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1. Introduction  

As used in plant pathology, the term "biological control" or its short form “biocontrol” 

commonly refers to the decrease in the inoculum or the disease-producing activity of a 

pathogen accomplished through one or more organisms, including the host plant but 

excluding man (Baker, 1987). Biological control of plant pathogens naturally occurs at some 

level in all agricultural ecosystems, sometimes to a degree where symptoms of disease are 

noticeably reduced. Thousands of potential microbial biocontrol agents have been isolated 

from agricultural fields and crops during research over the last 80 years, yet only a few are 

in commercial use. Recently, public health and safety concerns about the environmental 

impact of chemical pesticides have led to consideration of biological control as a natural 

approach to maintaining crop health. Despite environmental incentives and strong research 

efforts, commercialization of biocontrol agents has been slow to evolve. The momentum of 

the chemical industry is difficult to shift, and fermentation processes tend to be more 

expensive to operate than synthetic chemical processes. Yet there is a demand for biological 

control products, especially in the organic and agricultural niche markets, where there is no 

efficient chemical competitor. Indeed, the tide has been turning and a recent story in 

Chemical and Engineering News (Reisch, 2011) has indicated that during the last decade, 

the growth in sales of biological pest control agents has significantly outpaced that of 

chemicals. However, given this market demand, the fundamental methods of economical 

large-scale production and application of biological control agents are still lacking and need 

to be developed. Many aspects of biocontrol agent production and development represent 

untrodden territory in the progression of industrial fermentation technology beyond its 

well-established food and pharmaceuticals niche. Distinguishing them from traditional 

fermentation products, biocontrol agents must not only be produced in high yield but must 

also meet the following quality criteria: high (near 100%) retention of cell viability with 

maintenance of crop compatibility and consistent bioefficacy during several months of 

storage.  
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This article will focus on the control of post-harvest fungal pathogens, which present unique 
opportunities but also challenges. Though accurately determining the extent of losses is 
difficult and few reports are available, it has been estimated that post-harvest decay accounts 
for an approximate 25% loss of fresh commodities (USDA, 1965). Biological control using 
microbial antagonists can be an appropriate tool for managing post-harvest disease problems, 
especially in crops which are stored under controlled temperatures and high relative 
humidities. Such controlled storage environments represent a luxury not found when 
attempting to introduce microbial biological control agents into the comparatively harsh, 
variable environments found at the infection courts of fungal pathogens of field-grown plants. 
In recent years, a considerable research attention has focused on biologically controlling rots of 
fruits post harvest (Janisiewicz, 1988, 1991, 2002). In this chapter, research examples will be 
reviewed to illustrate the challenges and strategies of developing processes to manufacture 
and deliver biological agents for post-harvest potato disease control. Concepts to be covered 
will include the following: market opportunities, choosing pathosystems for biological control, 
enrichment techniques to enhance new strain discovery, strategies for ranking strains for 
commercial suitability, mode of action, production considerations, market-broadening 
functionality, co-cultivation of strains as the next generation biocontrol product, high-
throughput screen concept for optimizing biocontrol agent performance from production to 
delivery, remaining knowledge gaps, and future investigations. 

2. Opportunities and barriers for biopesticides on post-harvest potatoes 

Market success is most likely to occur if the biological control agent is developed to combat 

pest problems which have no chemical pesticide solution or which exist in situations where 

chemical applications are prohibited. For example, in the U.S., organic farming is the fastest 

growing sector of agriculture. Higher commodity prices for these products and regulations 

restricting the use of chemical pesticides improve the chances for successful commercialization 

of natural biological tools in these markets (Behle et al., 1999). Once effectiveness is established 

in this sector of production, the transition to other sectors could follow. 

Currently, a major incentive favoring the development of biopesticides is the ease of federal 

registration in the United States. The Environmental Protection Agency (EPA) has established 

a Biopesticide Pollution and Prevention Division (BPPD) to manage accelerated registration of 

biopesticides. In the mid 1990's, the average duration for registration of a biopesticide was 12 

months compared with 36 months for all new chemical pesticide registrations (Medugno et al., 

1997), and the cost of registration of a chemical was often more than eight times that of a 

biological (Woodhead et al., 1990). However, despite regulatory incentives, relatively few 

biological control agents have reached the market place, often due to one or more of the 

following pitfalls: (a) poor choice of pathosystem for biological control; (b) relatively few 

candidate microorganisms available for testing; (c) microbes are selected based on the results 

of an assay that does not replicate field conditions; and (d) the amenability of microbes to 

commercial development is excluded as a selection criterion. 

3. Fusarium dry rot — An appropriate pathosystem for biological control 

Characteristics of a pest problem, or “pathosystem,” suitable to a biological control 
approach include: exploitable weakness(es), existence in an environment favorable to 
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introduced antagonists, availability of few or no control options, and causative of significant 
economic loss to agriculture. Our experience on discovery and development of biological 
control agents first began with the need to find an alternative to thiabendazole (TBZ) for the 
biological control of Fusarium dry rot, an important post-harvest disease of potatoes. Dry 
rot is caused primarily by Gibberella pulicaris (Fr.:Fr.) Sacc. (anamorph: Fusarium sambucinum 
Fuckel) (Boyd, 1972). The fungus is a serious pathogen in potato tuber storages and can 
produce trichothecene toxins (Desjardins & Plattner, 1989) implicated in mycotoxicosis of 
humans and animals. Yield losses attributed to dry rot in storage range from 6 to 25% with 
up to 60% of tubers affected in some cases (Secor & Salas, 2001). Measures for controlling 
this disease in storage are limited. Resistance to TBZ, the only chemical registered for post-
harvest use on tubers for human consumption, is now widespread among strains of G. 
pulicaris (Desjardins et al., 1993; Hanson et al., 1996; Kawchuk et al., 1994; Secor et al., 1994). 
High levels of resistance to Fusarium dry rot in potato cultivars and breeders’ selections are 
not apparent (Pawlak et al., 1987) and all commonly grown potato cultivars are susceptible 
(Reiners & Petzoldt, 2004). Therefore, the potential for damage is high enough to justify the 
economic risk of developing a biological control agent for prevention of dry rot disease 
losses. A major weakness of the etiology of this pathogen is that it requires a wound in order 
to infect, and tubers are able to heal wounds in less than 2 weeks in storage. Additionally, 
the pathogen operates in an environment that is favorable to introduced antagonists in that 
tuber storage temperatures are uniform and relative humidities are high (>90%), a feature 
true for many post-harvest pathosystems. 

4. Discovery of biocontrol agents amenable to commercial production  

Main objectives driving the development of our techniques to discover beneficial biological 
control agents for dry rot suppression involved two phases: (1) rapid screening of large 
numbers of microbes using enrichment techniques to concentrate desirable populations and 
a crop-relevant bioassay to identify useful biological control agents; (2) rating potentially 
useful agents based on the challenges of manufacturing and delivery. 

4.1 Rapid isolation from large populations via enrichment techniques  

Ideally biological control agent isolation should begin in areas where biological control is 
naturally occurring in the field, as opposed to areas where it is not. Evaluating a maximal 
number of putative biocontrol agents increases the chance of discovering an effective strain. 
Isolating prospective biocontrol agents from appropriate tissues and under appropriate 
environmental conditions helps to insure that the microbial antagonists isolated will be well 
adapted to survival and activity on the specific tissues requiring protection. Application of 
these concepts resulted in our rapid isolation of 18 putative biological control agents for 
suppression of Fusarium dry rot. The steps of our method are illustrated in Figure 1 
(Schisler & Slininger, 1994). Specifically, gamma irradiation-sterilized field soil samples 
were first enriched with potato tuber periderm, inoculated with a small amount of field soil 
obtained from potato fields with low dry rot disease incidence, and incubated for 1 week at 
15°C. The microorganisms most adept at rapid growth on the nutrients found in potato 
periderm and at wound sites would make up the majority of microbes in each recolonized 
soil sample. Next, conidia of G. pulicaris were added to the microbially recolonized soils, and 
2 days later, aqueous soil pastes of each soil were applied to wounded potato tubers to 
initiate a realistic disease bioassay. After incubation 4 weeks at 15°C, tubers were scored for 
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dry rot disease development. Those wounds that developed inconsequential disease were 
highly likely to contain microbial communities able to survive on potato periderm, to 
colonize potato tissue, and to suppress disease development. Consequently, clear wounds 
were excavated and dilution plated on nonselective media that allowed growth of bacteria, 
fungi, actinomycetes, and yeasts to allow isolation of broad microbial diversity. Using this 
process, over 350 isolated colonies were obtained from clear wounds receiving microbial 
communities transferred via live soil samples from 35 locations of low disease incidence. To 
screen out only those strains participating in dry rot suppression, each isolate was 
suspended in buffer with conidia of the pathogen and inoculated to a fresh potato wound. 
After 3 weeks at 15°C, tubers were checked for the presence of disease and only 18 of the 350 
isolates demonstrated significant dry rot suppression relative to controls inoculated only 
with pathogen. It is notable that all of the 18 beneficial isolates were identified as Gram-
negative bacteria.  

 

Fig. 1. Isolation of microbial antagonists effective in suppressing Fusarium dry rot of 
potatoes (Schisler & Slininger, 1994). 

4.2 Screening potential strains for commercial suitability 

Researchers involved in the discovery and development of biological control agents may 

speed biocontrol agent commercialization by using an end-process-oriented screening 

approach. This concept refers to designing the screen to select strains based on their 

performance under conditions simulating key challenges typically posed by mass 

production (Standbury & Whitaker, 1984). Since the U.S. industry standard for the 

manufacture of microbial products is batch liquid cultivation, it was chosen as the method 

of producing the 18 dry rot antagonistic bacteria for further evaluations. Compared with 
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synthetic chemical processes, fermentation processes are relatively expensive, a 

circumstance which has largely limited the exploration and development of biotechnology 

to the food and pharmaceutical fields (Van Brunt, 1986). Primary cost factors include raw 

materials, utilities, labor, and capital investment. Since the culture medium is central to 

fermentation process design and economics, our selection of the most commercially 

promising strains was based on their ability to grow rapidly and to high yield on a variety 

of liquid culture media and then to accomplish biocontrol upon harvest and delivery to 

potatoes. These considerations were combined to select efficacious dry rot antagonists that 

could be produced with reduced fermentor volume and cultivation process costs. The steps 

in this screening process are illustrated in Figure 2 based on the procedure of Slininger et al. 

(1994).  

 

Fig. 2. Two dimensional liquid culture method of ranking commercial development 
potential of biological control strains using relative performance index, RPI (Slininger et al. 
1994). 

Strains with the nutritional flexibility to grow rapidly and achieve large bioefficacious 

populations were sought by challenging with glucose media ranging in richness from a 

minimal medium (with nitrogen supplied by urea) to a semidefined complete medium (with 

casamino acids and growth factors) to an undefined medium (with added yeast extract, 

peptone, and tryptone). Such flexibility is very desirable because it allows process 

optimization choices to be driven by materials cost and convenience rather than by the 

fastidiousness of the microorganism. Consistent with utilities considerations, shake-flask 

cultures were provided a low oxygen transfer coefficient (Kla~0.5 min-1) and moderately 

warm temperature (25°C) without pH control since most soil-borne microorganisms survive 

and grow with temperatures ranging from 7 to 30°C and within a fairly broad pH range 

www.intechopen.com



 
Fungicides for Plant and Animal Diseases 

 

146 

from 5 to 8. Harvested bacteria were then bioassayed using the wounded potato assay 

described above to assess efficacy. 

For each bacterium, a relative performance index (RPI) was calculated based on each kinetic 

parameter, such as specific growth rate and cell yield. Given parameter values normally 

distributed across the isolate group tested, the value of F = (X - Xavg)/s ranges from –2 to +2. 

Here, X designates a single value observed per bacterium, and Xavg and s are the average 

and standard deviation, respectively, of all values observed for the isolate group. Using the 

formula RPI = (F + 2) x 100/4, data corresponding to each parameter type were translated to 

dimensionless indices, scaled from 0 to 100, which reflected relative bacterial performance. 

For a given production trial, overall relative kinetic performance indices were calculated for 

each bacterium: RPIkinetics = (RPIgrowth rate+ RPIcell yield)/2. Similarly, a relative performance 

index based on biocontrol efficacy was calculated for each bacterium using log (disease 

rating) data: RPIefficacy = (2-F) x 100/4. Note that the term (2-F) is used instead of (2+F) 

because efficacy improves as disease rating decreases. Thus, RPIefficacy and RPIkinetics are 

provided a common dimensionless 0-100 scale that allows both data types equal weight in 

the overall performance assessment. As a result of this screening method (Fig. 2), referred to 

as “two-dimensional liquid culture focusing” (2DLCF), the 18 bacterial dry rot antagonists 

were ranked with respect to potential for commercial development, 6 strains being in 

statistical significance group A (Table 1). 

Dogma calls for screening the efficacies of prospective biocontrol agents grown under 
conditions as similar as possible to what is expected to be encountered in nature. Thus, 
“promising” isolates have been traditionally selected based on efficacy following growth 
on solidified media. Only after extensive laboratory, greenhouse, and field tests of these 
promising isolates has mass production in liquid culture become a concern. Indeed our 
data have shown that the traditional one-dimensional screen based on bioefficacy of agar-
grown isolates selects a different set of top-performers than does the commercial process-
oriented 2DLCF screen, and the traditional screen is likely to miss selection of the most 
commercially useful biocontrol agents because it fails to recognize that liquid culture 
competency varies widely among microbes. Our experiments have illustrated this by 
showing that the top-performing strains selected via the 2DLCF screen were often ranked 
the worst performing strains in the traditional one-dimensional screen of one-fifth tryptic 
soy broth agar-grown isolates (Table 1) (Slininger et al., 1994). If our goal is to develop 
bacteria with a commercial future as biocontrol agents, then early screening strategies 
must reflect the production requirements of the commercial setting. Since liquid culture is 
the industrial standard for microbial production, liquid cultivation should be the method 
of biocontrol agent production during early screening. In addition, a two-dimensional 
assay examining liquid culture growth kinetics as well as product biocontrol efficacy is 
needed because, our results have shown that isolate performance ranking based on 
kinetics is not necessarily reflective of the performance ranking based on the biocontrol 
efficacy, yet both of these features are critical to process economics and commercial 
success. The processes shown in Figures 1 and 2 have resulted in identification of strains 
able to suppress dry rot under commercial storage conditions (Slininger et al., 1996a; 
Schisler et al., 1998a; Schisler et al. 2000b), and recently have been similarly applied to 
find additional novel bacterial strains with commercial potential for post-harvest 
biocontrol of pink rot (Adiyaman et al., 2011).  
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Isolate 
number 
(NRRL-) 

RPI1 
Overall2 
RPIEff.Kin 

Commercial 
potential 
group2 

Rank3 
Efficacy 

Growth 
kinetics 

B-21050 67.3 65.0 66.2± 4.9 A 1 (18) 
B-21128 66.3 64.9 65.6± 5.6 A 2 (13) 
B-21133 67.2 62.3 64.8± 3.6 A 3 (11) 
B-21134 66.3 60.3 63.3± 4.4 A 4 (15) 
B-21132 56.9 69.4 63.1± 5.6 AB 5 (14) 
B-21102 62.1 60.8 61.4± 7.4 ABC 6 (16) 
B-21136 58.9 57.6 58.2± 6.9 BC 7 (8) 
B-21101 56.9 58.8 57.9± 4.9 BC 8 (11) 
B-21103 58.4 55.7 57.0± 4.4 C 9 (5) 
B-21053 59.2 54.2 56.7± 5.7 C 10 (6) 
B-21135 58.7 53.8 56.2± 6.0 C 11 (17) 
B-21129 53.0 56.5 55.1± 11.6 CD 12 (8) 
B-21104 63.2 35.9 49.5± 10.5 DE 13 (4) 
B-21048 47.1 45.4 46.2± 11.1 DE 14 (1) 
B-21137 42.8 46.7 44.7± 11.5 DE 15 (6) 
B-21051 60.9 25.1 43.0± 12.2 E 16 (1) 
B-21105 38.4 28.3 33.3± 7.1 F 17 (10) 
B-21049 31.2 23.8 27.5± 9.6 F 18 (1) 

1RPIEfficacy and RPIKinetics each indicate the average of six RPI values determined from two independent 
productions of cells on minimal defined, semi-defined, and undefined liquid media. 
2Commerical potential groupings were arrived at by applying a two-tailed t analysis to determine the 
95% confidence intervals associated with each mean RPIEff,Kin as indicated by ± values. Means that are 
not significantly different are designated with the same group letter. 
3Numbers in parenthesis indicate rank based on traditional screen of efficacy of one-fifth trypticase soy 
agar-grown antagonists. 

Table 1. Use of relative performance indices (RPI) to accomplish a two-dimensional 
assessment of isolate commercial potential based on growth and efficacy of cells produced 
in liquid culture (Slininger et al. 1994). 

4.3 Multi-dimensional screens to assess commercial potential and robustness 

The concept of early commercial-process-oriented screening brings us closer to rapid 
development of marketable biocontrol agents; however, it is likely that liquid cultivation of 
biocontrol agents will be followed by formulation, drying, storage, and reconstitution prior 
to potato application. These steps are necessary to preserve cells for convenient storage and 
handling in the time between production and application, and represent other features or 
“challenges” that could be built into an expanded multi-dimensional strategy for selecting 
the most commercially promising strains. Furthermore, in the natural potato storage 
environment, many different strains of Fusarium sambucinum pathogen are present to 
challenge biocontrol strains, and in addition, the biocontrol agent will be expected to 
perform well on many different potato cultivars, different crop field histories, and different 
wound environments. Schisler et al. (2000) examined performance variability as a function 
of pathogen and cultivar, and in addition to nutritional flexibility to support robustness, 
biocontrol strains with better overall performance against multiple strains of pathogen on 
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multiple cultivars could be selected using the dimensionless relative performance index 
concept. The ability of biocontrol agents to solve multiple pest control problems is another 
potential screening dimension. For example, our dry rot antagonistic bacteria have also been 
shown to be able to suppress late blight (Slininger et al., 2007), pink rot (Schisler et al. 2009), 
and sprouting of stored potatoes (Slininger et al., 2000, 2003). The ability to expand the 
market to multiple pest control applications is expected to enhance commercial 
development potential of a given biocontrol product and is a recurring theme influencing 
the progression of our research as will be discussed at various points later in this account.  

5. Bioautography as a screen for the presence of antibiotic production 

A variety of potential mechanisms have generally been proposed to be involved in the 
biological control of plant diseases, including antibiosis, induced disease resistance, 
competition, parasitism, and predation. Works by Fravel (1988), Huang (1991), Loper & Buyer 
(1991), Schisler (1997), and Wilson et al. (1994) are useful starting points for information on 
mechanisms of biological control and microbial interactions potentially of relevance to dry rot 
disease development. Antibiosis, induced disease resistance, and competition are all possible 
mechanisms of control for any of our most effective strains of bacteria. However, with regard 
to mode of action, our studies have focused on the influence of microbial metabolites on G. 
pulicaris. In petri plate assays against the dry rot pathogen, G. pulicaris, our 18 bacterial cultures 
showed varying degrees of inhibition of fungal growth. When extracts from liquid cultures 
were tested by thin-layer chromatography-bioautography (TLC-BA), a useful technique which 
correlates antimicrobial activity with the presence of antibiotics (Lazarovits et al., 1982; 
Homma & Suzui, 1989), all of the cultures tested were shown to produce at least one 
compound which inhibited the growth of G. pulicaris (Burkhead et al., 1995).  

Antifungal metabolites from Enterobacter cloacae strain S11:T:07 NRRL B-21050, which was 
highly ranked by the 2DLCF procedure (Table 1, Figure 2), have been isolated from 
Sabouraud maltose broth culture and identified as phenylacetic acid (PAA), indoleacetic 
acid (IAA), tyrosol (TSL), and tyrosol acetate, which are recognized to be derived from 
aromatic amino acids (Burkhead et al., 1998; Slininger et al., 2004). Consequently in later 
experiments when these compounds were assayed in cultures of strain S11:T:07 (B-21050) 
grown in three different growth media, it was not a surprise to learn that relative 
composition of the antifungal compounds produced varied as the culture nutrition, 
especially amino acid composition, was varied. Antifungal and sprout regulatory 
bioactivities of these compounds (alone and in combination) were further investigated using 
our wounded potato assay of dry rot suppressiveness and a cored potato eye assay of sprout 
inhibition. Assay results showed the antifungal activity of IAA, PAA, and TSL to suppress 
dry rot infection of wounded potatoes and indicated optimal efficacy when all three 
metabolites were applied in combination. Furthermore, dosages of IAA resulting in disease 
suppression, also resulted in sprout inhibition. These results suggest the potential for 
designing culture production and formulation conditions to achieve a dual purpose 
biological control agent able to suppress both dry rot and sprouting (Slininger et al., 2004). 

6. Expanding the available market with broad spectrum biological control 

The observation of many antifungal compounds per each dry rot suppressive isolate and the 
finding of diverse functional activities ranging from antifungal antibiotics to plant 
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regulatory hormones of isolated antifungal compounds suggested the fruitfulness of 
exploring the spectrum of use as a means of improving the market draw for our biological 
control agents. 

6.1 Sprout inhibition 

Current practices for reducing sprouting in storage could also benefit from microbial 
alternatives. Because of processing demands, over 54% of the annual potato harvest must be 
stored at 7º to 13ºC, a temperature range above that needed for ideal sprout control (ASAE, 
1990). Chemical sprout inhibitors are applied to over 50% of the potato harvest to extend 
storage time. The potato industry has become very dependent on CIPC (1-methylethyl-3-
chlorophenylcarbamate) as the most efficient sprout inhibitor with fewest detrimental side-
effects on process potato quality (Lewis et al., 1996). However, recently, the tolerance for 
residues of CIPC has been reduced to 30 mg/kg (EPA 738-R-96-023, 1996) because of CIPC’s 
persistence in the environment and potato tissue and concerns about its toxicity (Mondy et 
al., 1992). In the U.S.A., CIPC is the only synthetic chemical registered for post-harvest 
sprout control of stored potatoes, and it is the most widely used sprout inhibitor world-
wide. Due to environmental and health safety concerns, the use of CIPC has become more 
restricted--opening a potential market for alternative sprout control methods. Consequently, 
six of our bacteria strains, exhibiting superior dry rot suppressiveness in previous research, 
were grown in two different liquid culture media and sprayed on Russet Burbank potatoes 
to assay sprout suppresiveness (Slininger et al., 2000, 2003). In growth chamber and pilot 
experiments repeated at two storage sites in two successive years, all six isolates 
demonstrated significant sprout control capabilities when applied after growth on at least 
one of the culture media supplied. Of the six strains tested, Pseudomonas fluorescens S11:P:12 
(NRRL B-21133) and two strains of Enterobacter sp., S11:T:07 (NRRL B-21050) and S11:P:08 
(NRRL B-21132), exhibited highest relative performance levels with sprout control being 
statistically similar to that of 16.6 ppm CIPC thermal fog after 4-5 months storage. 

6.2 Late blight  

Several of our top six dry rot suppressive strains have now also been found to significantly 
reduce late blight infection of stored potatoes (Slininger et al., 2007). Consistent with our 
observations of indoleacetic acid (IAA) as a major antifungal product produced by one of 
our dry rot suppressive strains (Slininger et al., 2004), Martiniez Noel et al. (2001) also 
previously showed that IAA attenuates disease severity in potato-Phytopthora infestans 
interactions and inhibits pathogen growth in vitro. Phytopthora infestans, the causative agent 
of the potato late blight disease, infects tubers through eyes or wounds, primarily via 
zoospores washed into soil from sporangia on infected leaves. Harvested tubers can become 
infected during washing (Fairclough et al., 1997) and during storage and handling (Lambert 
et al., 1998). Phytopthora infestans is considered to be the most significant pathogen of the 
crop worldwide (Fry et al., 2001) and historically was the cause of the Great Potato Famine 
of the late 1840’s. The introduction of US-8 genotypes of P. infestans has coincided with an 
increase in severity of potato late blight in North America. As alternatives to chemical 
fungicides, our 18 bacterial strains patented as biological control agents of both sprouting 
and Fusarium dry rot were cultivated in 3 liquid media and screened in wounded potato 
bioassays for their ability to suppress late blight incited by P. infestans (US-8, mating type 
A2) (Slininger et al., 2007). Washed or unwashed stationary-phase bacteria were mixed with 
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fungal zoospores to inoculate potato wounds. One-fifth of the 108 BCA treatments screened, 
reduced late blight by 25-60%, including among other strains Pseudomonas fluorescens 
S22:T:04 (showing most consistency), P22:Y:05 (NRRL B-21053), S11:P:12 and Enterobacter 
cloacae S11:T:07, the later known to produce IAA. Small-scale pilot testing of these four 
strains, alone and in combination, was conducted under conditions simulating a commercial 
application. All four treatments significantly reduced disease; and unwashed bacteria 
outperformed those washed free of culture broth, indicating a role of metabolites such as 
IAA. Disease suppression ranged from 35% up to 86% the first test year and from 35 to 91% 
the second year. Highest overall performance rankings significantly above the control were 
achieved by the following strains in culture broth: four-strain mix > P. fluorescens S22:T:04 > 
P. fluorescens S11:P:12. Combined with previous demonstrations of dry rot and sprout 
suppression, the consistent late blight control by these strains and strain mixtures suggests 
the commercial utility of a single treatment for broad spectrum suppression of post-harvest 
potato diseases and sprouting. 

6.3 Pink rot  

Pink rot disease occurs in potato growing regions around the world and is caused primarily 
by the oomycete Phytophthora erythroseptica Pethybr. Losses of over 50% of the total harvest 
can result from tuber contamination by either pink rot or late blight (Secor & Gudmestad, 
1999). All underground portions of potato plants can be infected. Root and stem infections 
can result in plant wilting and death. Though some evidence indicates that there is limited 
genetic diversity in North American isolates of P. erythroseptica (Peters et al., 2005), 
infections initiated after tuber harvest are difficult to control. Most commercially grown 
potato cultivars in Canada and the United States are susceptible to pink rot and breeding 
efforts against this disease have been minimal (Peters et al., 2004). Mefenoxam, a 
phenylamide fungicide that formerly was effective in reducing the disease in storage, has 
lost much of its effectiveness (Taylor et al., 2006) due to widespread genetic resistance 
(Taylor et al., 2002) and the stability of the resistance (Abu-El Samen et al., 2005). The use of 
various salts (Mills et al., 2005), foliar applications of phosphorous acid (Johnson et al., 2004) 
and the oomycete fungicides “zoxamide” and phosphite (Miller et al., 2006) have reduced 
symptoms of P. erythroseptica on tubers. Additional disease reduction technologies are still 
needed for organic markets and to deter the development of resistance to chemical 
fungicides. Tubers generally become infected in the field via stolons previously infected by 
germinating oospores (a thick-walled spore resulting from sexual recombination) but 
zoospores (motile, asexually produced spores) or encysted zoospores of the pathogen also 
can infect tuber eyes, lenticels and cracks and cuts that result from tuber harvesting 
operations--infection courts theoretically protectable using microbial antagonists. Therefore, 
10 of our bacterial antagonists that reduce Fusarium dry rot, late blight, and/or sprouting in 
storage were assayed for efficacy against pink rot on tubers of cultivars Russet Burbank and 
Russet Norkotah (Schisler et al., 2009). Antagonist strains were grown in a semidefined 
liquid medium, diluted to ~3 x 108 cfu/ml, individually combined with zoospores of P. 
erythroseptica, and used to inoculate shallow puncture wounds on tubers. Data from full 
factorial experimental designs with 10 levels of antagonist, 2 levels of cultivar, and 2 levels 
of inoculum age after inducing zoospore liberation from sporangia indicated that all factors 
influenced the size of pink rot lesions that developed internally around wound sites (P < 
0.05). In two different sets of experiments, Enterobacter cloacae strain S11:T:07 reduced lesion 
size more than the other antagonists (19% and 32% reduction versus the control) though 
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Pseudomonas fluorescens S11:P:14, Pseudomonas sp. S22:T:04, and Enterobacter sp S11:P:08 also 
significantly reduced disease. Lesion size was greater on Russet Norkotah than Russet 
Burbank tubers (42.3 and 26.5 mm, respectively), but cultivar did not influence antagonist 
performance. 

7. Co-cultivation of strains — The next generation 

As reviewed above, Pseudomonas fluorescens strains S11:P:12, P22:Y:05, and S22:T:04 and 
Enterobacter cloacae strain S11:T:07 have been documented as top strains to suppress four 
important storage potato maladies—dry rot, late blight, pink rot, and sprouting. These 
strains are known to differ from one another in their range of antibiotic production, 
substrate utilization, oxygen requirement, and growth temperature optima. They are also 
known to differ from one another in ability to inhibit sprouting or suppress disease on 
various potato cultivars and when incited by various pathogens. The variety of 
characteristics possessed by the individuals suggests that the successful strain mixtures are 
likely to be more resilient and more apt to provide individuals amenable to colonize potato 
wounds despite the variety of environments and pathogen strains encountered. Indeed, our 
previous experimental results have shown that certain strain pairs applied in combination 
allow greater dry rot suppression than do individual strains (Schisler et al., 1997). In 
subsequent laboratory and field trials, we observed that formulations containing multiple 
strains of our dry rot antagonists performed more consistently than individual strains did 
when subjected to 32 storage environments varying in potato cultivar, harvest year, potato 
washing procedure (microflora exposure), temperature, and storage time (Slininger et al., 
2001). Successful biocontrol strain mixtures often contained both Enterobacter cloacae and 
Pseudomonas fluorescens strains. Several other research groups have reported that mixtures of 
strains can enhance and/or improve the consistency of biological control (among these, 
Pierson & Weller, 1994; Duffy & Weller, 1995; Duffy et al., 1996; Janisiewicz, 1996; Leeman et 
al., 1996; Guetsky et al., 2001; Krauss & Soberanis, 2001; Hwang & Benson, 2002; Schisler et 
al., 2005; Cruz et al., 2006). Thus, the formulation of strain mixtures has the potential to 
provide better, more consistent disease control than single strain formulations. Achieving 
consistent efficacy at each application represents a key advancement toward 
commercialization of any biocontrol product. However, despite the apparent advantages of 
applying strain mixes, the disadvantages for the manufacturer are capital costs, operation, 
maintenance, registration, and management of a different fermentation for each strain used 
in a mix. A potential way around this obstacle is to co-culture the strains together in one 
fermentor. To pursue the co-culture concept, we explored the level and consistency of pest 
control achievable on post-harvest potatoes with the four top multi-functional biological 
control agents Pseudomonas fluorescens strains S11:P:12, P22:Y:05, and S22:T:04 and 
Enterobacter cloacae S11:T:07 (Slininger et al., 2010b). The four bacteria were applied to 
potatoes in the following formats: a) as co-cultures of strains, i.e. multiple strains grown 
together in a single culture, b) as individual strains grown separately in pure cultures, and c) 
as blends of individual strains grown separately in pure cultures. Consistence of biocontrol 
efficacy and broad pest coverage, both major factors influencing the economics of a 
successful product, were addressed in this research. Treatments applied in both laboratory 
wounded potato bioassays and small pilot trials simulating commercial storage conditions 
were tested, as well as treatments challenged with dry rot, late blight, pink rot, and 
sprouting. Experiments were designed to analyze dry rot suppression versus all strain 
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combinations and the combination method (co-culture or blend). Results of a two-way 
analysis of variance of disease with strain composition and combination method showed 
that significantly better dry rot suppression was obtained by co-cultures (30.3 + 2.4% 
relative disease) than by similar strain blends of pure cultures (41.3 + 2.4%) (P < 0.001). 
During a 3-year study, both biocontrol efficacy and consistency were assessed in 16 
laboratory and small pilot trials simulating commercial storages. The 3-strain co-culture of 
Pseudomonas fluorescens strains S11:P:12, P22:Y:05, and S22:T:04 had a lower mean disease 
rating than the blend in 9 of 16 experiments examining control of the 3 diseases and 
sprouting. The co-culture led other treatments in incidences of significant malady reduction 
relative to the control: 14 of 16 attempts for co-culture, 11 of 16 attempts for blend, 10 of 13 
attempts for pure S11:P:12, 8 of 13 attempts for S22:T:04, and 9 of 13 attempts for P22:Y:05. 
Using relative performance indices to rank treatment performance across all experiments, 
the co-culture treatment ranked significantly higher (69th percentile) than the blend (57th 
percentile). A synergy analysis suggested that co-culturing strains stimulated inter-strain 
activities to boost biocontrol efficacy and consistency, a feature not developed in strains 
grown separately and mixed just prior to addition to potatoes. Although the E. cloacae most 
often dominated co-cultures which included it, the other co-inoculated P. fluorescens 
populations persisted at significantly lower levels and apparently synergized the 
performance of the final population in suppressing dry rot disease. 

There are a number of avenues by which the unique environment fostered by co-cultivation 
may improve biocontrol performance, and it is possible that inter-strain communication 
mechanisms are involved. Gram negative bacteria partners have been reported to regulate 
anti-microbial metabolite production via a signaling system referred to as “quorum 
sensing.” Quorum sensing (QS) is mediated by population size and the accumulation of 
acylated homoserine lactones (AHL) which stimulate the bacterial populations to express 
genes responsible for metabolite production (Wood & Pierson, 1996). The local fermentation 
environment of the co-culture may synergize the impact of such signaling on subsequent 
biological control performance. Arrays of AHLs are known to be produced by many 
common rhizosphere bacteria, and they allow not only signaling between cells within a 
strain population, but also between cells of different strain populations (Pierson et al., 1998). 
An AHL-mediated QS system was noted to regulate cell surface properties, which was 
different from that noted for anti-microbial phenazine production (Zhang & Pierson, 2001). 
Soil bacteria have also been shown to degrade AHLs, such as via lactonase activity (Molina 
et al., 2003), a feature suggesting the potential for curative biocontrol of bacterial diseases. In 
addition to metabolite regulation and disease suppression, QS has been implicated in many 
other aspects of biocontrol activity, including: regulation of biofilm formation and 
rhizosphere colonization (Wei & Zhang, 2006); pathogen virulence, motility, and fitness 
(Licciardello et al., 2007); indoleacetic acid (IAA) plant growth hormone synthesis (Müller et 
al., 2009), perhaps pertinent to IAA accumulation by our E. cloacae strain S11:T:07; and 
induced systemic resistance (Pang et al., 2009). 

In addition to producing antifungal and sprout regulatory metabolites, we have recently 
identified the extracellular polysaccharide marginalan production by P. fluorescens S11:P:12 
that not only improves its own survival during desiccation, but also that of co-inhabitants 
P22:Y:05 and S22:T:04 (Slininger et al., 2010a). This feature suggests the community benefit 
of one strain for others grown in association with it. In previous research by others, 
exopolysaccharides (EPS) have been associated with improved desiccation tolerance in 
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Pseudomonas sp. (Roberson & Firestone, 1992) and have been implicated as triggers to 
induced systemic resistance in host plants. It is believed that the EPS matrix slows the rate of 
water loss within the microenvironment, which enables the microbe additional time to make 
the necessary metabolic adjustments needed for survival. Relating to the current research, 
the co-culture of exopolysaccharide-producing Paenibacillus sp. with a Pseudomonas species 
has been reported to extend the shelf-life of the Pseudomonas for potential biopesticide or 
biofertilizer use (Kozyrovska et al., 2005). Thus, in addition to enhancing its biocontrol 
capacity, one of the benefits of our co-culture is that it includes an EPS-productive partner in 
P. fluorescens strain S11:P:12 that may protect bacteria against desiccation stress as they dry 
after application to tuber surfaces. The discovery of other mechanisms benefiting the 
function of the co-culture for consistent and efficacious biological control will likely be 
among the objectives of future research. Meanwhile, the advantages of co-culturing are 
compelling and spur on development efforts: economical production of multiple strains in 
one culture, broad disease spectrum, beneficial interactions of strains, desiccation sheltering, 
enhanced efficacy, and enhanced consistence. 

8. Production considerations 

For each strain of interest, the liquid culture production and biocontrol agent formulation 

processes must be designed to minimize cost and maximize production rate, yield, and 

quality, i.e. bioefficacy, storage stability, and host compatibility. The impact of liquid culture 

conditions (carbon and nitrogen sources, carbon-to-nitrogen ratio, nutrients, temperature, 

pH, dissolved oxygen), microbial physiology (growth state) and metabolites on the qualities 

of the biocontrol product will all need to be considered when designing the production 

processes for successful biocontrol products. To illustrate this, key findings of our research 

on this subject will be reviewed for a variety of our biological control agents under 

development, including but not exclusively our agents for post-harvest potatoes. 

8.1 Manipulation of growth, metabolism, and efficacy with culture conditions 

Prior research has shown that culture environment impacts metabolite accumulations and 
biocontrol agent quality. When strain Pseudomonas fluorescens 2-79 (NRRL B-15132) is 
efficiently delivered to the field in seed coatings, it colonizes the emerging root and 
produces the antibiotic, phenazine-1-carboxylic acid (PCA), as its primary means of 
suppressing take-all disease [incited by Gaemannomyces graminis var. tritici (Ggt)]. Our 
research has shown that metabolites (primarily PCA) present in liquid cultures of strain 2-79 
cause significant germination losses (up to 64%) when included in seed coatings. In mass 
production of seed inocula, complete separation of cells from metabolites adds considerable 
expense and may not be feasible if metabolites are insoluble. For Pseudomonas fluorescens 2-
79, the phytotoxicity of the cell harvest can jeopardize the most economical method of 
application of the biocontrol agent, which is as a wheat seed coating. Our research showed 
that controlling fermentor environment allowed dramatic reduction of phytotoxic 
metabolite production. Fermentation conditions, such as dissolved oxygen, carbon source, 
pH, or temperature, were controlled to allow production of cells in a phytotoxin-free culture 
broth which could be used directly to treat seeds without sacrifice to either seed germination 
or to take-all disease control via PCA production in the rhizosphere (Slininger & Shea-
Wilbur, 1995; Slininger et al., 1997a, 1998).  
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Culture environment also impacts the metabolism and efficacy of our potato protective 
rhizobacteria which have been reported to produce at least one antifungal component per 
strain (Burkhead et al., 1995). Our process for ranking dry rot antagonists relative to 
commercial potential involved growing the strains on three different liquid media of 
varying nutritional richness and then applying them to potato wounds challenged by the 
pathogen. The rank of candidate strains based on the liquid culture growth and also disease 
suppressiveness of the product was found to vary widely with the nutritional environment 
provided during production of the biological control agent. The metabolite profile of 
E. cloacae strain S11:T:07 has been studied in detail, and it is known to produce indoleacetic 
acid, phenyl acetic acid, and tyrosol. Concentrations of these metabolites influence both 
disease suppression and sprouting and vary in cultures with the nutritional environment 
(Burkhead et al., 1998; Slininger et al., 2004). As discussed in section 7 above, the co- 
cultivation of multiple potato malady-suppressive strains gives rise to a unique 
fermentation environment that can yield a biocontrol product with improved efficacy and 
consistency (Slininger et al., 2010b). However, additional process optimization challenges 
may arise in accommodating population yields, storage stability, and efficacy. Although the 
performance benefits of co-cultivations to biocontrol performance had not been documented 
prior to our 2010 report, mixed Pseudomonad cultivations (with other Pseudomonas sp. or 
other genera) have been documented for many other applications (for example, Rodriguez 
& Gallardo, 1993; Kimura & Ito, 2001; Ashby et al., 2005; Kumar et al., 2006). More recently, 
Wu et al. (2009) examined the synergistic growth of a salt tolerant Pseudomonas fluorescens 
Rs-198 with another bacterium Rs-5 in co-culture that may have potential for application  
in fertilizer preparation. Co-cultures of potato-protective P. fluorescens strains could easily  
be designed to develop similar population densities even by simple adjustments in initial 
population densities to compensate for growth differences in strains as evaluated by  
a non-antibiotic selective plating technique described in Slininger et al. (2010b) (Figure 3).  

 

Fig. 3. Growth of P. fluorescens strains S11:P:12, P22:Y:05, and S22:T:04 in duplicate co-
culture fermentor runs (Slininger et al., 2010b).  
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Though still synergistic to efficacy, P. fluorescens populations persisted at significantly lower 
levels than co-cultured E. cloacae S11:T:07 a facultative anaerobe with significant competitive 
advantage as dissolved oxygen is depleted. Growth suppression of multi-species bacterial 
populations in batch cultures by a single dominant strain has been referred to in the 
literature as the Jameson Effect and often involves production of specific inhibitors by one 
species against another. Future work may reveal inoculum population management and 
nutritional or physical environment management techniques that would allow testing the 
biocontrol efficacy of controllable population distributions of multi-genera co-cultures like 
P. fluorescens and E. cloacae strains, allowing investigation into the optimization of relative 
strain densities.  

8.2 Influence of culture and physiological conditions on dry storage survival  

The physiological state of cells upon harvest from the fermentation process was another 
factor that has been observed to influence the drying survival and shelf-life of strain 2-79 
cells coated in 0.5% methylcellulose onto wheat seeds. Cells harvested from growth phase 
cultures (24-48 h) survived the drying process better than cells from stationary phase 
cultures (72-96 h), but stationary phase cells had a longer shelf-life than did growth phase 
cells. Our data suggest that the protective effect of residual sugar still present in growing 
cultures may explain why growth phase cells exhibited better survival of the drying process 
than did stationary cells that were deplete of sugar. The longer shelf-life of the stationary 
phase cells may come about via one or more of a variety of mechanisms that occur as a 
result of cell starvation and aging as reviewed by Slininger et al. (1996b, 1998). This feature 
has also been observed in our potato protective rhizobacteria and that influenced our choice 
of a 72-h harvest for our co-cultures in current research (Slininger et al., 2010a). The impact 
of cultivation conditions on biocontrol agent storage stability have been shown in virtually 
every other biocontrol system studied in our laboratory and not just those involving the 
control of plant diseases with rhizobacteria. Varying the carbon to nitrogen ratio and total 
carbon loading of a liquid medium for producing the bioherbicide Colletotrichum truncatum 
altered its dry storage stability as well as quantity, propagule type (conidia versus 
microsclerotia), and efficacy (Schisler et al., 1991; Jackson & Schisler, 1995). Yield and 
desiccation-tolerance of blastospores of the mycoinsecticide Paecilomyces fumosoroseus 
required appropriate concentrations of amino acids (Jackson, 1997; Jackson et al., 1997). 
Carbon-to-nitrogen ratio and carbon loading were found to influence the freeze-drying 
survival and Fusarium head blight suppressiveness of Cryptococcus nodaensis (now C. 
flavescens) OH 182.9 (Zhang et al., 2005); and cold shock during liquid cultivation increased 
the storage shelf-life of this biocontrol agent after air drying (Zhang et al., 2006).  

8.3 Formulating for storage stability and delivery 

Once the microbial biological control agent is harvested from the production culture, it will 
be necessary to formulate it. Formulations can be designed to meet a variety of objectives: to 
prevent biocontrol agent activity losses during storage; to facilitate convenient and 
efficacious delivery of the agent to the area where biocontrol is needed in the field; to 
promote insect biocontrol agent or plant-biocontrol agent compatibility; and to enhance the 
effectiveness of the biocontrol agent delivered. Examples are reviewed to illustrate 
formulation techniques devised by our research group to accomplish each of these goals for 
specific biocontrol problems. 
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The loss of microbial viability during storage is one of the most challenging barriers to 

overcome on the road to commercial success, especially for strains that do not form a 

resilient spore. Formulation matrices and storage temperature can play an important role 

in improving storage survival. For example, in the case of Paecilomyces fumosoroseus 

blastospores, calcined kaolin clay allowed significantly better drying survival and storage 

stability than other matrices tested (diatomaceous earth, talcs, corn starch, rice flour, and 

Mexican lime). Greater than 70% survival was retained after air drying and storage 42 

days at 4°C, and near 20% after 21 days at 28°C was retained using 5% clay (Sandoval-

Coronado et al., 2001). The trend of longer term storage survival with decreasing storage 

temperature has also held true for liquid formulations of Pseudomonas fluorescens and 

Enterobacter cloacae, our gram-negative bacterial biocontrol agents of potato dry rot and 

sprouting; cells frozen at -20°C in neutral buffer exhibited half-lives of 72-161 days, while 

those refrigerated at 4°C had half-lives of only 12-33 days (Slininger et al., 1997b). Another 

general finding of our work has been that the inclusion of culture broth with cells in 

stored formulations is often, but not always, detrimental to long term cell survival. For 

example, our gram-negative biocontrol agents for potatoes exhibited half-lives of 26-97 

days when frozen in their culture broth and half-lives of 12-42 days when refrigerated in 

their culture broth. Thus, when frozen, the cells formulated in culture broth had poorer 

survival than cells in buffer, but when refrigerated, cell survival was similar in culture 

broth and buffer. When Pseudomonas fluorescens 2-79 was stored refrigerated in dried 

methylcellulose coatings of wheat seeds, the presence of the culture broth was again 

observed to be detrimental to drying and long-term cell survival, but the data showed 

that the presence of glucose in methylcellulose coatings with culture broth reduced cell 

losses upon drying (Slininger et al., 1996b). These examples illustrate the impact of 

formulation and storage conditions on biocontrol agent preservation and suggest both the 

aptitude and need for technology advancement in this area. 

8.4 Exopolysaccharide production and use as an in situ formulant 

Suppressive to potato diseases and sprouting, Pseudomonas fluorescens S11:P:12 (NRRL B-

21133) produces a polysaccharide during liquid cultivation which was isolated, purified, 

and identified as marginalan (Slininger et al., 2010a). Dry storage results indicated that the 

presence of marginalan significantly reduced cell death after drying, such that the final 

stable viable cell density was 2.5 to 5 orders of magnitude greater, respectively, than if no 

marginalan were included with cells. Marginalan had no significant impact on disease or 

sprout suppression by strain S11:P:12, and its main benefit to biocontrol was viable cell 

preservation during drying and storage. When marginalan was formulated with other 

selected P. fluorescens strains P22:Y:05 and S22:T:04, as may occur in co-cultures, its 

benefits to drying and storage survival were again evident, though more subtle than 

observed for strain S11:P:12—perhaps because it was the most sensitive of the three to 

drying. Due to marginalan production, higher viscosity and higher fermentation power 

consumption for aeration and mixing will be needed to maximize viable cell yield in 

cultures containing S11:P:12. On the other hand, the polysaccharide offers to return value 

in terms of enhanced biological control as a cell desiccation protectant and should be 

considered in culture optimization schemes and for use in downstream formulation 

methodologies. 

www.intechopen.com



Biological Control Agents for Suppression  
of Post-Harvest Diseases of Potatoes: Strategies on Discovery and Development 

 

157 

Storage 
Relative Humidity 

(%) 

Time to 
A620=0.05 

(h)a 

Surviving 
Viable Cells 
(cfu/well)a 

Relative Dry Rot 
Disease Rating 

(%)a 

51 5.6 A 4.4 x 108 A 58.6 A 
86 8.7 B 4.3 x 108 A 49.7 A 
    
    

Formulation 
Sugar 

   

Lactose + BSA 5.8 A 3.9 x 106 A 56.4 A 
Lactose 7.0 AB 5.8 x 106 A 66.9 A 
Sucrose 7.2 AB 3.4 x 106 A 57.4 A 
Fructose 8.6 B 4.4 x 106 A 35.9 

    
    

Storage Time 
(d) 

   

7 3.8 A 1.1 x 107 A 52.0 A 
48 4.4 AB 3.5 x 106 B 47.2 A 
83 7.1 B 2.4 x 106 B 55.5 A 

145 13.4 C 1.3 x 106 B 62.3 A 

aWithin each column and storage factor, means having letters in common are not significantly different 
(P<0.05). 

Table 2. Impact of storage conditions on drying survival of Enterobacter cloacae S11:T:07 in 
the droplet drying screena (Slininger and Schisler, 2003) 

9. Filling the gaps to commercialization — A high-throughput screening 
concept for optimizing biocontrol performance 

In conclusion, much progress has been made with methods of screening and selecting 
commercially useful biological control agents and in identifying key aspects of cultivation 
and formulation that impact biocontrol agent yield and quality. However, the development 
and optimization of integrated technologies to produce and deliver effective biological 
control agents remains a barrier to commercialization for many biocontrol agents. We have 
noted a myriad of variables associated with biocontrol agent cultivation, formulation, 
drying, storage, and reconstitution processes complicate agent quantity and quality 
maximization. To approach this problem, an efficient assay was conceived and applied 
using a 96-well microplate format to allow an integrated approach to optimizing these 
process variables. The basic high-throughput screening assay is depicted in Figure 4 and 
involves growing the BCA of interest (in flasks, fermentors, or microplates), formulating 
cells harvested from growth cultures, delivering microliter droplets of formulated cells to 
microplate wells (for rapid or slow drying), air- or freeze-drying droplets in the wells, storing 
plates, reconstituting dried cells, and then monitoring cell activity in terms of the rate of  
cell growth to a specified yield using a plate-reading spectrophotometer (Slininger & Schisler, 
2003). Relevant variables (ingredients, temperature, etc.) are treated at each step of the  
assay process to view their individual and combined impact on resultant microbial activity, 
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such as the speed of reaching logarithmic growth  and a certain cell yield, such as in this 
research an optical density of 0.05 at a defined wavelength (620 nm). A kinetic activity 
assessment such as this is convenient to accomplish for the numerous samples that can 
potentially arise in multivariate experiments and is a good initial screen of biocontrol agent 
activity as it relates to viable cell concentration in combination with cell activity level (Figure 4).  

 

 

Fig. 4. Droplet drying method to screen and optimize integrated biocontrol agent 
production process variables (Slininger and Schisler, 2003) 

Numerous variables (culture and formulation ingredients, temperature, humidity, etc.) can 
be tested at each step of the assay process to view their individual and combined impact on 
the resultant microbial activity. The results of such an assay applied to our potato dry rot 
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protective strain S11:T:07 are shown in Table 2 along with the results of other quality assays 
that can be carried out on microsamples, including viable cell counts and a wounded potato 
disease suppressiveness assay. We are currently applying such a flexible approach to allow 
further optimization of an integrated production process that would support biocontrol 
agent commercialization in the near future. 

10. Disclaimer 

The mention of trade names or commercial products in this article is solely for the purpose 
of providing specific information and does not imply recommendation or endorsement by 
the U.S. Department of Agriculture. USDA is an equal opportunity provider and employer. 
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