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1. Introduction 

Avian models of human atherosclerosis such as the chicken, turkey, quail, and pigeon are not 

currently in widespread use, but have a longer and richer history than most mammalian 

models of cardiovascular disease.  In 1874, the first angioplasty surgery of the aortic wall was 

performed in birds (Roberts & Strauss, 1965). Spontaneous (non-induced) atherosclerosis in 

the chicken was first described in 1914 (Roberts & Strauss, 1965), and it has been repeatedly 

observed that avian lesions bear close resemblance to their human counterparts (Clarkson et 

al., 1959; Herndon et al., 1962; Cornhill et al., 1980b; Qin & Nishimura, 1998). The pigeon 

(Columba livia) is especially suited for genetic studies of atherosclerosis because susceptible and 

resistant strains exist in the natural population (Herndon et al., 1962; St. Clair, 1983) 

eliminating the need to construct an artificial phenotype through genetic or dietary 

manipulation. In fact, it has been suggested that the White Carneau (WC) pigeon may be one 

of the most appropriate models of early human lesions (Cornhill et al., 1980b; St. Clair, 1998; 

Moghadasian et al., 2001). This review is comprised of background information on human 

atherosclerosis, a description of other animal models and details of the pigeon model. 

Atherosclerosis is the most common form of heart disease, a general term encompassing a 

variety of pathologies affecting the heart and circulatory system. More specifically, 

atherosclerosis is a disease of the blood vessel itself, and is most likely to develop at branch 

points and other regions of low shear stress along the arterial tree, such as the celiac 

bifurcation of the aorta, and in coronary and carotid arteries (Bassiouny et al., 1994; Kjaernes 

et al., 1981). The disease is a chronic and multifactorial result of both environmental and 

genetic factors, as well as their interactions (Breslow, 2000; Moghadasian et al., 2001). It 

remains the number one cause of morbidity and mortality in the United States and other 

developed countries (Gurr, 1992; Wagner, 1978). 

Arterial lesions begin to develop during childhood as lipid-filled foam cells making up 

“fatty streaks” (Napoli et al., 2002; Stary, 1989), and slowly progress into complex plaques 

consisting of multiple cell types, intra- and extracellular cholesterol esters, calcium deposits, 

proteoglycans, and extensive connective tissue. The final and terminating atherosclerotic 

event is blood vessel occlusion, often caused by plaque rupture, which can lead to a heart 

attack, stroke, or embolism, depending on the location of the affected artery. However, not 

all fatty streaks progress to advanced lesions (Getz, 2000), and their progression/regression 

rate, although well correlated with classical risk factors, is unique to each individual.  
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Clinical symptoms do not usually appear until later in life (Munro & Cotran, 1988; Stary, 
1989). Therefore, research and intervention strategies have focused on delaying the 
progression of plaque formation rather than preventing the appearance of foam cells or fatty 
streaks. There is a strong familial component to all forms of heart disease, and many genetic 
disorders have been identified that contribute to lesion progression and the probability of 
plaque rupture in the general population. However, little is known about the specific genes 
that determine predisposition to the disease, nor how these genes interact with each other 
and the environment to initiate atherosclerotic foam cell formation in any one individual.  

2. Human atherogenesis 

2.1 The observed beginning: Foam cells and lesion development 
In human lesions, early foam cells originate primarily from vascular smooth muscle cells 

(VSMC) [Wissler et al., 1996]. They are the first cell type to appear in susceptible regions of 

the aorta (Balis et al., 1964; Ross & Glomset, 1973), and the most abundant cell type in 

developing fatty streaks (Gabbiani et al., 1984; Katsuda & Okada, 1994; Mosse et al., 1985, 

1986; Wissler et al., 1996;). Early electron microscopy studies noted that VSMC were often 

filled with lipid when there was no lipid in either existing macrophages or in the 

extracellular space, but the reverse was never observed. 

Since those observations, multiple investigators have reported that abnormal VSMC 

accumulation in susceptible aortic regions precedes the actual lipid accumulation (Mosse et 

al., 1985; Ross & Glomset, 1973). Atherosclerotic foam cells can be derived from both VSMC 

and macrophages (Adelman & St. Clair, 1988; Wissler et al., 1996), depending on their 

physical location (Strong et al., 1999) and the cause of initiation. For example, plaques that 

develop along the descending thoracic aorta have more macrophages than VSMC, whereas 

plaques along the abdominal aorta and coronary arteries are comprised mostly of VSMC, 

with very few macrophages. Human thoracic plaques are very rare, and those that do 

progress are usually secondary to other chronic conditions such as hypertension and 

hyperlipidemia (Wissler et al., 1996).  

Although VSMC are the first cell type to accumulate lipid and initiate the fatty streak 

(Doran et al., 2008), much emphasis is placed on macrophage foam cells rather than 

myogenic foam cells. Macrophage-derived foam cells are quick to develop into lesions and 

are easy to induce with a high-fat and/or high-cholesterol diet (Knowles & Maeda, 2000; Xu, 

2004; Zhang et al., 1992), in common animal models of human atherosclerosis, especially 

transgenic mice. Unlike VSMC, which can alternate between contractile and synthetic 

phenotypes, macrophage cells do not change during the disease progression, and so are 

easier to identify in the laboratory under controlled conditions.  

Greater emphasis on macrophage-derived foam cells is problematic because the pathogenic 

lipid accumulation mechanism appears to be dissimilar for the two cell types. Also, rather 

than being a primary initiative event in humans, the arrival of macrophages appears to be a 

secondary response, as they are far more common in advanced plaques than in early lesions 

(Balis et al., 1964; Nakashima et al., 2007; Stary, 1989; Wissler et al., 1996; Zhang et al., 1992;). 

2.2 Atherogenesis risk factors 
Major physiological conditions such as high blood cholesterol, high blood pressure, 
diabetes, a skewed lipoprotein profile, heredity, advanced age, and maleness can increase an 
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individual’s chance of developing atherosclerosis. Collectively, these risk factors, along with 
lifestyle patterns such as physical inactivity, smoking, obesity, and stress have been 
statistically correlated with specific stages of lesion development, plaque stability, and 
overall disease outcome in the general population. Although genotype clearly influences 
many quantitative traits such as LDL/HDL levels, blood pressure, and adiposity (Gibbons 
et al., 2004), progress has been made on minimizing the effects of the controllable risk factors 
in order to disrupt, delay, reverse, or otherwise deter plaque rupture and aortic occlusion in 
high risk individuals. 
Despite moderate success, especially in the realm of cholesterol-lowering drugs, unknown 

genetic factors continue to influence both the age of onset as well as the frequency/severity 

of clinical symptoms (Funke & Assmann, 1999). Unfortunately, by the time most people 

manifest clinical symptoms, it is too late to implement preventative measures because the 

disease is well into the progressive stage. Early identification of susceptible individuals 

allows timely therapeutic treatment. Less than 50% of the mortality risk from coronary heart 

disease can be explained by currently recognized risk factors (Ridker, 2000), even with early 

diagnosis. 

In order to understand events in the at-risk population that remain unidentified under 

current screening methods, the specific contributions of heredity, diet, and lifestyle 

influences on atherogenesis and progression must be determined. Towards this end, 

research emphasis has recently shifted towards identifying cardiovascular disease markers 

that may be detectable prior to the manifestation of clinical symptoms.  Markers are simply 

variations in alleles that are known to associate with a specific disease phenotype. Markers 

do not necessarily cause the disease, but can be used to improve diagnosis and risk 

assessment (Gibbons et al., 2004). Inflammatory markers such as C-reactive protein (CRP) 

factors [Tsimikas et al., 2006; Ridker, 2000] plus markers of oxidative damage such as 

myeloperoxidase (Shao et al., 2006) and paraoxanase (Visvikis-Siest & Marteau, 2006) have 

already increased clinicians’ predictive power. As more markers of atherosclerosis are 

correlated with disease progression and outcome, the genetic variation contributing to 

predisposition and initial manifestation will become clear.  

Until the genetic basis for susceptibility to atherosclerosis is understood, correlation of 

various risk factors with specific metabolic or pathological features will be difficult to assess, 

and efforts for prevention will remain equivocal. Understanding the inheritance 

mechanisms for atherosclerosis is an important step towards reducing the morbidity and 

mortality from the disease by customizing intervention strategies for individuals based 

upon unique genotypes and environmental risk exposures.  

3. Genetic defects in human atherogenesis 

The relative risk for atherosclerosis is clearly higher in individuals with a familial history 
compared with those having a susceptible lipid profile  (Funk & Assmann, 1999; Ordovas & 
Shen, 2002; Palinski & Napoli, 2002).  Many studies have explored the relationship, or 
concordance, between heredity and atherosclerosis. Heritability for early-onset coronary 
heart disease has been estimated at 0.63 (Galton & Ferns, 1989). The relationship becomes 
even clearer after analyzing concordance in twin studies. Twins fertilized from one egg 
(monozygotic) have a concordance rate of 0.83, whereas twins that arose from two separate 
fertilizations (dizygotic) demonstrate a concordance rate of 0.22 (Galton & Ferns, 1989). 
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These concordance values suggest an intimate relationship between the genotype of an 
individual and the incidence of heart disease. The fact that the concordance rate in 
monozygotic twins is less than 1.0 (indicating 100% correlation) most likely reflects the 
attenuating environmental effects on atherosclerosis initiation and progression. This gap in 
causality underscores the importance of understanding the genetic profile of a client before 
attempting intervention, because even among those sharing the same set of alleles, the 
atherosclerosis phenotype will vary depending on individual exposures. 
Genetic research on human atherosclerosis has focused primarily on the role of cholesterol 
metabolism.  It is estimated that several hundred genes (Ordovas & Shen, 2002) are involved 
in the absorption, conversion, transport, deposition, excretion, and biosynthesis, of 
cholesterol and other lipid substrates in the body (Knowles & Maeda, 2000; Stein et al., 
2002). Very few of these genes have been characterized. A defect in any of these pathways 
may contribute to atherosclerotic susceptibility, because the net result can be a significant 
increase in plasma lipoprotein concentration, especially LDL, and/or the inappropriate 
deposition of cholesterol in peripheral tissues such as skin, tendons, and arteries (Garcia et 
al., 2001). 
Blood lipid homeostasis and cellular cholesterol metabolism are highly regulated (Attie, 

2001). Genetic defects have been found to impact overall cholesterol metabolism at many 

steps. In humans, most plasma cholesterol is in the form of LDL, having a half-life of 

about 2.5 days (Goldstein & Brown, 2001). Some of the cholesterol component of LDL is 

transferred to HDL via the action of cholesterol ester transfer protein (CETP). However, 

as much as 70% of LDL is removed from the blood by LDL receptors (LDLR) in the liver 

(Garcia et al., 2001). A variety of single gene defects have been identified that increase 

the incidence of atherosclerosis by influencing the LDLR activity (Funke & Assmann, 

1999).  

Probably the most studied of these LDLR defects is familial hypercholesterolemia (FH), an 

autosomal dominant Mendelian disorder (Brown et al., 1981; Funke & Assmann, 1999; 

Goldstein & Brown, 2001).  This mutation renders the hepatic receptors nonfunctional, so 

that they are unable to clear circulating LDL from the blood. A second type of 

hypercholesterolemia, autosomal recessive hypercholesterolemia (ARH), also impacts the 

LDLR (Garcia et al., 2001; Goldstein & Brown, 2001). ARH is similar to FH, in that both of 

these hereditary defects result in chronically elevated blood cholesterol. This imbalance has 

the potential to change the physiology of the arterial wall, making it exceptionally 

vulnerable to atherogenesis.  However, unlike FH, the LDLR in ARH, are believed to be 

functional, but their altered location in the liver makes them inaccessible to circulating LDL. 

Brown and Goldstein also identified a single gene defect known as familial ligand defective 

apoB-100, the primary human LDL (Fielding et al., 2000) apoprotein. This inherited defect 

lies in the composition and binding capacity of the apoB-100 to the LDLR, decreasing the 

ability of the LDL to be picked up by the LDLR (Goldstein & Brown, 2001; Gurr, 1992). In 

the healthy human aorta, LDL particles are thought to be incorporated into SMC by receptor 

mediator endocytosis. Chemically modified or oxidized LDL enters via scavenger receptors. 

Once inside the cell, the LDL cholesterol esters (CE) are transported to the lysosomes where 

they are hydrolyzed by lysosomal acid lipase (LAL), also known as acid cholesterol ester 

hydrolase (ACEH). This enzyme breaks each CE into its free fatty acid (usually linoleate), 

and free cholesterol. There are several known LAL gene mutations that result in the 

abnormal accumulation of cholesterol esters in the lysosome. 
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Two of the more common lysosomal storage disease phenotypes of a LAL mutation are 

Wolman’s Disease (Kuriyama et al., 1990; Lohse et al., 1999) and cholesterol ester storage 

disease (CESD). Both are inherited as an autosomal recessive trait, although Wolman’s 

disease is usually fatal within the first year of life, and so not directly related to 

atherogenesis in the general population. However, individuals with CESD do demonstrate 

premature atherosclerosis, in addition to accumulating CE and triglycerides (TG) in the 

liver, adrenal glands and intestines (Pagani et al., 1996). Niemann-Pick Type C is a third 

form of lysosomal storage disease that directly impacts cholesterol metabolism at the 

cellular level (Blanchette-Mackie et al., 1988). In this condition, the CE is successfully 

hydrolyzed by ACEH, but the released cholesterol component is unable to leave the 

lysosome to travel to the endoplasmic reticulum, causing the accumulation of free 

cholesterol in the lysosome. 

Lysosomes are also responsible for the degradation of glycosaminoglycan (GAG) chains 

after the core proteoglycan has been broken down by extracellular proteases such as matrix 

metallopeptidases (MMP) and disintigrins (ADAMs) [Arndt et al, 2002; Seals & 

Courtneidge, 2003). There is an extensive repertoire of catalytic lysosomal enzymes, and 

their functions have been revealed mostly by observing the consequences of their absence 

(Santamarina-Fojo et al., 2001). Defective enzymes lead to a wide variety of diseased 

phenotypes known as mucopolysaccharidoses (MP) ranging from the mild Schie Disease to 

the severe Hurler Disease, which results in childhood mortality. In these two examples, 

GAGs are not properly degraded, and so will accumulate in the lysosomes and in the 

extracellular space. GAGs in the ECM will attract LDL that has entered the intima by 

binding to apoB-100 as previously described, where the cholesterol is most likely 

endocytosed by macrophages and SMC within the developing plaque. 

Once in the cytoplasm, cholesterol that is not needed for routine cellular functions is 

esterified by acyl CoA: cholesterol acyltransferase (ACAT) and stored in vacuoles. 

Intracellular CE remains trapped in the cytoplasm until hydrolyzed by neutral cholesterol 

ester hydrolase (NCEH). This enzyme releases the free cholesterol so it can be removed by 

HDL and transported to the liver. A pair of ATP binding cassette proteins has been 

identified that are believed to control this efflux of cellular cholesterol. One of these, 

ABCP–1 is defective in Tangier Disease (Faber et al., 2002), an inherited condition where 

cholesterol is unable to exit the cell via reverse cholesterol transport. There is a moderate 

risk of atherogenesis associated with Tangier Disease, which is increased in the presence 

of additional risk factors (Tall et al., 2001) 

Research is directed towards a range of HDL-associated apoproteins. Genetic factors 

account for approximately 50% of the variance of HDL composition and plasma 

concentration in the general population (Tall et al., 2001). The primary apoprotein in HDL is 

apoA1, followed by apoA2, apoC, and apoE (Fielding, 2000). ApoE is an important ligand 

for receptor-mediated clearance of HDL from arterial cells (Moghadasian et al., 2001; Stein et 

al., 2002), whose role is of great interest to investigators of atherosclerotic resistance because 

most patients with familial dysbetalipoproteinemia (FD) are homozygous for the E2 isoform 

of apoE (Johns Hopkins University, 2011). Although this defect has been shown to be 

relevant in some animal models, especially apoE null mice (Smith et al., 2006; Zhang et al., 

1992), only 1-4% of humans with the E2/E2 apoE phenotype actually develop FD (Johns 

Hopkins University, 2011). The pathological influence of apoE dysfunction is important in 
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these genetically susceptible individuals, but may not be relevant to the more common 

forms of atherosclerosis in the overall population.  

Any of the currently identified monogneic defects that directly or indirectly influence 
cholesterol metabolism and/or the inflammatory response will increase the likelihood of 
atherosclerotic events. However, individual genes do not work in a vacuum, and additional 
genetic and/or environmental factors are often required to determine the overall 
susceptibility or resistance to disease. Nuclear hormone receptors and other types of 
transcription factors are under investigation to determine how they exert their regulatory 
effects (Cohen & Zannis, 2001; Desvergne al., 2006). For example, although the binding 
capacity of apoB-100 is genetically determined (Goldstein & Brown, 2001), the specific 
number of hepatic LDLR being expressed at any given time is dependent on dietary and 
hormonal factors (Gurr, 1992). In a hypothetical situation, the apoB domain of LDL may be 
functional (non-mutated), but without the adequate expression of the LDLR to bind 
circulating LDL, the end result could still be high blood cholesterol. 
Clinical studies have demonstrated that not all individuals afflicted with FH will develop 
early onset atherosclerosis. Of those manifesting the heterozygous form of the disease, 
where circulating LDL levels tend to range between 300-400 mg/dL, only 50% will actually 
develop cardiovascular disease (Stein et al, 2002). Even though there are both hyper- and 
hypo- responders to the effects of dietary cholesterol on serum levels, some individuals 
demonstrate relative resistance to atherogenesis, even in the face of hypercholesterolemia. 
Equal emphasis should be placed on the search for genes that contribute to individual 
susceptibility and those that confer resistance. 
The ultimate sequence of atherosclerotic events is a result of the combined effects of many 

genes, regulatory factors, and environmental exposures (Hartman et al., 2001). This 

synergistic influence on phenotype may give the appearance of a polygenic or multifactorial 

effect (Funke & Assmann, 1999; Goldstein & Brown, 2001), even when a monogenic 

abnormality has been clearly implicated. These interactions have made it difficult to 

establish a universally accepted mechanism of atherogenesis (Peltonen & McKusick, 2001), 

because the sample sizes needed to test these gene-gene and gene-environment interactions 

are much larger than those needed for simpler genotype-phenotype associations (Ordovas & 

Shen, 2002). 

Pathways that trigger atherosclerosis in the general population have yet to be elucidated 

(Visvikis-Siest & Marteau, 2006). Most genomic scale experiments have compared either 

full-blown plaques against non-affected aortic segments (Archacki et al., 2003; Forcheron et 

al., 2005; Hiltunen et al., 2002; Shanahan et al., 1997), or they have analyzed differences 

between ruptured and unruptured plaques (Adams et al., 2006; Faber et al., 2001; 

Papaspyridonos et al., 2006). In both types of comparisons, differentially expressed genes 

have been identified that illuminate plaque development and mortality risk. However, 

genes responsible for initiating foam cell formation could not be discriminated from those 

involved in later events. This gap is not an oversight by the investigators, but rather reflects 

the limited availability of human tissue samples at early stages of atherosclerosis for 

relevant comparative studies. One of the major limitations of elucidating the sequence of 

events that occur during atherogenesis is that an investigator can “observe and study a 

single site in the arterial vasculature” only once (Ross & Glomset, 1973).  For this and other 

reasons, most atherogenic research requires animal and in-vitro models of the human 

disease.  
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4. Animal models of atherogenesis 

4.1 Mammals 
No animal model of human disease can fully encompass the unique complexity of molecular 
machinery and the wide range of expressed clinical phenotypes. However, many important 
metabolic pathways have been explained by the judicious use of animal models (Hartman et 
al., 2001). Therefore, the most appropriate choice of a disease model for genetic inquiry will 
ultimately depend on the specific hypothesis or research question being investigated. 
There are some general guidelines to follow when choosing an animal model of human 
disease. The phenotype should resemble the human physiological condition as closely as 
possible in both the normal and diseased state (Moghadasian et al., 2001). There are 
additional practical issues to consider such as the size of the animal and housing 
requirements, generation times, and the specific cost of overall maintenance, including food, 
daily care, and experimental treatment (Moghadasian et al., 2001; Suckling, & Jackson, 1993). 
These concerns become especially important with the development of transgenic models, in 
that the associated investment costs are much higher than with traditional animal studies. 
Several animal models are used currently to investigate various clinical manifestations and 
genetic mechanisms of human atherosclerosis.  Mice (regular laboratory and transgenic), 
rabbits, and hamsters, are the most common models but miniature swine, primates, rats, 
dogs, and pigeons are also employed. These models have been used to elucidate the role of 
specific molecules in atherogenesis, lesion progression, thrombosis, and plaque rupture by 
direct hypothesis testing. Selected disease characteristics in animal models with their 
relationship to the human atherosclerosis are presented in Table 1.  
Animal lipid metabolism studies become complicated because the majority of circulating 
cholesterol is in HDL (Suckling & Jackson, 1993) for most species except humans who utilize 
LDL (Garcia et al., 2001). For example, a decrease in plasma HDL has been associated with a 
reduced risk of atherosclerosis in mice (Breslow, 2000). It does make sense that relatively 
low levels of HDL decreased the clinical atherosclerosis incidence because HDL 
(Moghadasian et al., 2001) is 70% of mouse total cholesterol. 
However, in humans, decreased HDL levels are associated with an increased risk of 
atherosclerosis. Despite this marked inconsistency, the successful extrapolation of animal 
studies to human atherosclerosis is exemplified by the fact that it was impossible to raise 
circulating LDL levels, and thus increase atherosclerosis risk in experimental models, 
without LDLR that were compromised, either genetically or in response to dietary overload 
(Brown et al., 1981; Goldstein & Brown, 2001). Subsequently, over 600 human LDLR gene 
mutations similar to FH that trigger varying degrees of hypercholesterolemia have been 
identified (Goldstein & Brown, 2001). In addition, hamsters, rabbits and primates have 
repeatedly shown reduced functional capacity of hepatic receptors in response to a high fat 
(Suckling & Jackson, 1993) diet. Individual LDLR activity varied in response to dietary fat 
and cholesterol because primates, like humans, dogs, and rabbits can be hypo- or hyper- 
responsive to diet (Goldstein & Brown, 2001; Moghadasian et al., 2001; Overturf et al., 1990; 
Stein et al., 2002), with some individuals demonstrating unique resistance.  
In newborn humans and many animal species, hepatic LDLR have a maximum operative 
capacity when circulating LDL levels are approximately 0.25 mg/dL (Khosla & Sundram, 
1996). Approximately 60% of plasma LDL in hamsters is removed by hepatic receptors. The 
clearance rate in hamsters is much faster than that of humans, with the hamster LDLR 
taking up 3.1 mg/hr whereas the companion human LDLR only removes 0.6 mg/hour 
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(Suckling & Jackson, 1993). However, the fact that hamsters and humans share a common 
LDL clearance mechanism makes the hamster a suitable model for this aspect of cholesterol 
metabolism.  
Hamsters and humans also share CETP molecules (Suckling & Jackson, 1993) that transfer 
the cholesterol component of LDL to HDL, a key step in reverse cholesterol transport. These 
homologous features are in direct contrast to the mouse, which, despite being fed a high-fat 
high-cholesterol diet (Pitman et al., 1998) and its evolutionary relationship to hamsters, does 
not develop advanced atherosclerotic plaques resembling those in humans unless animals 
with sensitized genetic backgrounds (Xu, 2004) are used. 
 

 Hamster Mouse Pig Rabbit Pigeon Human 

 
 Normal Transgenic  Normal 

WHHL/

MI 
  

Lipoprotein 
Profiles 

        

Predominant LDL HDL HDL LDL HDL HDL HDL LDL 

CETP + - - - + + + + 

LDLR + + - + + - - + 

ApoE + + - + + + - + 

ApoB100 + + + + + + + + 

ApoB-48 + + + + + + - + 

Lesions/Foam 
Cells 

        

Primary 

Location 
Arch Root Root Arch 

Arch, 

Thoracic 

Arch, 

Thoracic 

Celiac 

branch 

Coronary

, Celiac 

branch 

Primary Cell   

Macrophage + + + - + + - - 

SMC - - - + + + + + 

Characteristics         

Spontaneous - - - + - - + + 

Diet-induced + + + + + + + + 

Thrombosis - - + + - + + + 

Myocardial 

infarction 
- - + - - +/- + + 

Genome size 
(Gbp) 

3.55 3.45 3.45 3.10 3.47 3.47 1.47 3.40 

Wild-type diet  

Omnivore + + + + - - + + 

Herbivore - - - - + + - - 

Table 1. Comparison of selected characteristics of atherosclerosis between animal models 
and humans. 
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The mouse is technically advantageous because of its small size, short generation time, large 
litters, and the availability of many inbred strains (Breslow, 2000). However, laboratory mice 
fed on a chow diet do not develop spontaneous atherosclerotic lesions. Atherosclerosis must 
be experimentally induced by feeding a diet containing 15% fat, 1.25% cholesterol, and 0.5% 
cholic acid. These non-physiological conditions create serious limitations for comparison 
with human studies.  The most important factor may be the presence of cholate in the diet. 
Cholate is enough, in and of itself, to induce a chronic inflammatory state in mice (Breslow, 
2000; Shi et al., 2003) confounding the true atherogenic role of inflammation. This is further 
exacerbated by the fact that some mice are more sensitive to inflammatory cues (Rader & 
Pure, 2000) so that some genetic differences between susceptible and resistant mouse strains 
pertain to the diet used, rather than the atherogenic process as it is observed on Western 
diets (Breslow, 2000).  
These and other genetic differences that exist between mouse strains can cause significant 

problems when interpreting and comparing the results of gene expression studies 

(Sigmund, 2000). For example, just because a specific inflammatory marker was identified in 

an atherosclerotic plaque and not in a healthy aorta does not mean that inflammation is 

causing the disease. Indeed, the molecule could be there to accelerate the cascade; but it 

could also be there in an attempt to reverse the pathology, or may even be responding to a 

cellular signal not specific to plaque progression (Knowles & Maeda, 2000) such as cholate. 

This is true even with transgenic mice because the foundation stock may be different. Also, 

because gene insertion is random, knock-in models do not by definition contain the gene of 

interest at the same locus. Therefore, simple transgenics may not be sufficient to prove the 

role of any given trait because of positional insertion effects on both absolute gene 

expression and copy number variation (Warden & Fisler, 1997). Delineating the specific 

function of a candidate gene is difficult, if not impossible, without being able to precisely 

correlate the phenotype to the initiating mechanism of foam cell formation. The heterogenic 

background of the mice combined with the variable responses to the atherogenic diet 

confound the interpretation. 

Despite these often overlooked limitations of extrapolating mouse studies to the human 

disease, research using transgenic mice has enhanced the concept that atherosclerosis is not 

a simple lipid disorder. New atherogenic theories must be explored to explain the 

occurrence of atherosclerotic heart disease in individuals displaying no dyslipidemia. Most 

of the more than twenty unique quantitative trait loci (QTL) identified in mice (Smith et al., 

2006) do not influence plasma lipid levels or blood pressure (Allayee et al., 2003; Colinayo et 

al., 2003). This finding has been especially interesting because these QTL were identified in 

hypothesis-driven experiments exploring cholesterol metabolism in LDLR and/or apoE 

knockout mice. Many of these studies have demonstrated the strong genetic influence in the 

arterial wall on the susceptible and resistant phenotypic differences between mouse strains 

(Lusis et al., 2004). For example the major mouse QTL, Ath29 on chromosome 9, in the BXH 

ApoE(-/-) cross fed a chow diet was associated with early lesion development but not with 

risk factors including circulating lipids (Wang et al., 2007).  

Knockout models theoretically mirror homozygous recessive forms of inherited disease 
because of the loss of gene function (Knowles & Maeda, 2000). As in familial 
hypercholesterolemia (FH), LDLR null mice experience a 2X increase in plasma cholesterol 
levels, even on a regular diet, that is further exacerbated on the high-fat, high-cholesterol 
atherogenic diet (Knowles & Maeda, 2000). The same is true for apoE null mice, although 
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the mutation’s impact on plasma cholesterol is greater than in the LDLR negative mice, with 
4-5 times the normal amount of circulating lipoproteins (Knowles & Maeda, 2000; Zhang et 
al., 1992;). However, preliminary studies revealed no relationship between these elevated 
lipid levels and lesion size in apoE null mice (Zhang et al., 1994). Only 2% of the 
homozygous apoE2 null mice developed aortic lesions at all, and the contribution of this 
mutation to the overall human disease burden has been questioned (Visvikis-Siest & 
Marteau, 2006). Subsequent studies have shown contradictory results, as the nature of the 
lesion appears to be dependent on the parental strain used in the experiment rather than the 
particular knockout gene (Allayee et al., 2003; Getz, 2000; Sigmund, 2000; Smith et al., 2006).  
The largest effect in these hyper-cholesterolemic models resulted from the macrophage 
colony stimulation factor (MCSF) impact on lesion progression (Knowles & Maeda, 2000). 
MCSF has been reported in advanced human atheromas, and this finding in mice lends 
experimental support to the role of the inflammatory response in atherosclerosis. However, 
the role of this molecule in atherogenesis per se is difficult to elucidate in the mouse, 
because of its chronically inflamed state.  
Although not yet yielding consistent results applicable to human therapeutics (Yutzey & 

Robbins, 2007), transgenic mouse research has reinforced the importance of genetic 

background in determining atherosclerotic susceptibility or resistance in an individual. 

These studies have also suggested that the mechanism of foam cell formation varied among 

individuals under discrete experimental and/or environmental stimuli. The importance of 

the specific initiating mechanisms on the developing phenotype has been further 

demonstrated in rabbit models of atherosclerosis. 

Rabbits, like hamsters, have CETP and do develop atherosclerotic foam cells when induced 

by an unnatural diet (Suckling & Jackson, 1993). Unlike the other animal models described 

in Table 1, rabbits are vegetarian, and so cholesterol is not a normal component of their 

wild-type diet. The Watanabe Heritable Hyperlipidemic (WHHL) rabbit was developed 

through selective breeding, and does not have LDLR (Watanabe et al., 1985;). WHHL rabbits 

get lesions along the aortic arch within six months, but do not experience thrombosis or 

myocardial infarction. However, these advanced atherosclerotic phenomena are observed in 

a sub-strain, the WHHLMI rabbit. This rabbit does get a heart attack similar to one of the 

human atherosclerotic (Shiomi et al., 2003) endpoints.  

One of the important contributions of the rabbit model to understanding human disease was 

the observation that rabbit foam cells can be derived from smooth muscle cells (SMC) or 

macrophages, depending on the specific dietary perturbation (Weigensberg et al, 1985). This 

is in direct contrast to the mouse, where the predominant cell type in early lesions is always 

the macrophage, regardless of diet and genetic strain (Lusis, 2000). Rabbit myogenic foam 

cells are biochemically and morphologically distinct from macrophage derived foam cells, 

and both types of early lesions are structurally different from those produced by catheter 

injury (Weigensberg et al, 1985). Recognizing that different types of foam cells develop in 

response to different initiating mechanisms should help unravel the controversy of foam cell 

origin. In all probability, the predominant cell type in early atherogenesis is dependent on 

the pathological stimulus, and the specific model under study. 

A second revelation from rabbit research has been that both macrophages and SMC express 
receptors for the MCSF protein (Inaba et al., 1992). The proto oncogene c-fms3 induces SMC 
migration and proliferation, as well as macrophage recruitment to the atherosclerosis-prone 
regions of the aorta (Mozes et al., 1998). This is important for atherogenesis investigations 
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because the ratio of SMC to macrophages, both found in human lesions, changes as the 
disease progresses. The fact that both cell types share an activation mechanism means that 
the presence of MCSF in an experimental sample does not by definition mean that only 
macrophages will be recruited. This simple fact is not evident from the plethora of mouse 
studies, and is further evidence that multiple models are needed to grasp the complexity of 
human atherosclerosis, especially at the initiation stage. 
Swine are unique among the other mammals depicted in Table 1 because, although they are 

LDL carriers like the hamster (Julien et al., 1981), and most lesions develop in the aortic arch, 

they also develop spontaneous lesions in the abdominal aorta. The initial foam cells are 

derived from intimal SMC (Scott et al., 1985), and appear similar to those found in early 

stages of the human disease. Unfortunately, these lesions do not progress to advanced 

atheromas without being induced by a 4% (w/w) cholesterol diet (Moghadasian et al., 2001). 

Even after 90 days on a hyperlipidemic diet, less than 5% of the cells are monocytes (Scott et 

al., 1985). Swine could adequately model the gradual transition from a myogenic fatty streak 

to an advanced lesion with activated macrophage cells, reflecting the inflammatory response 

in humans over time.  

4.2 Pigeons  
The WC pigeon is unique among non-primate models in that it develops naturally occurring 

(spontaneous) atherosclerosis at both the celiac bifurcation of the aorta and in the coronary 

arteries (Clarkson et al., 1959; Prichard et al., 1964). Foam cells develop into fatty streaks 

which progress into mature plaques in the absence of elevated plasma cholesterol and other 

traditional risk factors (Wagner, 1978; Wagner et al., 1979). These non-induced 

atherosclerotic lesions are morphologically and ultrastructurally similar to those seen in 

humans and occur at parallel anatomical sites along the arterial tree (Cornhill et al., 1980a, 

1980b; Hadjiisky, et al., 1991; Kjaernes et al., 1981). Multiple studies have clearly 

demonstrated that susceptibility in the WC resides at the level of the arterial wall (St. Clair 

et al., 1986; Wagner et al., 1973, 1979;). Lesion site specificity, severity, and disease 

progression as a function of age are also highly predictable (Cooke & Smith, 1968; Santerre 

et al., 1972). 

Show Racer pigeons (SR) are resistant to atherosclerosis, while consuming the same 

cholesterol-free diet. This susceptibility difference occurs despite similar plasma cholesterol 

and lipoprotein concentrations in both WC and SR (Barakat & St. Clair, 1985). WC pigeons 

are one of the few animal models to develop severe atherosclerosis while consuming a 

cholesterol free diet, and comparing results with the resistant SR enables pathological 

changes associated with the disease to be distinguished from changes due to the natural 

pigeon aging process. Virtually all WC and SR differences occur at the arterial tissue level as 

there are few system level differences (Fronek & Alexander, 1981). 

Both pigeon breeds are hypercholesterolemic compared to humans, and, like mice and 
rabbits, they are primarily HDL carriers. However, pigeons are unique in that for the first 
three days of life, cholesterol is circulated in the form of LDL, after which time the 
lipoprotein profile switches to HDL (unpublished data) for the remainder of the pigeon’s 
life. Neither breed has apoE (Randolph et al., 1984) or LDLR (Randolph & St. Clair, 1984; St. 
Clair et al., 1986), so the effect of these variables in other models of the human disease is not 
a factor in the pigeon pathology. Combined unpublished data gathered from several 
hundred birds aged 6 months to 3 years over a twenty-year period shows that the average 
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plasma cholesterol concentration in pigeons ranges from 201 mg/dL in the SR to 242 mg/dL 
in the WC (+/- 16 mg/dL in both groups). Although these values are borderline significant, 
they do not change during disease progression, nor does it appear that blood cholesterol 
induces WC foam cell development. This fact is further supported in wild mourning doves, 
a close relative of the pigeon, that have 258 mg/dL average plasma cholesterol but do not 
get atherosclerosis (Schulz et al., 2000). Sterol balance studies have revealed that the WC 
excretes less neutral sterols than the SR breed (Siekert et al., 1975; Subbiah & Connelly, 
1976), but this difference had much greater impact in diet-induced atherosclerosis than in 
the susceptible phenotype of the WC to the naturally occurring form of the disease (Hulcher 
& Margolis, 1982). 
The most widely studied spontaneous atherosclerotic lesion in susceptible pigeons occurs at 

the celiac bifurcation of the aorta, and by three years of age reaches a size to be easily visible 

on gross examination (Nicolosi et al., 1972; Santerre et al., 1972). Early pathological and 

metabolic changes are apparent microscopically in this site by six months of age (Cooke & 

Smith, 1968). In contrast, diet-induced lesions in the WC aorta occur at various and 

unpredictable sites along the descending (Gosselin, 1979; Jerome & Lewis, 1985; Wagner, 

1978) and abdominal aortas, and are pathologically very different from non-induced lesions. 

Foam cells in spontaneous lesions consist primarily of modified SMC (Cooke & Smith, 1968; 

St. Clair, 1983) while cholesterol-induced foam cells are mostly composed of macrophages 

(Denholm & Lewis, 1987; Gosselin, 1979; Jerome & Lewis, 1984; St. Clair, 1983). 

As with mice, diet-induced lesions develop more rapidly in the pigeon than their 

spontaneous counterparts (Jerome & Lewis, 1984; Xu, 2004), but different atherogenic 

mechanisms appear to be involved (Santerre et al., 1972; St. Clair, 1983). One of the primary 

diet induction effects is to shift the physiological lipoprotein profile from HDL to LDL 

(Jones et al., 1991; Langelier et al., 1976). In fact, 1% diet supplementation with cholesterol 

causes such a rapid onset of atherosclerotic foam cells in both breeds that it becomes 

unfeasible to detect the influence of intrinsic factors (Lofland, 1966) contributing to either 

WC susceptibility or SR resistance. Therefore, the spontaneous lesion model is best suited 

for genetic studies to identify candidate genes for susceptibility or resistance as the 

introduction of an artificial diet confounds the interpretation of the earliest events occurring 

in atherogenesis.  

Since 1959, many studies have been performed to systematically characterize the initiating 

factor in lesion development in the susceptible WC pigeon. However, the mechanism(s) 

leading to WC foam cell development is not known, and few studies have been conducted 

in the spontaneous model to identify the gene(s) or gene product(s) that are specific to 

initiation. Clarkson and associates (1959) observed that age and heredity were the biggest 

factors in atherosclerotic susceptibility. Diet, exercise, and gender were not primary factors 

in the WC pathology.  

Further studies of age and heredity effects demonstrated that genetics play a larger role in 
lesion development than the normal aging process (Goodman & Herndon; 1963). The 
authors hypothesized that inheritance was a polygenic trait. Wagner and co-workers (1973) 
compared susceptibility to lesion development between the WC and SR celiac bifurcation of 
the aorta. The authors found a greater number of advanced lesions in the WC than in the SR, 
and concluded that the genetic control conferring susceptibility or resistance in the pigeon 
appeared to be at the level of the artery. Supplementary experiments by that group showed 
that blood cholesterol, triacylglycerol, and glucose levels were not different between the two 

www.intechopen.com



 
Spontaneous Atherosclerosis in Pigeons: A Good Model of Human Disease 

 

37 

breeds (Wagner, 1978), and that elevated blood pressure is actually a consequence of pigeon 
atherosclerosis, rather than being an initiating factor (Wagner et al., 1979). The latter study 
provided initial indications that although diet is not the primary factor contributing to 
atherosclerotic susceptibility in the pigeon, it can impact the severity of a lesion once 
formed; thus indicating a role in progression. 
A range of metabolic differences between the arterial wall of WC and SR pigeons have been 

identified. In vivo, differences in the WC susceptible foci include increased 

glycosaminoglycans, especially chondroitin-6-sulfate (Curwen & Smith, 1977), greater lipid 

content, predominantly in the form of cholesterol esters (Hajjar et al., 1980b; Nicolosi et al., 

1972), lower oxidative metabolism(Hajjar et al., 1980a; Santerre et al., 1974), relative hypoxia 

(Hajjar et al., 1988), decreased acid cholesterol hydrolase (Sweetland et al., 1999), and neutral 

cholesterol ester hydrolase (Fastnacht, 1993) activities, increased glycolysis (Zemplenyi & 

Rosenstein, 1975), decreased tricarboxylic acid cycle activity (Zemplenyi & Rosenstein, 

1975), and the increased synthesis of prostaglandin E2, which also decreased cholesterol 

ester hydrolase activity (Subbiah et al., 1980). Although these studies did not distinguish the 

primary or underlying problem from secondary effects, increases in non-esterified fatty 

acids (NEFA) and in chondroitin-6-sulfate (C6S) seem to precede many of the other 

observed differences. The role of excess NEFA and C6S in pigeon atherogenesis is not yet 

clear, although the presence of C6S in the susceptible pigeon by six weeks of age does 

support the response to retention theory. Both human and pigeon smooth muscle cells 

synthesize C6S as part of the ECM (Edwards et al., 1995; Wight, 1985), where it has been 

observed to complex with plasma LDL entering the vascular wall (Nakashima et al., 2007; 

Tovar et al., 1998; Wagner et al., 1989; Wight, 1980).  

Human atherosclerosis is considered to be a multifactorial disease, with many genes and 

environmental factors contributing to the specific phenotype and ultimate endpoint. In 

pigeons, where individual lifestyle choices are not a factor, the numbers and types of genes 

contributing to baseline susceptibility and resistance may be easier to elucidate. Preliminary 

crossbreeding studies indicated a polygenic mechanism of inheritance (Goodman & 

Herndon, 1963) with resistance being the dominant trait. However, the authors noted that 

each breed responded differently to dietary manipulation (Herndon et al., 1962), so it is 

possible that the genetic differences observed may have reflected the confounding influence 

of diet, rather than the spontaneous expression profile. 

Pigeons are not as well suited for traditional inheritance studies as mammalian species 

because the birds mate for life, and do not reach sexual maturity until seven months of age 

(Brannigan, 1973). Although excess cholesterol esters can be detected biochemically at 12 

weeks, three years are required in order to definitively characterize the complete 

atherosclerotic phenotype. However, the pigeon genome is approximately half the size of its 

counterpart mammalian models, and comparative genomic studies are facilitated by the 

published chicken (Gallus gallus) genome, which is similar in size (Hillier et al., 2004) to the 

pigeon. 

A 15-year cross breeding study at the University of New Hampshire examined grossly 
visible lesions (or lack thereof) at three years of age in the celiac foci of susceptible WC, 
resistant SR, and in F1, F2, and backcross progeny. The results supported autosomal 
recessive inheritance of susceptibility to spontaneous atherosclerosis in the pigeon (Smith et 
al., 2001). This finding contrasted earlier results (Herndon et al., 1962) that indicated a 
polygenic mechanism based only on the F1 progeny, but the latter researchers carried the 
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experiments through the backcross generations and did not use a cholesterol-supplemented 
diet (Smith et al., 2001). In addition, and probably of greater importance to the experimental 
results, all pigeons consumed the same cholesterol-free diet. Parallel investigation of the 
smooth muscle cells cultured from several tissues of the WC, SR, and F1 pigeons 
demonstrated that lipid accumulation observed at the celiac bifurcation is a constitutive 
property of WC (Smith et al., 2001).  
The finding that spontaneous atherosclerosis in the susceptible WC appears to be the 

result of a single gene, and not the net result of many interacting genes, as is thought to 

be the case in humans, makes the pigeon model a simplest case system. Identification of 

the gene responsible for predisposition, and an understanding of how this gene 

influences the described metabolic and morphological changes could reveal an initiating 

mechanistic pathway that remains undetected in more confounded models of 

atherogenesis. 

Experiments have demonstrated that the SMC monolayers grown in vitro accumulate 

lipid and synthesize proteoglycans in the same manner as aortic cells in vivo (Cooke & 

Smith, 1968; Smith et al., 1965; Wight, 1980; Wight et al., 1977) but at an accelerated rate. A 

comparison of the maturation and degeneration of pigeon aortic cells in vivo and in vitro 

is presented in Table 2. In culture, foam cell development is evident in WC SMC by 8-10 

days, where several weeks are needed in order to observe the same phenomena in vivo. 

Other differences in the WC SMC include more esterified cholesterol present in lipid 

vacuoles, less arachidonate, and decreased mitochondrial metabolism. Although it has 

been demonstrated that the act of culturing aortic cells can change the SMC phenotype 

from contractile to synthetic (Worth et al., 2001), this has not been observed in primary 

cultures, where the lack of sub-culture minimizes potential genetic alterations. WC aortic 

cells obtained in vitro demonstrate a similar degenerative progression as those cells 

observed in the celiac bifurcation (Cooke & Smith, 1968; Wight et al., 1977), offering 

further evidence that the gene expression profile is comparable between the two model 

systems. 

In vitro, there is no signal communication between SMC and endothelial cells, monocytes, 

hormones, neurotransmitters, other humoral factors, and whole body feedback systems 

(Shanahan & Weissberg, 1998; Thyberg et al., 1990). The only source of interaction is 

between the SMC and the media components, resulting in cell growth and ECM synthesis. 

This makes it possible to observe the intrinsic characteristics of WC and SR aortic cell 

development in a controlled, time-compressed setting, while limiting the number of genes 

under investigation to those specific to aortic SMC. Interestingly, although only the SMC of 

the WC celiac and coronary bifurcations are susceptible to atherogenesis in vivo, SMC taken 

from other WC tissue such as the gizzard or small intestine exhibit features in vitro similar 

to atherogenesis in aortic cells. This is not the case in the SR, where neither SMC from the 

celiac foci, nor SMC from any other tissue undergo phenotype modification when cultured 

under identical conditions.  

The aforementioned experiments provide additional evidence that the genetic defect 

predisposing the WC to atherosclerosis is conditionally expressed in SMC. Factors that 

stimulate the expression of atherogenic genes at the celiac bifurcation in vivo appear to be 

present in vitro, as the cultured WC cells undergo degeneration parallel to their 

counterparts in aortic tissue (Cooke & Smith, 1968; Wight et al., 1977). Genetic factors 

denoting resistance in the SR remain expressed in both experimental environments.  
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Table 2. Maturation and degeneration of pigeon aortic cells. 

Anderson (2008) analyzed differential gene expression in vitro at day seven of cellular 

growth. Ninety-one genes were uniquely expressed in the susceptible WC cells compared to 

101 genes exclusive to the resistant SR. There was a marked difference in energy metabolism 

between the two breeds. The SR VSMC expressed genes related to oxidative 

phosphorylation such as cytochrome B, cyctochrome C oxidase subunit I, NADH 

dehydrogenase subunit 4, ubiquinone, and ATP synthase subunit 4B. This was in direct 

contrast to the glycolytic genes expressed by the WC which included enolase, glucose 

phosphate isomerase, and lactate dehydrogenase subunit B.  

In addition, genes expressed by the SR were indicative of a contractile VSMC phenotype 

whereas susceptible WC pigeons expressed genes that reflected a synthetic phenotype. 

Spondin, decorin, vimentin and beta actin were upregulated in the WC. Myosin heavy 

chain, myosin light chain kinase, tropomyosin, and alpha actin were expressed in the SR. 

The resistant SR appeared to develop and maintain an extracellular matrix with structural 

integrity, whereas the susceptible WC was already expressing proteases and immune 

signals.  

Although many genes were different between the two breeds, the compressed time frame 
made it difficult to determine what happens first: changes in energy metabolism or changes 
in cellular phenoptye. Future in vivo studies are necessary to elucidate the chronological 
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sequence of events and determine the single gene responsible for atherogenesis in the WC 
pigeon.  
Analysis of SMC soluble proteins from WC and SR pigeons revealed differential expression 
between the two breeds. Eight discrete zones of molecular weight versus pI were identified, 
five which included only proteins unique to susceptible cells and three which included 
proteins unique to resistant cells. Eighty-eight differentially-expressed proteins were found 
in susceptible cells with 41 located in unique zones. Resistant cells had 29 of 82 
differentially-expressed proteins in unique zones. Some annotated proteins, including 
smooth muscle myosin phosphatase, myosin heavy chain, fatty acid binding protein, 
ribophorin, heat shock protein, TNF alpha-inducing factor, and lumican, corresponded to 
genes identified previously or to current hypotheses to explain atherogenesis (Smith et al., 
2008).   
Additional research to identify the causative gene for spontaneous atherosclerosis will be 
facilitated by pigeon genome sequencing. Comparative studies between the resistant versus 
susceptible breeds may reveal sequence variation contributing to the disease. The pigeon 
remains an important model to study the genetic role at the site of lesion development that 
is associated with human atherosclerosis. 
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