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Quantitative Feedback Theory and  
Its Application in UAV’s Flight Control 

Xiaojun Xing and Dongli Yuan 
Northwestern Polytechnical University, Xi’an, 

China 

1. Introduction  

Quantitative feedback theory (hereafter referred as QFT), developed by Isaac Horowitz 
(Horowitz, 1963; Horowitz and Sidi, 1972), is a frequency domain technique utilizing the 
Nichols chart in order to achieve a desired robust design over a specified region of plant 
uncertainty. Desired time-domain responses are transformed into frequency domain 
tolerances, which lead to bounds (or constraints) on the loop transmission function. The 
design process is highly transparent, allowing a designer to see what trade-offs are 
necessary to achieve a desired performance level. 

QFT is also a unified theory that emphasizes the use of feedback for achieving the desired 
system performance tolerances despite plant uncertainty and plant disturbances. QFT 
quantitatively formulates these two factors in the form of (a) the set { }

R R
T  of acceptable 

command or tracking input-output relationships and the set { }
D D

T   of acceptable 
disturbance input-output relationships, and (b) a set { }P   of possible plants which 
include the uncertainties. The objective is to guarantee that the control ratio /

R
T Y R is a 

member of R
  and /

D
T Y D  is a member of D

 , for all plants P which are contained in 
 . QFT has been developed for control systems which are both linear and nonlinear, time-
invariant and time-varying, continuous and sampled-data, uncertain multiple-input single-
output (MISO) and multiple-input multiple-output (MIMO) plants, and for both output and 
internal variable feedback.  

The QFT synthesis technique for highly uncertain linear time-invariant MIMO plants has the 
following features: 

1. The MIMO synthesis problem is converted into a number of single-loop feedback 
problems in which parameter uncertainty, external disturbances, and performance 
tolerances are derived from the original MIMO problem. The solutions to these single-
loop problems represent a solution to the MIMO plant.  

2. The design is tuned to the extent of the uncertainty and the performance tolerances.  

This design technique is applicable to the following problem classes: 

1. Single-input single-output (SISO) linear-time-invariant (LTI) systems 
2. SISO nonlinear systems.  
3. MIMO LTI systems.  
4. MIMO nonlinear systems.  
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5. Distributed systems. 
6. Sampled-data systems as well as continuous systems for all of the preceding. 

Problem classes 3 and 4 are converted into equivalent sets of MISO systems to which the 

QFT design technique is applied. The objective is to solve the MISO problems, i.e., to find 

compensation functions which guarantee that the performance tolerances for each MISO 

problem are satisfied for all P in . 

This chapter is essentially divided into two parts. The first part, consisting of Sections 2 
through 4, presents the fundamentals of the QFT robust control system design technique for 
the tracking and regulator control problems. The second part consists of Seciton 5 which 
focuses on the application of QFT techinique to the flight control design for a certain 
Unmaned Aerial Vehicle (UAV). This is accomplished by decomposing the UAV’s MIMO 
plant to 2 MISO plants whose controllers are both synthisized using QFT techique for MISO 
systems. And the effectiveness of both controllers is verified according the digital simulation 
results. Besides, Sections 6 through 8 are about summary of whole chapter, references and 
symbols used in the chapter. 

2. Overview of QFT 

2.1 Design objective of QFT 

Objective of QFT is to design and implement robust control for a system with structured 
parametric uncertainty that satisfies the desired performance specifications. 

2.2 Performance specifications for control system 

In many control systems the output ( )y t  must lie between specified upper and lower 

bounds, ( )
U

y t and ( )
L

y t , respectively, as shown in Fig.1a. The conventional time-domain 

figures of merit, based upon a step input signal ( )r t  are shown in Fig.1a. They are:
P

M , peak 

overshoot; 
r

t , rise time; 
p

t , peak time; and 
s

t , settling time. Corresponding system 

performance specifications in the frequency domain are, 
U

B  and 
L

B , the upper and lower 

bounds respectively, peak overshoot 
m

Lm M , and the frequency bandwidth 
h

  which are 

shown in Fig.1b. 

  

(a) time domain response specifications (b) frequency domain response specifications 

Fig. 1. Desired system performance specifications 
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Assume that the control system has negligible sensor noise and sufficient control effort 
authority, then for a stable LTI minimum-phase plant, a LTI compensator may be designed 
to achieve the desired control system performance specifications.  

2.3 Implementation of QFT design objective 

The QFT design objective is achieved by: 

 Representing the characteristics of the plant and the desired system performance 
specifications in the frequency domain. 

 Using these representations to design a compensator (controller). 
 Representing the nonlinear plant characteristics by a set of LTI transfer functions that 

cover the range of structured parametric uncertainty. 
 Representing the system performance specifications (see Fig.1) by LTI transfer functions 

that form the upper 
U

B  and lower 
L

B  boundaries for the design. 
 Reducing the effect of parameter uncertainty by shaping the open-loop frequency 

responses so that the Bode plots of the J closed-loop systems fall between the 
boundaries 

U
B  and

L
B , while simultaneously satisfying all performance specifications. 

 Obtaining the stability, tracking, disturbance, and cross-coupling (for MIMO systems) 
boundaries on the Nichols chart in order to satisfy the performance specifications. 

2.4 QFT basics 

Consider the control system of Fig.2, where ( )G s is a compensator, ( )F s  is a prefilter, and   
is the nonlinear plant with structured parametric uncertainty. To carry out a QFT design: 

 The nonlinear plant is described by a set of J minimum-phase LTI plants, i.e., 
{ ( )}( 1,2, , )

t
P s t J     which define the structured plant parameter uncertainty.  

 The magnitude variation due to the plant parameter uncertainty, ( )
P i

j  , is depicted by 
the Bode plots of the LTI plants as shown in Fig. 3 which is for a certain plant. 

 J data points (log magnitude and phase angle), for each value of frequency, 
i

  , are 
plotted on the Nichols chart. A contour is drawn through the data points that described 
the boundary of the region that contains all J points. This contour is referred to as a 
template. It represents the region of structured plant parametric uncertainty on the 
Nichols chart and are obtained for specified values of frequency,

i
  , within the 

bandwidth (BW) of concern. Six data points (log magnitude and phase angle) for each 
value of 

i
 are obtained, as shown in Fig. 4a, for a certain example to plot the templates, 

for each value of 
i

 , as shown in Fig. 4b. 
 The system performance specifications are represented by LTI transfer functions, and 

their corresponding Bode plots are shown in Fig. 3 by the upper and lower bounds 
U

B  
and

L
B , respectively. 

 

Fig. 2. Compensated nonlinear system 
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Fig. 3. LTI plants 

 

  

(a)   (b)   (c) 

Fig. 4. (a) Bode plots of 6 LTI plants; (b) template construction for  =3 rad/sec; 

(c) construction of the Nichols chart plant templates 

2.5 QFT design 

The tracking design objective is to 

a. Synthesize a compensator ( )G s  of Fig. 2 that 

 results in satisfying the desired performance specifications of Fig. 1 

 results in the closed-loop frequency responses Li
T shown in Fig. 5 

 results in the ( )
L i

j   of Fig. 5 of the compensated system, being equal to or smaller 

than ( )
P i

j  of Fig. 3 for the uncompensated system and that it is equal or less 

than ( )
R i

j  , for each value of 
i

  of interest; that is: ( ) ( ) ( )
L i R i P i

j j j        

b. Synthesize a prefilter ( )F s of Fig. 2 that results in shifting and reshaping the 
Li

T  

responses in order that they lie within the
U

B and
L

B boundaries in Fig. 5 as shown in 

Fig. 6. 
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Fig. 5. Closed-loop responses: LTI plants with G(s)  

  

Fig. 6. Closed-loop responses: LTI plants with G(s) and F(s) 

Therefore, the QFT robust design technique assures that the desired performance 

specifications are satisfied over the prescribed region of structured plant parametric 

uncertainty. 

3. Insight to the QFT technique 

3.1 Open-loop plant 

Consider a certain position control system whose plant transfer function is given by 

 ( )
( ) ( )

a

t

K K
P s

s s a s s a


 

 
  (1) 

where 
a

K K  and 1,2,...,i J . The log magnitude changes in a prescribed range due to the 

plant parameter uncertainty. The loop transmission ( )L s  is defined as 

 ( ) ( ) ( )
t t

L s G s P s   (2) 

3.2 Closed-loop formulation 

The control ratio 
L

T  of the unity-feedback system of Fig. 2 is 
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1

t

Lt

L t

Y L
T

R L
 


  (3) 

The overall system control ratio 
R

T  

 is given by: 

 
( ) ( )

( )
1 ( )

t

R

t

t

F s L s
T s

L s



  (4) 

3.3 Results of applying the QFT design technique 

The proper application of the robust QFT design technique requires the utilization of the 

prescribed performance specifications from the onset of the design process, and the selection 

of a nominal plant 
o

P  from the J  LTI plants. Once the proper loop shaping of 

( ) ( ) ( )
o o

L s G s P s is accomplished, a synthesized ( )G s is achieved that satisfies the desired 

performance specifications. The last step of this design process is the synthesis of the 

prefilter that ensures that the Bode plots of 
Ri

T  all lie between the upper and lower bounds 

U
B and

L
B . 

3.4 Benefits of QFT 

The benefits of the QFT technique may be summarized as follows: 

 It results in a robust design which is insensitive to structured plant parameter variation. 

 There can be one robust design for the full, operating envelope. 

 Design limitations are apparent up front and during the design process. 

 The achievable performance specifications can be determined in the early design stage. 

 If necessary, one can redesign for changes in the specifications quickly with the aid of 
the QFT CAD package. 

 The structure of the compensator (controller) is determined up front. 

 There is less development time for a full envelope design. 

4. QFT design for the MISO analog control system 

4.1 Introduction 

The MIMO synthesis problem is converted into a number of single-loop feedback problems 

in which parameter uncertainty, cross-coupling effects, and system performance tolerances 

are derived from the original MIMO problem. The solutions to these single-loop problems 

represent a solution to the MIMO plant. It is not necessary to consider the complete system 

characteristic equation. The design is tuned to the extent of the uncertainty and the 

performance tolerances.  

Here, we will present an in-depth understanding and appreciation of the power of the  
QFT technique through apply QFT to a robust single-loop MISO system, which has two 
inputs, a tracking and an external disturbance input, respectively, and a single output 
control system.  
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4.2 The QFT method (single-loop MISO system) 

Basic structure of a feedback control system is given in Fig.7 , in which   represents the set 

of transfer functions which describe the region of plant parameter uncertainty, G  is the 

cascade compensator, and F  is an input prefilter transfer function. The output ( )y t  is 

required to track the command input ( )r t  and to reject the external disturbances 1
( )d t  and 

2
( )d t  . The compensator G  in Fig. 7 is to be designed so that the variation of ( )y t  to the 

uncertainty in the plant P  is within allowable tolerances and the effects of the disturbances 

1
( )d t  and 2

( )d t  on ( )y t  are acceptably small. Also, the prefilter properties of ( )F s  must be 

designed to the desired tracking by the output ( )y t  of the input ( )r t  . Since the control 

system in Fig. 7 has two measurable quantities, ( )r t  and ( )y t  , it is referred to as a two 

degree-of-freedom (DOF) feedback structure. If the two disturbance inputs are measurable, 

then it represents a four DOF structure. The actual design is closely related to the extent of 

the uncertainty and to the narrowness of the performance tolerances. The uncertainty of the 

plant transfer function is denoted by the set 

   { } 1,2,...,
t

P where t J     (5) 

and is illustrated as follows. 

Given that the plant transfer function is 

 ( )
( )

K
P s

s s a



  (6) 

where the value of K  is in the range [1, 10] and a  is in the range [-2, 2]. The design objective 

is to guarantee that ( ) ( ) / ( )
R

T s Y s R s  and ( ) ( ) / ( )
D

T s Y s D s  are members of the sets of 

acceptable R
  and D

  for changes of K  and a  . In a feedback control system, the principal 

challenge in the control system design is to relate the system performance specifications to 

the requirements on the loop transmission function ( ) ( ) ( )L s G s P s  in order to achieve the 

desired benefits of feedback, i.e., the desired reduction in sensitivity to plant uncertainty and 

desired disturbance attenuation. The advantage of the frequency domain is that 

( ) ( ) ( )L s G s P s  is simply the multiplication of complex numbers. In the frequency domain it 

is possible to evaluate ( )L j  at every i
  separately, and thus, at each i

  , the optimal 

bounds on ( )L j  can be determined. 

 

Fig. 7. A feedback structure 

4.3 QFT design procedure 

The objective is to design the prefilter ( )F s  and the compensator ( )G s  of Fig.7 so that the 

specified robust design is achieved for the given region of plant parameter uncertainty. The 
design procedure to accomplish this objective is as follows: 
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Step 1. Synthesize the desired tracking model. 
Step 2. Synthesize the desired disturbance model. 

Step 3. Specify the J  LTI plant models that define the boundary of the region of plant 

parameter uncertainty. 
Step 4. Obtain plant templates at specified frequencies that pictorially describe the region 

of plant parameter uncertainty on the Nichols chart. 

Step 5. Select the nominal plant transfer function ( )
o

P s . 

Step 6. Determine the stability contour ( U -contour) on the Nichols chart. 

Step 7-9. Determine the disturbance, tracking, and optimal bounds on the Nichols chart. 

Step 10. Synthesize the nominal loop transmission function ( ) ( ) ( )
o o

L s G s P s  that satisfies all 

the bounds and the stability contour. 

Step 11. Based upon Steps 1 through 10, synthesize the prefilter ( )F s . 

Step 12. Simulate the system in order to obtain the time response data for each of the J  

plants. 

The following sections will illustrate the design procedure step by step. 

4.4 Minimum-phase system performance specifications 

In order to apply the QFT technique, it is necessary to synthesize the desired model control 

ratio based upon the system's desired performance specifications in the time domain. For 

the minimum-phase LTI MISO system of Fig. 7, the control ratios for tracking and for 

disturbance rejection are, respectively, 

 
1 2

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) with  ( ) ( ) 0

1 ( ) ( ) 1 ( )
R

F s G s P s F s L s
T s F s T s d t d t

G s P s L s
    

 
  (7) 

 
1 2

( )
with  ( ) ( ) 0

1 ( ) ( ) 1
D

P s P
T r t d t

G s P s L
   

 
  (8) 

 
2 1

1 1
with   ( ) ( ) 0

1 ( ) ( ) 1
D

T r t d t
G s P s L

   
 

  (9) 

4.4.1 Tracking models 

The QFT technique requires that the desired tracking control ratios be modeled in the 

frequency domain to satisfy the required gain m
K  and the desired time domain performance 

specifications for a step input. Thus, the system's tracking performance specifications for a 

simple second-order system are based upon satisfying some or all of the step forcing 

function figures of merit (FOM) for under-damped ( , , , , )
p p s r m

M t t t K  and over-damped 

( , , )
s r m

t t K responses, respectively. These are graphically depicted in Fig. 8. The time 

responses ( )
U

y t and ( )
L

y t  in this figure represent the upper and lower bounds, respectively, 

of the tracking performance specifications; that is, an acceptable response ( )y t  must lie 

between these bounds. The Bode plots of the upper bound U
B  and lower bound L

B  for 

( )
R

Lm T j vs.   are shown in Fig. 9.  
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It is desirable to synthesize the control ratios corresponding to the upper and lower bounds 

RU
T and  

RL
T , respectively, so that ( )

R i
j  increases as 

i
  increases above the 0-dB crossing 

frequency 
cf

 (see Fig. 9b) of 
RU

T . This characteristic of ( )
R i

j  simplifies the process of 

synthesizing the loop transmission  ( ) ( ) ( )
o o

L s G s P s  as discussed in Sec. 4.13 of this chapter. 

To synthesize ( )
o

L s , it is necessary to determine the tracking bounds ( )
R i

B j  (see Sec. 4.9) 

which are obtained based upon ( )
R i

j  . This characteristic of ( )
R i

j   ensures that the 

tracking bounds ( )
R i

B j  decrease in magnitude as 
i

  increases. 

 

Fig. 8. System time domain tracking performance specifications 

 

  

(a) Ideal simple second-order models (b) The augmented models 

Fig. 9. Bode plots of 
R

T  

An approach to the modeling process is to start with a simple second-order model of the 

desired control ratio 
RU

T  having the form 

 
2 2

2 2

1 2

( )
2 ( )( )

n n

R

n n

U
T s

s s s p s p

 
 

 
   

  (10) 

where 2

1 2n
p p   and 4 / 4 /

s s n D
t T     (the desired settling time). The control ratio 

( )
RU

T s  of Eq. (10) can be represented by an equivalent unity-feedback system so that 

 
( )( )

( )
( ) 1 ( )

eq

R

eq

U

G sY s
T s

R s G s
 


  (11) 

where  
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2

( )
( 2 )

n

eq

n

G s
s s







  (12) 

The gain constant of this equivalent Type1 transfer function ( )
eq

G s  is 
1

0

lim[ ( )]
eq

s

K sG s


  

/ 2
n

  .  

The simplest over-damped model for ( )
RL

T s  is of the form 

 
1 2

( )( )
( )

( ) ( )( ) 1 ( )

eq

R

eq

L

G sY s K
T s

R s s s G s 
  

  
  (13) 

where  

 
1 2

1 2

( )
( )

eq
G s

s s

 
 


   

and
1 1 2 1 2

/( )K       . Selection of the parameters 
1

 and 
2

  is used to meet the 

specifications for st and
1

K .  

Once the ideal models ( )
RU

T j  and ( )
RL

T j  are determined, the time and frequency response 

plots of Figs. 8 and 9a, respectively, can then be drawn. The high-frequency range in Fig. 9a 

is defined as
b

  , where 
b

  is the model BW frequency of 
U

B . In order to achieve  

the desired characteristic of an increasing magnitude of 
R

  of 
U

B  for
i cf

  , an  

increasing spread between 
U

B  and 
L

B  is required in the high-frequency range (see Fig. 9b), 

that is, 

 hf U L
B B     (14) 

must increase with increasing frequency. This desired increase in 
R

  is achieved by 

changing 
U

B  and
L

B by augmenting 
RU

T with a zero [see Eq. (15)] as close to the origin as 

possible without significantly affecting the time response. This additional zero raises the 

curve 
U

B  for the frequency range above
cf

 . The spread can be further increased by 

augmenting 
RL

T  with a negative real pole [see Eq. (16)] which is as close to the origin as 

possible but far enough away not to significantly affect the time response. Note that the 

straight-line Bode plot is shown only for
RL

T . This additional pole lowers 
L

B  for this 

frequency range. 

 

2 2

1

2 2

1 2

( / )( ) ( / )( )
( )

2 ( )( )
n n

R

n n

U

a s a a s z
T s

s s s s

 
   

 
 

      (15) 

 
1 2 3 1 2 3

( )
( )( )( ) ( )( )( )

RL

K K
T s

s a s a s a s s s  
 

        (16) 

Thus, the magnitude of ( )
R i

j   increases as
i

 , increases above
cf

 . 
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In order to minimize the iteration process in achieving acceptable models for ( )
RU

T s  and 

( )
RL

T s  which have an increasing ( )
R

j  , the following procedure may expedite the design 

process: (a) first synthesize the second-order model of Eq. (15) containing the zero at 

1 n
z a    that meets the desired FOM; and (b) then, as a first trial, select all three real 

poles of Eq. (16) to have the value of 
3 3 12n D

a a a       . For succeeding trials, if 

necessary, one or more of these poles are moved right and/or left until the desired 

specifications are satisfied. As illustrated by the slopes of the straight-line Bode plots in Fig. 

9b, selecting the value of all three poles in the range specified above insures an 

increasing
R

 . Other possibilities are as follows: (c) the specified values of 
p

t  and 
s

t  for 

RL
T may be such that a pair of complex poles and a real pole need to be chosen for the model 

response. For this situation, the real pole must be more dominant than the complex poles, 

(d) depending on the performance specifications, ( )
RU

T s  may require two real poles and a 

zero "close" to the origin, i.e., select 
1

z  very much less than 
1

p  and 
2

p  in order to 

effectively have an under-damped response. 

At high frequencies 
hf

 (see Fig. 9b) must be larger than the actual variation in the plant,
P

 . 

For the case where ( )y t , corresponding to
RU

T , is to have an allowable “large” overshoot 

followed by a small tolerable undershoot, a dominant complex pole pair is not suitable for 

RU
T . An acceptable overshoot with no undershoot for 

RU
T  can be achieved by 

RU
T  having 

two real dominant poles
1 2

p p , a dominant real zero (
1 1

z p ) "close"' to
1

p , and a far off 

pole
3 2

p p . The closeness of the zero dictates the value of 
P

M . Thus, a designer selects a 

pole-zero combination to yield the form of the desired time-domain response. 

4.4.2 Disturbance rejection models 

The simplest disturbance control ratio model specification is ( ) ( / ( ))
D P

T j Y j D j a    , a 

constant, [the desired maximum magnitude of the output based upon a unit-step 

disturbance input]; i.e., for
1
( )d t : ( )

p p
y t a , and for: 

2
( ) ( )

p
d t y t a  for 

x
t t . Thus, the 

frequency domain disturbance specification is ( )
D p

Lm T j Lm a   over the desired specified 

BW (see Fig. 10).  

 

 

Fig. 10. Bode plots of disturbance models for ( )
D

T j  
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4.5 J LTI plant models 

The simple plant of Eq. (17) 

 ( )
( )

t

Ka
P s

s s a



  (17) 

where K {1,10} and a {1,10}, is used to illustrate the MISO QFT design procedure. The 

region of plant parameter uncertainty may be described by J LTI plants, where 1,2,...,i J  

which lie on its boundary.  

4.6 Plant templates of ( ), ( )
t i

P s P j  

With L GP , Eq. (7) yields 

 
1

R

L
Lm T Lm F Lm Lm F Lm T

L
   


 
  

  (18) 

The change in 
R

T  due to the uncertainty in P, since F is LTI, is 

 ( )
1

R R

L
Lm T Lm T Lm F Lm

L
   


 
  

  (19) 

The proper design of 
o

L L and F , must restrict this change in 
R

T  so that the actual value of 

R
Lm T  always lies between 

U
B and

L
B of Fig. 9b. The first step in synthesizing an o

L is to make 

NC templates which characterize the variation of the plant uncertainty for various values 

of i
 , over a frequency range

x i hR
    , where

x cf
  . For the plant of Eq. (17) the 

values K = a = 1 represent the lowest point of each of the templates ( )
i

P j  and may be 

selected as the nominal plant o
P  for all frequencies.  

4.7 Nominal plant 

While any plant case can be chosen, it is a common practice to select, whenever possible, a 
plant whose NC point is always at the lower left corner of the template for all frequencies 
for which the templates are obtained. 

4.8 U-contour (stability bound) 

The specifications on system performance in the time domain (see Fig. 8) and in the 

frequency domain (see Fig. 9) identify a minimum damping ratio  for the dominant roots 

of the closed-loop system which corresponds to a bound on the value of
p m

M M . On the 

NC this bound on 
p L

M M  (see Fig. 11) establishes a region which must not be penetrated 

by the templates and the loop transmission functions ( )
t

L j  for all  . The boundary of this 

region is referred to as the stability bound, the U-contour, because this becomes the 

dominating constraint on ( )L j . Therefore, the top portion, indicated by the coordinates efa, 

of the 
L

M  contour becomes part of the U-contour. The formation of the U -contour is 

discussed in this section. For the two cases of disturbance rejection depicted in Fig. 7 the 

control ratios are, respectively, as given in Eqs. (8) and (9). 
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Fig. 11. U-contour construction (stability contour) 

Thus, it is necessary to synthesize an ( )
o

L s so that the disturbances are properly attenuated. 

For the present, only one aspect of this disturbance-response problem is considered, namely 

a constraint is placed on the damping ratio  of the dominant complex-pole pair of 
D

T  

nearest the  -axis. This damping ratio is related to the peak value of 

 
( )

( )
1 ( )

L j
T j

L j








  (20) 

Therefore, it is reasonable to add the requirement 

 
1

L

L
T M

L
 


  (21) 

where 
L

M  is a constant for all  and over the whole range of   parameter values. This 

results in a constraint on   of the dominant complex-pole pair of 
D

T . This constraint can 

therefore be transformed into a constraint on the maximum value 
max

T  of Eq. (20). This 

results in limiting the peak of the disturbance response. A value of 
L

M can be selected to 

correspond to the maximum value of 
R

T . Therefore, the top portion, efa as shown in Fig.11, 

of the M-contour on the NC, which corresponds to the value of the selected value of 
L

M , 

becomes part of the U-contour. 

For a large class of problems, as , the limiting value of the plant transfer function 

approaches 

'
lim[ ( )]

K
P j





  

where   represents the excess of poles over zeros of ( )P s .  
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4.9 Tracking bounds ( )
R i

B j  

Consider the plot of ( )Lm P j vs. ( )P j for a plant shown in Fig. 12 (the solid curve). With 

( ) 1G s A   and ( ) 1F s   in Fig. 7, L P . The plot of ( )Lm L j  vs. ( )L j  is tangent to the  

M = 1dB curve with a resonant frequency 1.1
m

  . If 2
m

Lm M  dB is specified for R
Lm T , 

the gain A is increased, raising ( )Lm L j , until it is tangent to the 2-dB M-curve. For this 

example the curve is raised by 4.5 ( 1.679)Lm A dB G A   and the resonant frequency is 

m
 = 2.09. 

Now consider that the plant uncertainty involves only the variation in gain A between the 

values of 1 and 1.679. It is desired to find a cascade compensator ( )G s , in Fig. 7, such that the 

specification 1 2
m

dB Lm M dB   is always maintained for this plant gain variation while the 

resonant frequency m
  remains constant. This requires that the loop transmission 

( ) ( ) ( )L j G j P j   be synthesized so that it is tangent to an M-contour in the range of 

1 2dB Lm M dB   for the entire range of 1 <A <1.679 and the resultant resonant frequency 

satisfies the requirement 2.09
m m

    .  

 

Fig. 12. Log magnitude-angle diagram 

It is assumed for Eq. (19) that the compensators F and G are fixed (LTI), that is, they have 

negligible uncertainty. Thus, only the uncertainty in P contributes to the change in 
R

T given 

by Eq. (19). The solution requires that the actual ( ) ( )
R i R i

LmT j j    dB in Fig. 9b. Thus, it 

is necessary to determine the resulting constraint, or bound ( )
R i

B j , on ( )
i

L j . The procedure 

is to select a nominal plant ( )
o

P s  and to derive the bounds on the resulting nominal loop 

transfer function ( ) ( ) ( )
o o

L s G s P s . 

As an illustration, consider the plot of ( 2) . ( 2)Lm P j vs P j for the plant of Eq. (17). As shown in 

Fig. 13, the plant's region of uncertainty ( 2)P j  is given by the contour ABCD, i.e., 

( 2)Lm P j lies on or within the boundary of this contour. The nominal plant transfer function, 

with 1
o

K   and 1
o

a  , is 
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1

( )
( 1)

o
P s

s s



  (22) 

and is represented in Fig. 13 by point A for  = 2 [-13.0 dB, -153.4°}. Note, once a nominal 

plant is chosen, it must be used for determining all the bounds ( )
R i

B j . 

 

Fig. 13. Derivation of bounds ( )
R i

B j  on ( )
o

L j for = 2 

4.10 Disturbance bounds ( )
D i

B j : CASE 1 

Two disturbance inputs are shown in Fig. 7. It is assumed that only one disturbance input 
exists at a time. Both cases are analyzed. 

CASE 1 [ 2 0 1 1
( ) ( ), ( ) 0d t D u t d t  ] 

CONTROL RATIO. From Fig. 7 , the disturbance control ratio for input 
2
( )d t  is 

 
1

( )
1

D
T s

L



  (23) 

Substituting 1 /L    into Eq. (23) yields 

 ( )
1

D
T s 





  (24) 

this equation has the mathematical format required to use the NC. Over the specified BW it 

is desired that ( ) 1
D

T j  , which results in the requirement, from Eq.(24), that ( ) 1L j  , i.e., 
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1
( ) ( )

( )
D

T j j
L j

 


    

DISTURBANCE RESPONSE CHARACTERISTIC. A time-domain tracking response 

characteristic based upon 
1

( ) ( )r t u t often specifies a maximum allowable peak 

overshoot
p

M . In the frequency domain this specification may be approximated by 

 
( )

( ) ( )
( )

R R m P

Y j
M j T j M M

R j


 


      (25) 

The corresponding time- and frequency-domain response characteristics, based upon the 

step disturbance forcing function
2 1
( ) ( )d t u t


 , are, respectively, 

 
( )

( )
( )

D P x

Y t
M t for t t

d t
     (26) 

and 

 
( )

( ) ( )
( )

D D m P

Y j
M j T j

D j


   


      (27) 

4.11 Disturbance bounds ( )
D i

B j : CASE 2 

CASE 2 [
1 0 1 2
( ) ( ), ( ) 0d t D u t d t  ] 

CONTROL RATIO. From Fig. 7, the disturbance control ratio for the input 
1
( )d t  is 

 
( )

( )
1 ( ) ( )

D

P j
T j

G j P j




 



  (28) 

Assuming point A of the template represents the nominal plant o
P . Eq. (28) is multiplied by 

/
o o

P P  and rearranged as follows: 

 
1

1
o o o o

D

o oo
o o

P P P P
T

P PP W
G GP L

P P P

   
  

 
 
 
 
 

  (29) 

where  

 ( / )
o o

W P P L    (30) 

Thus Eq.(29) with 
D D

Lm T   yields 

 
o D

Lm W Lm P     (31) 
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DISTURBANCE RESPONSE CHARACTERISTICS. Based on Eq. (25), the time and 
frequency-domain response characteristics, for a unit-step disturbance forcing function, are 
given, respectively, by 

 
( )

( ) ( )
( )

p

D p p

y t
M t y t

d t
     (32) 

and  

 
( )

( ) ( )
( )

D D m p

Y j
M j T j

D j


   


      (33) 

where 
p

t  is the peak time. 

4.12 The composite boundary ( )
o i

B j  

The composite bound ( )
o i

B j  that is used to synthesize the desired loop transmission 

transfer function ( )
o

L s is obtained in the manner shown in Fig. 14. The composite 

bound ( )
o i

B j , for each value of i , is composed of those portions of each respective bound 

( )
R i

B j  and ( )
D i

B j  that are the most restrictive. For the case shown in Fig. 14a the bound 

( )
o i

B j  is composed of those portions of each respective bound ( )
R i

B j and ( )
D i

B j  that have 

the largest values. For the situation of Fig. 14b, the outermost of the two boundaries ( )
R i

B j  

and ( )
D i

B j becomes the perimeter of ( )
o i

B j . The situations of Fig. 14 occur when the two 

bounds have one or more intersections. If there are no intersections, then the bound with the 

largest value or with the outermost boundary dominates. The synthesized ( )
o i

L j , for the 

situation of Fig. 14a, must be on or just above the bound ( )
o i

B j . For the situation of Fig. 14b 

the synthesized ( )
o i

L j must not lie in the interior of the ( )
o i

B j  contour. 

  

Fig. 14. Composite ( )
o i

B j  

4.13 Shaping of ( )o iL j  

A realistic definition of optimum in an LTI system is the minimization of the high-frequency 

loop gain K while satisfying the performance bounds. This gain affects the high-frequency 

response since lim[ ( )] ( )L j K j



  


 where   is the excess of poles over zeros assigned 
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to ( )L j . Thus, only the gain K has a significant effect on the high-frequency response, and 

the effect of the other parameter uncertainty is negligible. Also, the importance of 

minimizing the high-frequency loop gain is to minimize the effect of sensor noise whose 

spectrum, in general, lies in the high-frequency range.  

For the plant of Eq. (17), the shaping of ( )
o

L j  is shown by the dashed curve in Fig. 15. A 

point such as ( 2)
o

Lm L j  must be on or above the curve labeled ( 2)
o

B j . Further, in order to 

satisfy the specifications, ( )
o

L j cannot violate the U-contour. In this example a reasonable 

( )
o

L j closely follows the U-contour up to 40  rad/sec and stays below it above 40   

as shown in Fig 15. Additional specifications are  = 4, i.e., there are 4 poles in excess of 

zeros, and that it also must be Type 1 (one pole at the origin).A representative procedure for 

choosing a rational function ( )
o

L s which satisfies the above specifications is now described. 

It involves building up the function 

  
0

( ) ( ) ( ) [ ( )]
w

o ok o k k

k

L j L j P j K G j   


     (34) 

where for k = 0, 1 0
o

G     , and
0

w

k

k

K K


  

In order to minimize the order of the compensator, a good starting point for "building up" 

the loop transmission function is to initially assume that 
0
( )

o
L j = ( )

o
P j  as indicated in Eq. 

(34). ( )
o

L j is built up term-by-term in order to stay just outside the U-contour in the NC of 

Fig. 15. The first step is to find the ( )
o i

B j which dominates ( )
o

L j .  

 

Fig. 15. Shaping of ( )
o

L j  on the Nichols chart for the plant of Eq. (17) 
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4.14 Design of the prefilter ( )F s  

Design of a proper ( )
o

L s guarantees only that the variation in ( )
R

T j , i.e., 
R

T , is less than or 

equal to that allowed. The purpose of the prefilter is to position ( )Lm T j within the 

frequency domain specifications. For the example of this chapter the magnitude of the 

frequency response must be within the bounds 
U

B and 
L

B shown in Fig. 9b, which are 

redrawn in Fig. 16. A method for determining the bounds on ( )F s  is as follows: Place the 

nominal point A of the 
i

  plant template on the ( )
o i

L j  point of the ( )
o

L j  curve on the NC 

(see Fig. 17). Traversing the template, determine the maximum 
max

Lm T  and 

minimum
min

Lm T , values of 

 
( )

( )
1 ( )

i

i

i

L j
Lm T j

L j








  (35) 

obtained from the M-contours. These values are plotted as shown in Fig. 16. The tracking 

control ratio is /[1 ]
R

T FL L  and 

 ( ) ( ) ( )
R i i i

Lm T j Lm F j Lm T j      (36) 

The variations in Eqs. (35) and (36) are both due to the variation in P; thus 

 
max min

( )
L i R U L

j Lm T Lm T B B         (37) 

 

Fig. 16. Requirements on ( )F s  

  

Fig. 17. Prefilter determination 
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If values of ( )
o

L j , for each value
i

 , lie exactly on the tracking bounds ( )
R i

B j , then
L R

  . 

Therefore, based upon Eq. (36), it is necessary to determine the range in dB by which 

( )
i

Lm T j  must be raised or lowered to fit within the bounds of the specifications by use of 

the prefilter ( )
i

F j . The process is repeated for each frequency corresponding to the 

templates used in the design of ( )
o

L j . Therefore, in Fig. 18 the difference between the 

maxRU
Lm T Lm T and the 

minRL
Lm T Lm T  curves yields the requirement for ( )Lm F j , i.e., from 

Eq. (36). 

 ( ) ( ) ( )
R

Lm F j Lm T j Lm T j      (38) 

 

Fig. 18. Frequency bounds on the prefilter ( )F s  

The procedure for designing ( )F s  is summarized as follows: 

1. Use templates in conjunction with the ( )
o

L j  plot on the NC to determine 
max

T  and 
min

T  

for each i
 . This is done by placing ( )

i
P j  with its nominal point on the 

point ( )
o

Lm L j . Then use the M-contours to determine 
max

( )
i

T j  and 
min

( )
i

T j  (see Fig. 

17). 

2. Obtain the values of 
RU

Lm T and 
RL

Lm T  for various values of a, from Fig. 9b. 

3. From the values obtained in steps 1 and 2, plot 
maxRU

Lm T Lm T    and 
minRL

Lm T Lm T    

vs.   as shown in Fig. 18. 

4. Use straight-line approximations to synthesize an ( )F s so that ( )
i

Lm F j lies within the 

plots of step 3. For step forcing functions the resulting ( )F s must satisfy 

 
0

lim[ ( )] 1
s

F s


   (39) 

4.15 Basic design procedure for a MISO system 

The basic concepts of the QFT technique are explained by means of a design example. The 

system configuration shown in Fig. 7 contains three inputs. The first objectives are to track a 

step input 
1

( ) ( )r t u t with no steady-state error and to satisfy the performance 

specifications of Fig. 8. An additional objective is to attenuate the system response caused by 
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external step disturbance inputs 
1
( )d t and

2
( )d t . An outline of the basic design procedure for 

the QFT technique, as applied to a minimum-phase plant, is as follows: 

1. Synthesize the tracking model control ratio ( )
R

T s in the way described in Sec. 4.4, based 

upon the desired tracking specifications (see Figs. 8 and 9b). 

2. Synthesize the disturbance-rejection model control ratios ( )
D

T s  in the manner described 

in Sec. 4.10 based upon the disturbance-rejection specifications. 

3. Obtain templates of ( )
i

P j  that pictorially describe the plant uncertainty on the Nichols 

chart for the desired pass-band frequency range. 

4. Select a nominal plant from the set of Eq. (5) and denote it as ( )
o

P s . 

5. Determine the U-contour based upon the specified values of ( )
R i

j   for tracking, 
L

M for 

disturbance rejection, and V for the universal high frequency boundary (UHFB) in 

conjunction with steps 6 through 8. 

6. Use the data of steps 2 and 3 and the values of ( )
D i

j   (see Fig. 10) to determine the 

disturbance bound ( )
D i

B j  on the loop transmission ( ) ( ) ( )
D i i o i

L j G j P j   . For minimum-

phase systems this requires that the synthesized loop transmission ( )
D i

Lm L j  must be 

on or above the curve for ( )
D i

Lm B j  on the Nichols diagram (see Fig. 15 

assuming
D o

B B ). 

7. Determine the tracking bound ( )
R i

B j  on the nominal transmission 

( ) ( ) ( )
o i i o i

L j G j P j   , using the tracking model (step 1), the templates ( )
i

P j  (step 3), the 

values of ( )
R i

j   (see Fig. 9b), and 
L

M [see Eq.(21)]. For minimum-phase systems this 

requires that the synthesized loop transmission satisfy the requirement that ( )
o i

Lm L j  

is on or above the curve for ( )
R i

Lm B j  on the Nichols diagram. 

8. Plot curves of ( )
R i

Lm B j  versus ( )
R R i

B j   and ( )
D i

Lm B j  versus ( )
d D i

B j    on the 

same NC. For a given value of 
i

 at various values of the angle , select the value of 

( )
D i

Lm B j  or ( )
R i

Lm B j , whichever is the largest value (termed the "worst" or "most 

severe" boundary). Draw a curve through these points. The resulting plot defines the 

overall boundary ( ) .
o i

Lm B j vs  . Repeat this procedure for sufficient values of 
i

 . 

9. Design ( )
o i

L j to be as close as possible to the boundary value ( )
o i

B j  by selecting an 

appropriate compensator transfer function ( )G j . Synthesize an ( ) ( ) ( )
o o

L j G j P j    

using the ( )
o i

Lm B j  boundaries and U-contour so that ( )
o i

Lm L j  is on or above the 

curve for ( )
o i

Lm B j  on the Nichols diagram.  

10. Based upon the information available from steps 1 and 9, synthesize an ( )F s  those 

results in a 
R

Lm T [Eq. (7)] vs.  that lies between 
U

B and 
L

B of Fig. 9b. 

11. Obtain the time-response data for ( )y t : (a) with 
1

( ) ( )d t u t and ( ) 0r t   and (b) with 

1
( ) ( )r t u t  and ( ) 0d t   for sufficient points around the parameter space describing the 

plant uncertainty. 

5. Robust QFT flight control design for a certain UAV 

5.1 Introduction 

Unmanned Aerial Vehicles (hereafter referred as UAVs) play a very important role in 

modern war. Whereas flight stability of UAVs is easily affected by airflow, model 

perturbation and other uncertainty. To enhance flight stability and robustness of UAVs, 
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H control, QFT technique, linear quadratic Gaussian (LQG) have been applied to UAVs’ 

flight control system at present. Comparatively, QFT can take uncertainty’s scopes and 

performance requirements into account, analyze and design robust controller on Nichols 

chart quantitatively in order to make the open-loop frequency curve comply with boundary 

conditions and have robust stability and performance robustness.  

QFT has been widely used in aerospace field and is mature for robust controller design  

of LTI/SISO system. But QFT design for MIMO system still faces many difficulties. In view 

of the characteristics of a certain small UAV which used in tracking and surveillance, a 

novel QFT controller design method for the UAV’s lateral motion is introduced in this 

section. 

5.2 QFT design for MIMO systems 

5.2.1 Overview 

The QFT design for MIMO systems is based upon the mathematical means which results in 

the representation of a MIMO control system by 2
m MISO equivalent control systems. The 

highly structured uncertain LTT MIMO plant has the following features: 

1. The synthesis problem is converted into a number of single-loop problems, in which 
structured parameter uncertainty, external disturbance, and performance tolerances are 
derived from the original MIMO problem. The solutions to these single-loop problems 
are guaranteed to work for the MIMO plant. It is not necessary to consider the system 
characteristic equation.  

2. The design is tuned to the extent of the uncertainty and the performance tolerances. The 
design for a MIMO system, as stated previously, involves the design of an equivalent 
set of MISO system feedback loops. 

The design process for these individual loops is the same as the design of a MISO system 

described in previous sections. 

Pure mathematical transformation method used in QFT design for MIMO systems tends to 
cause a larger super-margin design and is very complicated when system is of higher order. 
Comparatively, Basically Non-interacting (hereafter referred as BNIA) is commonly used in 
practical applications. Note that principle of BNIA, which will be negligible here, can be 
found in references of this chapter. 

5.2.2 Non-interacting (BNIA) loops 

A BNIA loop is one in which the output ( )
K

y s due to the input ( )
j

r s is ideally zero. Plant 

uncertainty and loop interaction (cross-coupling) makes the ideal response unachievable. 

Thus, the system performance specifications describe a range of acceptable responses for the 

commanded output and a maximum tolerable response for the uncommanded outputs. The 

uncommanded outputs are treated as cross-coupling effects. 

For an LTI plant having no parameter uncertainty, it is possible to essentially achieve zero 

cross-coupling effects, i.e., the output 0
K

y  . This desired result can be achieved by post 

multiplying P by a matrix W  to yield: 
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[ ] 0
n ijn ijn

P PW p where p for i j     

resulting in a diagonal 
n

P  matrix for P representing the nominal plant case in the set . 

With plant uncertainty the off-diagonal terms of 
n

P  will not be zero but "very small" in 

comparison to P, for the nonnominal plant cases in . In some design problems it may be 

necessary or desired to determine a
n

P upon which the QFT design is accomplished. Doing 

this minimizes the effort required to achieve the desired BW and minimizes the cross-

coupling effects.  

5.3 QFT design and simulation for a certain UAV’s lateral motion 

QFT approach for MIMO system will be applied to a certain UAV’s lateral motion in this 
section.  

5.3.1 Mathematical model of the UAV 

State equation of the UAV is generally expressed as: 

 
 
( ) ( ) ( )

( )

x t Ax t Bu t

y t Cx t





 




  (40) 

where  T

a r
X p     ;  T

rc ac
u   ;  T

Y p   ;   is sideslip angle, p is roll 

angle rate,  is yaw angle rate,  is roll angle, 
a

 is aileron deflection angle, 
rc

 is rudder 

deflection angle, 
ac

 is rudder deflection angle command input, , ,A B C are system matrix, 

input matrix and input-output matrix respectively. By way of wind tunnel test and 

mathematic method, matrices A, B and C in eqs.(40) for the small UAV can be derived. 

5.3.2 System decomposition 

The UAV’s lateral state equation described in Eq.(40) has two inputs and four outputs. 
According to QFT approach for MIMO system, we decompose Eq.(40) into two MISO 
subsystems using BNIA, one is yaw loop (loop I) subsystem, the other is roll loop (loop II) 
subsystem. QFT control structures of both loops are given in Fig.19 and Fig.20. 

 

Fig. 19. QFT control structure of loop I 

 

Fig. 20. QFT control structure of loop II 
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where ,
c c

   are sideslip angle input and roll angle input respectively; 
1 2
,g g are QFT 

controllers; 
11 22

,f f  are QFT prefilters; 
11 22

,c c  are disturbance inputs; 
11 22

,q q is controlled 

plants. 

Decomposed state equation has relationship with that of the original system as follows:  

1 0 0 0
, ,

0 0 0 1c c c
CA A B B C

 
    

 
 

Transfer function matrices P  of decomposed plant can be easily derived as  

11 121

21 22

( )c c c

p p
P C sI A B

p p
  

 
  

     

where
11

p is the transfer function from rc
 to  ;

22
p represents the transfer function from 

ac
 to 

 ;
12

p is the transfer function from rc
 to  , 

21
p represents the transfer function from 

ac
 to  .  

Next, we adopt 5 flight states to develop the QFT controllers of both loops. 

5.3.3 QFT design for loop I  

For loop I, we ensure 
1
( )sg  and

11
( )sf  meet requirements of robust stability when 

c
 acts as 

command input and 
11

c  as disturbance input. Besides, both subsystems should own ideal 

tracking performance and preferable noise restraint capability. 

1. Selection of Performance Indices. Tracking performances indices of sideslip angle are 

overshoot % 2%  , settling time 6%
s

t  . Given the original model of upper tracking 

boundary is 

 
2

2 2
( )

2
n

R

n n

U
T j

s s


 


 

  (41) 

According to %  and
s

t , damping ratio   and natural oscillation frequency 
n

  is adopted 

as 0.78 and 0.8978. Add a zero (z=-1) as close to the origin as possible without significantly 
affecting the time response(see Sec.4.4.1). This additional zero raises tracking boundary 

curve above
cf

 , the final transfer function of tracking curve’s upper boundary is 

 
2

0.806( 1)
( )

1.4 0.806
RU

s
T j

s s
 


 

 (42) 

the lower boundary original model of tracking curve as 

 
0.9

( )
0.9

RL
T j

s
 


  (43) 

Adding two poles (p1=-1, p2=-4), which locate in left half s-plane to ensure stability of 

RL
T and are as close to the origin as possible but far enough away not to significantly affect 

the time response (see Sec.4.4.1), to eq. (43) to make lower tracking boundary separate from 
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upper tracking boundary when upper tracking boundary cross over 0 dB line, then the final 
lower boundary transfer function is 

 
  
3.6

( )
( 0.9) 1 4

RL
T j

s s s
 

  
  (44) 

Stability performance index and robust performance index are respectively 

   
   

11 1

11 1

1.1
1

q s g s

q s g s



 

and  

 
   

11

11 1

0.1
1

q s

q s g s



 

Corresponding minimum amplitude margin and phase margin are respectively 

11 1.9091=5.5155dB
m u

K   ╱  

and 

1 2180 , cos (0.5 / 1) 54.062
m

           

2. Plant Template and Border Calculation for Loop I. According to the requirements of 
performance index, generate the tracking response boundary, robust stability boundary 
and inference rejection boundary in Nichols chart.  

3. Controller and Prefilter Design for Loop I. In Fig. 21(a), the open-loop frequency 
characteristics curve (noted by black solid line) of the nominal plant (corresponding to 
G(s) =1) and the compound boundary (the region embraced by green and red solid line) 
are drawn up in Nichols chart. Apparently, the open-loop frequency curve locates 
under tracking performance boundary curve, open-loop frequency characteristics curve 
cross over the instability boundary (red solid ring line in Fig. 21(a)) which make the 
MISO system of loop I instable or unsatisfactory for corresponding performance 
requirements. So, it is necessary to enlarge the controller gain and introduce into 
dynamic compensation element to shape the open loop frequency characteristic curve 
to ensure shaped open-loop frequency characteristic meet the requirtments of stability 
and dynamic performance indics. Using MATLAB QFT toolbox, we get 

     
  1

8.855 / 2.045 1 /8.68 1

/113.5 1 /907.9 1

s s
g s

s s

 


 
  (45) 

   11

1.275

/0.6 1
f s

s



  (46) 

The open-loop frequency characteristics curve with G(s) is shown in Fig.21 (b). Clearly, the 
shaped curve does not cross over the instability region (red solid ring line),i.e. the shaped 
system is stable. Besides, the characteristic of tracking boundary is met. 
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(a) Open-loop frequency response when G(s) =1 (b) Open-loop frequency response with 
controller 

Fig. 21. Open loop frequency characteristics in Nichols Chart 

4. Verification and Simulation for Loop I. Closed-loop system stability margin analysis 
curve, inference rejection boundary analysis curves and tracking boundary analysis 
curves in loop I are given in Fig.22 ,Fig.23 and Fig.24. Clearly, the stability margin 
curve, inference rejection boundary curve and tracking boundary curve are all under 
the stability performance index curve, the performance index curve and between the 
upper and lower boundaries of tracking curves. Obviously, Closed-loop control system 
satisfies the performance requirements in loop I.  
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Fig. 22. Stability margin  
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Fig. 23. Disturbance rejection boundary 
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Fig. 24. Tracking boundary 

The time-domain simulation results of closed-loop system under 5 design envelopes are shown 
in Fig.25 and Fig.26. The unit step-response of sideslip angle lies between the upper and lower 
boundary response curve; the unit step-response of disturbance input are located under the 
given boundary. Apparently, the closed-loop system satisfies the requirements of robust 
stability and tracking boundary requirements, and owns strong disturbance rejection capability. 
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Fig. 25. The unit step response of   
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Fig. 26. The unit step response of   with disturbance 

5.3.4 QFT design for loop II 

QFT design for loop II is similar to that for loop I.  

1. Selection of Performance Indices. Tracking performance indices of roll angle is 

overshoot % 5%   and settling time 12
s

st  , the upper and lower boundary tracking 

curve are respectively 

 2

0.25(1.7 1)
( )

0.78 0.25
RU

s
T j

s s
 


 

  (47) 
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   
3.6

( )
( 0.9) 1 4

RL
T j

s s s
 

  
  (48) 

Stability performance index and robust performance index are defined as  

 
 

22 2

22 2

( )
1.1

1 ( )

q s g s

q s g s
 


and 

 
22

22 2

( )
0.1

1 ( )

q s

q s g s



 

Minimum amplitude margin and phase margin are 5.5155B  and 54.062  respectively.  

2. Controller and Prefilter Design for Loop II.  

Similar to loop I, using MATLAB QFT toolbox, we can get  

 
  

  2

11.8 27.94 1 1.18 1
( )

1280 1 1926 1

s s
g s

s s

 


 
  (49) 

 
 22

1.01
( )

0.7 1
f s

s



  (50) 

3. Verification and Simulation for loop II. Closed-loop system satisfies requirements of 
robust stability and tracking boundary requirements and owns strong disturbance 
rejection capability.  

5.3.5 Performance analysis of QFT controller for the UAV’s lateral motion 

QFT control structure for the UAV’s lateral motion is shown in Fig.27 .Given 
c

  and c  are 

0, the initial value of   is 5
 , the initial sideslip angle   is 1 , substitute the UAV’s lateral 

state equation, 
1 11 2 22
( ), ( ), ( ), ( )g s f s g s f s , models of rudder and ailerons into Fig.27. The simulation 

results are shown in Fig.28 and Fig.29. The overshoot of  is about 0.064
  and settling time is 

about 1 second. The settling time of yaw angle rate, roll angle rate and roll angle are all 

about 0.1 second. Besides, the initial value of sideslip angle almost have no influence in roll 

angle response, the settling time of yaw angle rate, roll angle rate is no more than 1 second. 

Clearly, QFT controller for the UAV’s lateral motion satisfies the requirements of 

performance indices, own better flight stability and robustness. 

 

Fig. 27. QFT control structure for the UAV’s lateral motion 
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(c) Yaw angle rate  (d) Roll angle rate 

Fig. 28. Responses of sideslip angle, roll angle, yaw angle rate and roll angle rate when 

0 5    
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(c) Yaw angle rate  (d) Roll angle rate 

Fig. 29. Responses of sideslip angle, roll angle, yaw angle rate and roll angle rate when 

0 1    

6. Summary 

This chapter is devoted to presenting an overview and in-depth expression of QFT in order 

to enhance the understanding and appreciation of the power of the QFT technique. Then, A 

QFT design of robust controller for a certain UAV’s lateral motion, which is a MIMO system, 

is proposed base on BNIA principle in order to show how to apply QFT in flight control 

system of UAVs. Meantime, the simulation results show that the QFT controller own better 

robust stability and superior dynamic characteristics which verify the validity of presented 

method. 

7. Symbols & terminology 

R
T  Acceptable command or tracking input-output responses 

R
  A set of 

R
T  

D
T  Acceptable disturbance input-output responses 

D
  A set of 

D
T  

P  MISO plant with uncertainty 

  A set of P  

MIMO Multiple-input multiple-output; more than one tracking and/or external disturbance 

inputs and more than one output 

MISO Multiple-input single-output; a system having one tracking input, one or more 

external disturbance inputs, and a single output 

( ), ( ), ( )
D i K i O i

B jw B jw B jw  The disturbance, tracking, and optimal bounds on ( )
i

L j  for the MISO 

system 

h
  The frequency bandwidth 

( )
P

j   The magnitude variation due to the plant parameter uncertainty 
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Lm  Log magnitude 

LTI Linear-time-invariant 

FOM figure of merit 

b
  The symbol for bandwidth frequency of the models  

m
  The resonant frequency 

,
i

 
 

 Phase margin frequency for a MISO system and for the thi  loop of a MIMO system, 

respectively 

s
  Sampling frequency 

, { }
i

R R r  The tracking input for a MISO system and the tracking input vector for a MIMO 

system, respectively 

U RU
B Lm T  The Lm of the desired tracking control ratio for the upper bound of the MISO 

system 

L RL
B Lm T  The Lm of the desired tracking control ratio for the lower bound of the MISO 

system 

s
B  Stability bounds for the discrete design 

( )
D i

j   The (upper) value of ( )
D i

Lm T j  for MISO system 

( )
hf i

j   The dB difference between the augmented bounds of 
U

B  and 
L

B  in the high 

frequency range for a MISO system 

( )
R i

j   The dB difference between 
U

B  and 
L

B  for a given frequency , for a MISO system 

, { }
ij

F F f  The prefilter for a MISO system and the mxm prefilter matrix for a MIMO system 

respectively 

, { }
ij

G G f  The compensator or controller for a MISO system and the mxm compensator or 

controller matrix for a MIMO system, respectively. For a diagonal matrix { }
ij

G f  

,
i

   The phase margin angle for the MISO system and for the thi  loop of the MIMO system, 

respectively 

J The number of plant transfer functions for a MISO system or plant matrix for a MIMO 

system that describes the region of plant parameter uncertainty where i = 1, 2.....J denotes 

the particular plant case in the region of plant parameter uncertainty 

  The excess of poles over zeros of a transfer function 

,
o oi

L L  The optimal loop transmission function for the MISO system and the thi  loop of the 

MIMO system, respectively 

,
L Li

M M  The specified closed-loop frequency domain overshoots constraint for the MISO 

system and for the thi  loop of a MIMO system, respectively. This overshoot constraint may 

be dictated by the phase margin angle for the specified loop transmission function 

( )
i

P j  Script cap tee in conjunction with P denotes a template, i.e., ( )
i

P j  and ( )
i

Q j  

frequency, for a MISO and MIMO plants respectively 

RU
T  The desired MISO tracking control ratio that satisfies the specified upper bound  

FOM 
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RL
T  The desired MISO tracking control ratio that satisfies the specified lower bound  

FOM 

D
T  The desired MISO disturbance control ratio which satisfies the specified FOM 

UAV Unmanned Aerial Vehicle 

BNIA Basically Non-interacting 
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