reduced leukotrine B4 production and MPO activity (196). These findings 
indicate that probiotics exert their beneficial effects via different mechanisms. Menard et al. 
(197) inoculated gnotobiotic mice with bifidobacterium longum NCC2705 and nine 
bifidobacterium strains isolated from infants’ faecal flora to investigate the effect of these 
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probiotics on the Th1/Th2 balance. Immunomodulatory responses including induction of 

the Th1 and Th2 cytokines, increased ileal IL10, IL4, TNFα and IFNγ secretions and TGFβ1 
gene expressions, were observed from only specific strains (197). It was concluded that 
bifidobacterium’s capacity to stimulate immunity is species specific however its influence on 
the orientation of the immune system is strain specific.  

Clinical trials 

To date, probiotics have been investigated in several clinical trials as treatments for 
ulcerative colitis, with conflicting results. However, there have been relatively few large, 
placebo-controlled, randomised and double-blinded clinical studies to test the efficacy of 
probiotics in humans (198). Tsuda et al. (199) evaluated the efficacy of the probiotics 
combination therapy BIO-THREE, comprising of Streptococcus faecalis T-110, Clostridium 
butyricum TO-A and Bacillus mesentericus TO-A, in patients with mild to moderate distal 
ulcerative colitis. Patients ingested nine BIO-THREE tablets per day for four weeks. Clinical 
symptoms and endoscopic findings were evaluated as ulcerative colitis disease activity 
index and faecal samples were collected to assess the microflora, pre- and post-treatment 
(199). Remission was observed in nine patients (45%), response in two patients (10%), no 
response in eight patients (40%) and worsening in one patient (5%) (199). Interestingly, 
terminal restriction fragment length polymorphism (T-RFLP) analysis indicated that the 
principal alteration in microflora was an increase in bifidobacteria (199); an unusual finding 
as no bifidobacteria was administered in the probiotic supplement. 

8.6 Zinc 

Zinc is ubiquitous in biologic systems and has abundant and varied functions. The zinc 
atom has the ability to participate in readily exchangeable ligand binding in addition to 
assuming a number of coordination geometries to provide functional needs to other ligands 
(200). Zinc has numerous central roles in DNA and RNA metabolism (201). Zinc 
metalloenzymes and zinc-dependent enzymes have been identified and are involved in 
nucleic acid metabolism and cellular proliferation, differentiation and growth (202). Zinc 
also plays a regulatory role in apoptosis (203), with cytoprotective functions that suppress 
major pathways, leading to programmed cell death. 

Animal studies 

Zinc administration has been shown to suppress the development of DSS-induced colitis in 
mice as indicated by decreased clinical disease activity index and histological severity scores 
(204-206). Ohkawara et al. (205) demonstrated that polaprezinc (N-(3-Aminopropionyl)-L-
histidinato zinc), an anti-ulcer drug, suppresses DSS-induced colitis in mice, partly through 
inhibition of production of pro-inflammatory cytokines, suppression of neutrophils 
accumulation and cytoprotection by overexpression of heat shock proteins. This is 
consistent with Iwaya et al (207) whom reported that marginal zinc deficiency exacerbated 

colitis by modulating the immune response through the impairment of TNFα production 
and TNFR1 expression, rather than through the impairment of epithelial barrier function. 
Another potential mechanism of action of zinc in ulcerative colitis has been suggested by 
Luk et al. (208) by reducing inflammation, inhibiting mast cell degranulation and histamine 
release. In addition, high dose of zinc has been shown to improve tight-junction 
permeability (209). A novel zinc compound, Z-103, a chelate compound consisting of zinc 
ion and L-carnosine, was utilized to assess the protective effect against colonic damage 
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induced by TNBS in rats (210). The authors demonstrated that treatment with Z-103 reduced 
he inflammatory responses induced by TNBS, suggesting Z-103 may be as effective against 
TNBS-induced colitis. 
Metallothioneins (MTs) are zinc-binding proteins whose overexpression may lead to 
sequestration of zinc ions. We have shown that the absence of MT was beneficial in the 
suppression of colitis in MT knockout (MT-/-) mice receiving DSS, suggesting that the 
presence of MT may have promoted the induction of colitis. Similarly, as indicated by the 
histological severity scores, MT wildtype mice appeared more susceptible to DSS-induced 
colitis compared to MT-/- animals (204). Furthermore, Bruewer et al. (211) reported that MT 
overexpression may represent an important early step in the development of carcinogenesis 
of ulcerative colitis independent of p53 expression. This should be further investigated in 
the long term as an independent cancer risk factor in ulcerative colitis. 

Human studies 

The only double-blind controlled trial of oral zinc sulphate as adjuvant treatment in 
idiopathic ulcerative colitis or proctitis in relapse was reported by Dronfield et al. (212). In 
this trial, 51 patients were treated with zinc and the clinical and sigmoidoscopic 
improvement was similar in the treated and placebo group. Furthermore, it has been shown 
that zinc administration decreased peripheral blood natural killer cell activity in 13 
inflammatory bowel disease patients, with stable disease and mild-moderate disease 
activity, in a double-blind randomized cross-over trial (213). 

9. Conclusions 

Animal models of acute and chronic intestinal inflammation are indispensable for our 
understanding of the pathogenesis of ulcerative colitis and Crohn’s disease, even though the 
etiology of inflammatory bowel disease remains unclear. In conclusion, administration of 
the above novel therapies have potential benefits in suppressing clinical features, 
histological pathology scores and inflammatory indicators in colitis in experimental models. 
There are four types of experimental animal models of colitis; spontaneous colitis models, 
inducible colitis models with normal immune system, adoptive transfer models in immuno-
compromised hosts, and genetically engineered models (knockout and transgenic mice). 
There is not one single experimental model of colitis that incorporates all the clinical and 
histopathological characteristics of human inflammatory bowel disease, however, 
information gained from studies using these different types of colitis models has revealed 
three fundamental underlying principles. Firstly, chronic intestinal inflammation is mainly 
mediated by T cells. Secondly, commensal enteric bacteria are required to initiate and 
achieve intestinal inflammation and finally, the genetic background of the animal is a 
pivotal factor of disease onset and severity (84). Using these different models of colitis, in 
vitro and in vivo studies have shown a variety of novel therapies including, pre- and 
probiotics, n-3 fatty acids, plant bioactives (resveratrol, black raspberries, ginseng, ginkgo) 
and helminthes which have potential benefits in suppressing clinical features, histological 
pathology scores and inflammatory indicators. These novel therapies act on specific 
mechanisms of action such as intestinal barrier function, mucosal immune function and 
intestinal microbiota, however, there are no single therapies that have a multifunctional 
mechanism of action to prevent and treat ulcerative colitis. Newer therapies which use a 
combination of agents to restore gut homeostasis should be more promising and closer to 
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achieving long-term remission of ulcerative colitis. Thus, further studies are warranted to 
determine the mechanism of action by which these agents are able to protect against 
ulcerative colitis and to explore whether combination therapy could produce synergistic 
effects. 
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were documented by well known clinicians, researchers, and world wide authorities in their fields. This book on

UC will be a valuable addition to each doctor's library interested in this subject, or for physicians dealing with

patients suffering from this disease. Authors have also included figures and diagrams to depict their point, and

to easily reach the minds of the readers in the simplest way.
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