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1. Introduction 

It is now well-established that the chaotic nature of the atmosphere severely limits the 
predictability of weather, while the slowly varying sea surface temperature (SST) and land 
surface states can enhance the predictability of atmospheric variations through surface-
atmosphere interactions or by providing a boundary condition (e.g., Shukla 1993, 1998; 
Shukla et al. 2000; Graham et al. 1994; Koster et al. 2000; Dirmeyer et al. 2003; Quan et al. 
2004). Among them, the influence of ocean is more important on a global scale because it 
covers twice as much surface area as land and is a much larger heat and energy reservoir. 
But the impact of ocean may not be dominant over land, especially the mid-latitude land 
(Koster and Suarez 1995).  
The Global Land-Atmosphere Coupling Experiment (GLACE) (Koster et al., 2004, 2006) 
builds a framework to objectively estimate the potential contribution of land states to 
atmospheric predictability (called land-atmosphere coupling strength) in numerical weather 
and climate models. By averaging the estimated land-atmosphere coupling strength from 12 
models participating in GLACE, an ensemble average coupling strength is obtained. 
However, the coupling strength varies widely among models. The discrepancy is certainly 
related to differences in the parameterization of processes and their complex interactions, 
from soil hydrology, vegetation physiology, to boundary layer, cloud and precipitation 
processes. It is difficult to determine what causes the relatively strong or weak coupling 
strengths seen in individual models.  
Some studies have identified the impact of soil moisture on evapotranspiration (ET) 
(denoted SM→ET) and the impact of ET on precipitation (denoted ET→P) as two key factors 
for land-atmosphere coupling (Guo et al. 2006 (hereafter GUO06); Dirmeyer et al. 2010). For 
soil moisture to have a strong impact on precipitation, both SM→ET and ET→P need to be 
strong. This usually happens in transitional zones between wet and dry climates (Dirmeyer 
2006). In addition to the mean climate state, does the climate variability have some impact 
on land-atmosphere coupling? A theoretical study found that the strength of the external 
forcing can affect the coupling strength and the location of coupling hot spots (Wei et al. 
2006). Even less is known about how the land-atmosphere coupling is related to the 
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different timescales of climate variability. The intraseasonal variability of precipitation has a 
strong influence on the soil moisture variability (Wei et al. 2008), but little has been done on 
the connection between this variability and land-atmosphere coupling. 
In this paper, we reviewed our recent work on the impact of atmospheric variability on soil 
moisture-precipitation coupling, mainly from Wei et al. (2010b) and Wei and Dirmeyer (2010). 
The paper first presents our results of GLACE-type experiments with two different 
Atmospheric General Circulation Models (AGCMs) coupled to three different land surface 
schemes (LSSs). The large-scale connections between precipitation predictability, land-
atmosphere coupling strength, and climate variability are examined, and the roles of different 
model components and different action processes in land-atmosphere coupling are 
investigated. Based on the analyses, the model estimated land-atmosphere coupling strength 
can be calibrated to account for errors in the simulation of precipitation variability, a quantity 
that is observable in the large scale and found to be closely related to the coupling strength. 

2. Models and experiments 

The two AGCMs are a recent version of the Center for Ocean-Land-Atmosphere Studies 
(COLA) AGCM (Misra et al., 2007; Kinter et al., 1997) and a recent operational version of the 
National Center for Environmental Prediction (NCEP) Global Forecast System (GFS) model. 
The COLA AGCM is configured with 28 vertical sigma levels, while GFS is configured with 
64 vertical sigma levels. They both have a spectral triangular truncation of 62 waves (T62) in 
the horizontal resolution (approximately 1.9º grid). The three LSSs are: the latest version of 
the COLA simplified Simple Biosphere model (SSiB) (based on Xue et al., 1991; Dirmeyer 
and Zeng 1999), the version 3.5 of the Community Land Model (CLM3.5) (Oleson et al., 
2004, 2008), and a recent version of the Noah land model (Ek et al., 2003). Wei et al. (2010a) 
gave a brief introduction of the recent changes of these LSSs. There are many specific 
differences among these LSSs in the parameterization of particular processes. In addition, 
the three LSSs have different numbers of soil layers and soil depths, and each uses its own 
soil and vegetation data sets. 
Two experiments are preformed in this study: 
1. GLACE-type experiments are performed with each of the six different model 

configurations. Detailed descriptions of the experiments and the indexes are in the 
Appendix. The ensemble W is the same as the standard GLACE experiment, while in 
ensemble S the soil moisture in all the soil layers is replaced, instead of only the 
subsurface soil moisture, in order to make the results from different LSSs comparable 
(see Appendix).  

2. As the two AGCMs have different precipitation variabilities (shown below), which may 
lead to different soil moisture variabilities, the purpose of experiment (2) is to 
investigate the respective impacts of atmospheric variability and soil moisture 
variability on land-atmosphere coupling. Modified GLACE-type experiments are 
performed with COLA-SSiB and GFS-SSiB. The difference from experiment (1) is that, 
in the S runs, all members of the COLA-SSiB ensemble reads the same soil moisture 
from one W run of GFS-SSiB, while all members of the GFS-SSiB ensemble reads the 
same soil moisture from one W run of COLA-SSiB. The W ensembles are the same as in 
experiment (1). Although both from SSiB, the soil moisture climatologies of the two 
model configurations will be somewhat different, but this effect should be small 
compared to that of the dramatically different variabilities driven by precipitation. 
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3. Results from GLACE-type experiments 

Fig. 1 shows the p values of total precipitation for ensembles W (16-member control 

experiment for June-July-August (JJA)) and S (soil wetness specified in all ensemble 

members from an arbitrarily chosen member of W) and their difference ( ) ( )p pS W   (see 

the appendix for complete definitions). The three indexes are generally higher when the 

LSSs are coupled to the COLA AGCM than to GFS, indicating that the difference in AGCM 

is the main reason for these differences. The impact of different LSSs, which can be seen 

from the varying spatial distributions of the indexes when coupled to the same AGCM, is 

secondary. p  shows largely similar patterns for all the six model configurations, with the 

largest values in the tropical rain belt where the SST forcing has the strongest influence 

(Shukla 1998). The patterns of ( )p W  and ( )p S  are very similar, with large differences 

( ( ) ( )p pS W  ) mainly over the regions with common high values. This indicates that the 

land-atmosphere coupling strength may be strongly influenced by the external forcing. By 

“external”, we mean the forcing is from outside of the land-atmosphere system, such as that 

from SST. The patterns of ( ) ( )p pS W   for different model configurations have much 

lower similarity than those of p  (spatial correlations are 0-0.29 for ( ) ( )p pS W   and 

0.43-0.71 for p ). For both AGCMs, coupling to SSiB produces the strongest land-

atmosphere coupling strength globally, while coupling to Noah produces the weakest. The 

differences seen should be mainly from the land models’ different connections between soil 

moisture and surface fluxes, because they are coupled to the same AGCM.  

4. A decomposed view of land-atmosphere coupling strength 

As discussed above, the slowly varying boundary forcing may play an important role in 

the similarity of the precipitation time series in different ensemble members (magnitude 

of p ). It is very likely that the “fingerprints” of these slow forcings also exist in the 

precipitation time series. An effective way to examine this is to decompose the time series 

by frequency bands. After ignoring the first 8 days of integration of each JJA to avoid 

possible problems associated with the initial shock to the model atmosphere, as in 

calculating p , there remain 84 days left for analysis. We performed a discrete Fourier 

transform (discussed in detail in Ruane and Roads (2007)) to decompose the daily time 

series into three frequency bands: fast synoptic (2-6 days), slow synoptic (6-20 days), and 

intraseasonal (20-84 days). The choice of these frequency bands is arbitrary; other 

comparable choices give similar results. Note that the time series may contain a portion of 

the seasonal cycle, but due to the length of the time series we refer the 20-84 days 

variation as intraseasonal. 
Fig. 2 shows the variance percentages of precipitation in these three bands for model 
simulations and the observationally based Global Precipitation Climatology Project One-

Degree Daily (GPCP-1DD) datasets (at 11 resolution, from 1997-2009) 
(http://precip.gsfc.nasa.gov/gpcp_daily_comb.html; Huffman et al. 2001). For a specific 
AGCM, the three model configurations are very consistent in their variance distributions. 
However, compared to the GPCP-1DD data, all the model simulations underestimate the 
high-frequency (fast synoptic) variance and overestimate the low-frequency (intraseasonal) 
variance, especially over tropics and subtropics. Multi-year simulations of these models,  
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Fig. 1. The GLACE parameter Ω for precipitation from ensembles (left column) W and 
(middle column) S, and (right column) their difference. The six rows are for six different 
model configurations. The global mean (land only) value of each panel is shown at the left 
corner. 

have similar variance percentage distributions as these GLACE-type simulations (not 

shown).  

For theoretical white noise, the variance at each frequency is the same, so the variance 

percentages are determined by the widths of the frequency bands. Therefore, the variance 

percentages of the above three bands (from fast to slow) for white noise are: 69%, 21%, and 

10%, respectively. Overall, both the model results and observations follow a red spectrum, 

with variance percentages less than white noise values at high frequencies and greater than 

white noise values at low frequencies. 

In Fig. 2, the spatial correlations between ( )p W  and the percentage of intraseasonal 

variance (IV) are high (right column), but the correlations of ( )p W  with the other two 

frequency bands are negative (left two columns). Ensemble S (not shown) shows similar 

results as ensemble W. This demonstrates that regions with a larger percentage of IV tend to 

have a higher value of p , no matter whether soil moisture is interactive (W) or not (S).  
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Fig. 2. The average variance percentages of JJA daily precipitation time series in three 

frequency bands: fast synoptic (2-6 days; left column), slow synoptic (6-20 days; middle 

column), and intraseasonal (20-84 days; right column). The top six rows are from six 

different model configurations (all from ensemble W; ensemble S has similar results), and 

the bottom row is from the observationally based dataset of GPCP-1DD. The value (or three 

values) at the left corner of each panel is the global mean percentage, (the spatial 

correlations of the variance percentage with ( )p W , and with ( ) ( )p pS W  ). The GPCP-

1DD datasets are shown at 1°×1° grid; interpolating them to model grid does not affect the 

results. 
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This is not unexpected because, as we discussed above, most of the precipitation 
predictability (or p ) is from the slowly varying boundary forcing. Regions with stronger 
boundary forcing may be constrained to show more low-frequency variation and the 
precipitation time series will be more similar in an ensemble (larger p ). For ensemble S, 
the prescribed soil moisture is also one of the slow boundary forcings. However, compared 
to the ensemble without the constraint of this slow forcing (W), ensemble S does not show 
significant change in the global pattern of variance distribution (ensemble S does show 
overall less low-frequency variance and more high-frequency variance than ensemble W 
because of the lack of soil moisture interaction (Delworth and Manabe 1989)). These results 
show that different land models or land states do not matter much for the global pattern of 
precipitation variance distribution, which may be determined by other factors such as global 
climate (SST, radiation etc.) and the convection scheme. Ruane and Roads (2008) obtained 
similar results from a global assimilation system. They found that two different land models 
did not produce a noticeable difference in variance distribution of precipitation, but two 
different convection schemes can have significantly different effect. Wilcox and Donner 
(2007) also showed that the convection parameterization of a GCM can greatly impact the 
frequency distribution of rain rate, and their model with relaxed Arakawa-Schubert 
formulation of cumulus convection (also used in COLA AGCM) exhibit a strong bias toward 
excessive light rain events and too few heavy rain events. 

The above shows that neither the land model nor soil moisture has a great impact on the 

global pattern of precipitation variability and predictability. However, their impact may be 

strong at regional scales. The difference ( ) ( )p pS W   shows the impact of soil moisture. It 

tries to remove the effects of the same strong external forcing on both S and W and highlight 

the role of soil moisture, although we understand that the effects of those forcing cannot be 

completely removed in a nonlinear system (more discussion on this aspect follows). The 

spatial correlations between percentage of IV and ( ) ( )p pS W   are also shown in Fig. 2 

(as the last number in right column). They are generally weaker than the correlation with 

p , indicating that something other than the low-frequency external forcing is playing an 

important role in ( ) ( )p pS W  . This should be the impact of soil moisture. 

Wei et al. (2010b) demonstrates that the pattern of p  and ( ) ( )p pS W   in Fig. 1 can be 

reproduced by using only the time series of intraseasonal precipitation variation (higher 

frequencies filtered out), and the time series of the other two frequency bands result in very 

weak values. This is because the intraseasonal component of precipitation, mostly caused by 

the same low-frequency external forcing, has high consistency among the ensemble 

members, while the high frequency component of precipitation, mostly from chaotic 

atmospheric dynamics, is generally incoherent among the ensemble members. This result 

indicates the importance of IV in the estimation of land-atmosphere coupling. 

The overestimation of low-frequency variance shown in Fig. 2 is also consistent with the 

overestimation of precipitation persistence shown in Fig. 3. The lag-2-pentad autocorrelation 

of precipitation (ACR) shown here is also an indicator of the percentage of low-frequency 

precipitation variance, and it has similar spatial distributions as the percentage of IV but is 

much easier to calculate. More importantly, its spatial distributions are more similar to that 

of ( )p W  than the percentage of IV, as can be seen from the much higher spatial 

correlations (Fig. 3). This is probably because the percentage of IV only considers the 

variation at a certain frequency band (20-84 days here) but ACR considers the general 
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persistence and is not restricted by certain frequencies. It can also be seen in Fig. 3 that the 

precipitation variability of GFS is overall closer to that of GPCP data (Xie et al. 2003) than 

the COLA AGCM, which may affect the accuracy of the simulated land-atmosphere 

coupling. This will be discussed next.  
This model bias has also been shown in some other studies and by comparing with other 
observational datasets. Although the observational datasets have uncertainties and errors, 
Sun et al. (2006) found that no matter what observational dataset is used, this model bias is 
relatively large compared to the uncertainties among observations. This bias of the models 
may be related to a well-known problem in AGCM parameterizations: premature triggering 
of convection so that precipitation falls too frequently but too light in intensity (Trenberth et 
al. 2003; Sun et al. 2006; Ruane and Roads 2007). 
 

 

Fig. 3. The JJA lag-2-pentad autocorrelation (ACR) of pentad precipitation time series for 
(top six) different model configurations and (bottom) GPCP data. The model data are from 
16 ensembles of W (sample size 16x16=256) , while the GPCP data are  from16 years (1987-
2002) to match the sample size of the models. Values larger than 0.12 are over 95% confidence 
level. Seasonal cycles are not removed in this calculation; removing them can lead to results 
with similar patterns but smaller amplitude. 
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5. Respective role of land and atmosphere in soil moisture-precipitation 
coupling 

The above has shown that the low-frequency precipitation variability has an indirect but 
important connection to the computed land-atmosphere coupling. More low-frequency 
precipitation variability in the model can lead to higher precipitation predictability ( p ) 
and stronger land-atmosphere coupling ( ( ) ( )p pS W  ). Therefore, there are three 
different processes involved: SM→ET, ET→P, and precipitation variability. What is the 
relationship among them? GUO06 separated SM→ET and ET→P based on a post hoc 
analysis, but they did not explicitly separate the role of soil moisture and atmosphere 
because ET is strongly affected by precipitation and radiation; the variability of ET is an 
approximation of low-frequency atmospheric variability. Thus SM→ET inevitably includes 
some information from atmosphere, including precipitation variability. The multi-model 
coupling approach provides a unique tool to estimate the respective impacts of the AGCMs 
and LSSs on the coupling, and only by this approach can the role of atmosphere and land be 
completely separated.  
Although the above experiment shows the dominant role of the AGCMs in land-atmosphere 
coupling, it is still uncertain what are the roles of land and atmosphere in the coupling 

because the characteristics of the AGCMs may also affect land and its response. How 
important is the land response compared to the characteristics of the atmosphere (including 
atmospheric variability, sensitivity of precipitation to ET, etc.)? As the precipitation has 
more persistence in the COLA AGCM than in GFS, this attribute of precipitation variability 

is stored in the soil moisture, with more sustained soil states when the LSSs are coupled to 
the COLA AGCM than coupled to GFS (not shown). In order to investigate the impact of 
soil moisture variability on the coupling, in experiment (2) we exchange the prescribed soil 
moistures for COLA-SSiB and GFS-SSiB in ensemble S. This forces the models to see 

different soil moisture variabilities from their original S ensembles, and there is no change to 
the W ensembles. The resulting impacts on precipitation predictability (or coupling 

strengths) are shown in Fig. 4 (denoted ( ') ( )P PS W  ). It can be seen that, compared to 

the original coupling strength in Fig. 1, the modified coupling strength are overall weaker 
for COLA-SSiB and stronger for GFS-SSiB, but COLA-SSiB still has much stronger coupling 
strength than GFS-SSiB. This indicates that the impact of soil moisture variability may have 

some impact on the land-atmosphere coupling, but the characteristics of the atmosphere 
appear to be more important, at least for the case here. Note that the above action processes 
may be model dependent and vary spatially, but it is important to know that the 
atmospheric variability may also impact the coupling strength indirectly through land. 

Therefore, the precipitation variability impacts soil moisture-precipitation coupling both 
directly in the atmosphere and indirect through land (Fig. 5). More low-frequency 
variability of soil moisture usually means more sustained dry and wet periods and stronger 

low-frequency evaporation variation, which can lead to a more robust precipitation 
response (higher predictability and coupling strength). The direct impact of precipitation 
variability on soil moisture-precipitation coupling has been discussed in section 4 and more 
discussion follows.  

GUO06 calculated SM→ET as ( ( ) ( )) ( )E E ES W W   , where E  is defined as in (A1) but 

for ET, and ( )E W  is the standard deviation of the 6-day average ET for the W runs. This 

definition considers two factors: a robust ET response to soil moisture ( ( ) ( )E ES W  ) and 
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Fig. 4. Same as the right column of Fig. 1, but (top) the S runs of COLA-SSiB read soil 
moisture from a W run of GFS-SSiB, and (bottom) the S runs of GFS-SSiB read soil moisture 
from a W run of COLA-SSiB (from Wei and Dirmeyer 2010). 

a high variability of ET ( ( )E W ). For soil moisture to have a strong impact on ET, both of 

them need to be sufficiently high. ET→P is simply calculated by GUO06 as the ratio of 

( ) ( )P PS W   to SM→ET. (GUO06 introduced one more method for calculating ET→P, 

which produces similar results.) As mentioned, this diagnostic of SM→ET should be 

affected by the variability of precipitation and radiation. The experiment (2) above also 

demonstrates this indirectly. To verify this in another way, we calculate the inter-model 

correlation between ACR and SM→ET across the 12 GLACE models (Koster et al., 2006) (a 

correlation with a sample size of 12). We show results from GLACE models because we do 

not want our results to be limited to the models we use. It can be seen in Fig. 6a that there is 

substantial positive correlations between ACR and SM→ET over the globe, supporting our 

conjecture on the relationship between precipitation variability and SM→ET. The 

correlations between ACR and ET→P and between SM→ET and ET→P are both very low 

(Fig. 6b, 6c), suggesting that they are largely independent.  
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Fig. 5. Schematic of the impact of precipitation variability on soil moisture-precipitation 
coupling.  

 

 

Fig. 6. The correlations between (a) ACR and SM→ET, (b) ACR and ET→P, and (c) SM→ET 
and ET→P across the 12 models participating in GLACE. The values over 0.576 are 
significant at the 95% level (from Wei and Dirmeyer 2010). 
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6. Conceptual relationships 

The above analysis shows that the spatial distribution of both ( )P W  and ( )P S  are 

largely consistent with that of the low-frequency variability of the atmosphere, which may 

come from the slow external forcing or internal atmospheric dynamics. We denote it as F. F 

can be measured by the percentage of IV or ACR, and we have shown above that ACR is a 

better metric. The conceptual relationship between p , F, and the impact of soil moisture 

  is given as 

 0( )p F       (1)  

where 0  is a constant, and 0  >>   over most regions. Thus, the spatial variation of p is 

largely determined by F, which is consistent with the analysis above. F is similar for both 
ensemble W and ensemble S, so the coupling strength  

 ( ) ( ) ( ( ) ( ))p pS W F S W      ,  (2) 

where ( ) ( )S W   is the difference of   between the two ensembles and can be further 

expanded to SM→ET and ET→P. Therefore 

 ( ) ( ) ( )P PS W F SM ET F ET P       , (3)  

where SM→ET is a function of F and some other model parameterizations. All the three 

factorsF, SM→ET, and ET→P may impact the coupling strength. The impact of F is 
separated from that of SM→ET because the impact of the atmosphere can be independent of 
the land surface. This multiplicative form of the equation considers the nonlinear 
combination of the factors. When SST is prescribed, F is mainly a property of the AGCM, 
especially the convection scheme. SM→ET is affected by both the LSS and the AGCM, and 
ET→P is mainly determined by the AGCM, especially the convection and boundary layer 
parameterizations. This decomposition, although is still conceptual, integrates our current 
understanding on land-atmosphere coupling, and it makes diagnosing land-atmosphere 
coupling much easier. 
GUO06 only partly considers the impact of F (through SM→ET) and attributes the rest of the 

coupling strength to ET→P. They found that, for the 12 GLACE models, SM→ET has 

stronger correlation with the coupling strength than ET→P, and concluded that SM→ET is 

the main cause of the differences in the coupling strength. However, we show that the 

differences in SM→ET can be partly attributed to the impact of atmospheric variability, so it 

is still hard to say whether the different AGCMs or the different LSSs is the main cause of 

the differences in coupling strength. In spite of that, for our six model configurations here, 

the multi-model coupling method has clearly shown that the difference between the 

AGCMs is the main reason. It remains possible that the differences among the three LSSs are 

unusually small or the differences between the two AGCMs are unusually large. 

7. Calibration of the estimated GLACE land-atmosphere coupling strength 

In order to examine whether our results on the overestimation of low-frequency variance 

and its relationship with p  also apply to other models, we look at the GLACE dataset 
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Fig. 7. Same as Fig. 3, but for the 12 models participating in GLACE (all from ensemble W; 
ensemble S has similar results). The first value at the left corner of each panel is the global 
mean (land only), and the second value (in the parentheses) is the spatial correlation of ACR 

with ( )p W . 

(Koster et al. 2006). Fig. 7 shows the ACR for 12 models participating in the GLACE, and 

their respective spatial correlations with p . Similar to our model simulations above, 

ensemble S (not shown) shows very similar results to ensemble W. Also, all the models here 

have overestimated the mean ACR compared to the GPCP results, and their average is 

about double the ACR of GPCP (Fig. 8). The spatial correlations of ACR and p  are always 

high; even the lowest value (0.5 from GFS/OSU) is well over the 99% confidence level 

(assume the grid points are independent). Therefore, the GLACE models and our models 

show similar relationships between p  and ACR.  
We have shown that the estimate of precipitation predictability caused by soil moisture 

( ( ) ( )P PS W  ) is closely related to the atmospheric low-frequency variability F but the 

models generally overestimate it. The influence of F on ( ) ( )P PS W   is obviously shown 

in equations (2) and (3). However, we cannot conclude that the land-atmosphere coupling 
strength estimated by GLACE is overestimated, because other important factors (SM→ET 
and ET→P) are still not observed at large scale. Nonetheless, we may assume that the other 
factors from the model ensemble are better than that of most individual models, and try to 

correct F to make ( ) ( )P PS W   possibly closer to reality. Roughly, we calibrate the 

average ( ) ( )P PS W   for the 12 models at each grid point (all interpolated to a common 

2.52.5 grid as GPCP data): 

 
(obs)

( ( ) ( )) ( ( ) ( ))
(models)

P P calibrated P P

ACR
S W S W

ACR
     ,  (4) 
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where ACR(obs)/ACR(models) is the ratio of ACR for GPCP data and the average ACR for 

the 12 models. This method tries to correct F by scaling it with a ratio of observed and 

modeled precipitation ACR. The GPCP-1DD data is used as ground truth observations. The 

ACR is calculated from ensemble W instead of ensemble S because it corresponds more 

closely to the real world (soil moisture is interactive). Note that the precipitation time series 

also contains a slice of the seasonal cycle during JJA, which is consistent with GLACE 

analysis. The predictability from seasonal variation is also important, because not every 

model can produce an accurate seasonal cycle. This calibration method considers model 

biases in both intraseasonal and seasonal variances. If removing the predictability from the 

seasonal variation, the coupling strength will be weaker but the patterns are similar (not 

shown).   

 

 

Fig. 8. Same as Fig. 3, but (top) for the average of 12 models participating in GLACE and 
(bottom) GPCP (same as in Fig. 3). 

Although the spatial correlations between p  and the ACR are very significant for all the 

models, the strong connection between p  and F described in equation (1) may not happen 

over all the regions. The noise may damp the connection in some cases. We then calculated 

the correlation between p  and ACR across the 12 GLACE models (a correlation with a 
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sample size of 12; Fig. 9). It indicates a general connection between p  and ACR for all the 

12 models at each grid point. The regions with strong positive correlation are where p  and 

ACR have a strong connection for almost all the models. Over other regions where the 

correlation is positive but not so strong, their relationship may not be so consistent for the 

models but larger F can generally lead to larger p . We can see in Fig. 9 that over 95% of 

the land areas show positive correlations and more than half land areas show significant 

correlations (at 95% level), which supports our assumptions on their relationship.  
Based on the above analysis, we perform a calibration over the regions where the correlation 
in Fig. 9 is over 95% confidence level (0.576), using equation (4). The results are shown in 
Fig. 10. It can be seen that the coupling strength reduces by about 20% after calibration, but 
global pattern is similar to the original one. The coupling strength is significantly weakened 
over US Great Plains, Mexico, and Nigeria. The pattern over India and Pakistan changes a 
little. In Wei et al. (2010b), we have preformed a similar calibration using the percentage of 
IV instead of ACR. The results are largely similar, but the coupling strength over US Great 
Plains weakened less.  

Due to the changing and heterogeneous nature of the relationship between p  and F, our 

calibration method is not flawless. However, the results illustrate how the amplitude and 

distribution of coupling strength may change after some rectification of the model bias. The 

unique design of GLACE makes its results difficult to evaluate by directly comparing them 

with observational variables, even if these large-scale observations exist, because the 

GLACE metric is based on ensemble statistics, and observations present us with only one 

“ensemble member”. Some recent studies using observational based data have cast doubt on 

the strong coupling strength in the Great Plains (Ruiz-Barradas and Nigam 2005, 2006; 

Zhang et al. 2008), but whether their results are comparable to the GLACE result need 

further study. On the other hand, Wang et al. (2007) have shown that less restrictive metrics 

than measuring ensemble coherence, such as the change in overall precipitation variance 

between S and W cases, reveals even more areas of apparently strong coupling strength. 
 

 

Fig. 9. The correlation between ( )P W  and ACR across the 12 models participating in 

GLACE. 
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Fig. 10. The estimated land-atmosphere coupling strength ( ( ) ( )P PS W  ). (a) From the 

original GLACE dataset. (b) Calibrated result. Only the regions where correlation in Fig. 8 
exceeds 0.576 (95% confidence level) are calibrated. The global average value is shown at the 
left corner of each panel. 

8. Conclusions and discussion 

Coupling one AGCM to three different land models gives us an unprecedented opportunity 
to study the role of different components in land-atmosphere interaction. The behavior of 
the coupled models and their land-atmosphere interaction are investigated by a set of 
GLACE-type experiments. It is found that the two AGCMs determine the overall spatial 
distribution and amplitude of precipitation variability, predictability, and land-atmosphere 
coupling for the six model configurations. The impact of different LSSs is mostly regional. 
Different LSSs or soil moisture have little influence on the global pattern of precipitation 
predictability and variance distribution because of the stronger control of other factors. The 
estimated precipitation predictability and land-atmosphere coupling strength is closely 
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related to the low-frequency variability of atmosphere, which can impact land-atmosphere 
coupling both directly in the atmosphere and indirectly through soil moisture response to 
precipitation. Based on these findings, the land-atmosphere coupling strength is 
conceptually decomposed into the impact of low-frequency precipitation variability, the 
impact of soil moisture on evapotranspiration (ET), and the impact of ET on precipitation. 
As most models participating in GLACE have overestimated the low-frequency component 
of precipitation, a rough calibration to the GLACE-estimated land-atmosphere coupling 
strength is performed. The calibrated coupling strength shows a similar global pattern, but 
is significantly weaker over some regions, like US Great Plains and Mexico. 
We discussed the land-atmosphere coupling strength based on the index defined in GLACE, 
which emphasizes the temporal coherency of the precipitation time series among the 
ensemble members. Analysis with another index defined by Wang et al. (2007), which 
emphasizes the relative divergence of mean precipitation, does not show significant overall 
differences in the coupling strength between GFS and COLA AGCM configurations. This 
suggests the important role of atmospheric variability in determining the different GLACE 
coupling strengths of GFS and COLA AGCM configurations. 

The integration period of these GLACE-type experiments is JJA, so the longest timescale in 

this study is intraseasonal. The effect of land may be different for longer timescales. Our 

judgment on the connections between external forcing, low-frequency precipitation 

variability, and p  and ( ) ( )P PS W   is based on model results so may not be absolutely 

true in reality. Some intraseasonal variations of precipitation may not come from external 

forcing but from the flow instabilities (especially in midlatitudes; e.g., Charney and Shukla 

1981) that are not fully understood nor properly simulated. The observational datasets used 

in this study are all based on satellite observations, and they may have consistent biases. In 

spite of these limitations, this study qualitatively separates the role of external forcing and 

local soil moisture on precipitation variability and predictability, and increases our 

understanding of land-atmosphere interaction.  

9. Appendix 

9.1 Global Land-Atmosphere Coupling Experiment (GLACE) 
GLACE (Koster et al. 2004, 2006) is a model inter-comparison study focusing on evaluation 
of the role of land state in numerical weather and climate predictions. It consists of sets of 
16-member ensembles of AGCM experiment (we only discuss two sets here). Ensemble W as 
a set of free runs with different initial land and atmosphere conditions but forced by the 
same SST from 1994, and ensemble S is the same as ensemble W except that, at each time 
step, the soil moisture in all the soil layers is replaced by that from one member chosen from 
ensemble W (all members of S have the same soil moisture). This is a little different from 
that of the standard GLACE experiments, where only subsurface soil moisture was replaced 
in the S ensemble. We design the experiments in this way to make the results from different 
LSSs more comparable; it has been shown that the upper layer of Noah model is responsible 
for an unusually large part of evapotranspiration (Zhang et al. 2010). All runs cover the 
period of 1 June-31 August, 1994. A diagnostic variable Ω was defined in GLACE: 

 


16 2

X   2

X

15 2
X ,    (A1) 

www.intechopen.com



 
Impact of Atmospheric Variability on Soil Moisture-Precipitation Coupling 

 

33 

where 2
X  is the intraensemble variance of variable X, and 2

X    is the corresponding 

variance of ensemble mean time series. In calculating the variance, the first 8 days of data of 

each run is discarded to avoid model initial shock, and the remaining 84 days are 

aggregated into 14 six-day totals. Therefore, 2
X  is a variance across 224 (1614) six-day 

totals from all the ensemble members, and 2
X    is a variance across 14 six-day totals from 

the ensemble mean time series.  

Theoretically, if the 16 members of an ensemble have identical time series of X, 2
X    will 

be equal to 2
X  and  will be 1; if the X time series of the 16 members are completely 

independent, 2
X    will be equal to 2 /16X  and  will be 0. Without sampling error,  

will range between 0 and 1. Ω measures the similarity (or predictability) of the time series in 

16 ensemble members. Analyses show that Ω emphasizes the temporal coherency, or the 

phase relationship, more than the mean and temporal variance of the time series (Wang et 

al. 2007; Yamada et al. 2007). Mathematically, Ω is equivalent to the percentage of variance 

caused by the slowly varying oceanic, radiative, and land surface processes (Koster et al. 

2006; Yamada et al. 2007). The difference of Ω from the two ensembles, ( ) ( )S W  , is then 

equivalent to the percentage of variance caused by the prescribed soil moisture, and is a 

measure of land-atmosphere coupling strength in GLACE. 
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