
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

0

Process Rescheduling in High Performance
Computing Environments

Rodrigo da Rosa Righi and Lucas Graebin
Programa Interdisciplinar de Pós-Graduação em Computação Aplicada

Universidade do Vale do Rio dos Sinos
Brazil

1. Introduction

Scheduling is an important tool for manufacturing and engineering, where it can have a major
impact on the productivity of a process (Min et al., 2009). In manufacturing, the purpose
of production scheduling is to minimize the production time and costs, by informing a
production facility when to make, with which staff, and on which equipment (Zhu et al.,
2011). Nowadays, it is possible to observe the use of specific computational tools for
production scheduling in which greatly outperform older manual scheduling methods.
These tools implement mathematical programming methods that model the problem as an
optimization issue where some objective, e.g. total duration, must be minimized (or yet
maximized) (Yao & Zhu, 2010).

The concepts behind manufacturing and production scheduling can be employed in serie
of contexts where optimization field takes place (Delias et al., 2011; Fan, 2011; Wang et al.,
2011). In a common meaning, scheduling consists in formulating plans in which organize
objects for operating efficiently in a specific context. Especially, this chapter discusses about a
rescheduling method for high-performance environments (HPC) like Computational Grids,
or just Grids (Yu & Buyya, 2005). The presented method deals with processes, in which
represent an execution entity of the operating system. Here, we named scheduling as the first
mapping of processes to resources in the Grid. Thus, the method is responsible for process
rescheduling, so changing the first process-processors assignment in the distribute system
by offering efficient scheduling plans along the application’s lifetime. As an optimization
problem , its main purpose focuses on minimizing the execution time of the application as a
whole.

As grid computing emerged and got widely used, resources of multiple clusters became
the dominant computing nodes of the grid (El Kabbany et al., 2011; Qin et al., 2010;
Xhafa & Abraham, 2010). Applications containing routines for solving linear systems and fast
Fourier transform (FFT) are typical examples of tightly-coupled parallel applications that may
take profit from the power of cluster-of-clusters (Sanjay & Vadhiyar, 2009). Given that these
clusters can be heterogeneous and the links among them are normally not fast, scheduling
and load balancing are two key techniques that must be organized to reach high performance
in this architecture. An alternative for offering this treatment focuses on scheduling using
process migration. Therefore, we can reshape the process-resource matching at runtime

1

www.intechopen.com

2 Will-be-set-by-IN-TECH

in accordance with both the behavior of the processes and the resources (processors and
network).

Generally, process migration is implemented within the application, resulting in a
close coupling between the application and the algorithms’ data structures. Such an
implementation is not extensible, due to the specificity of the shared data structure. Even
more, some initiatives use explicit calls in the application code (Bhandarkar et al., 2000)
and obligate extra executions to get tuned scheduling data (Silva et al., 2005; Yang & Chou,
2009). A different migration approach happens at middleware level, where changes
in the application code and previous knowledge about the system are usually not
required. Considering this, we have developed a process rescheduling model called
MigBSP (da Rosa Righi et al., 2010). It was designed to work with phases-based applications
with BSP behavior (Bulk Synchronous Parallel) and acts over cluster-of-clusters architectures.
MigBSP extensively uses heuristics to adapt the interval between migration calls, to
analyze the behavior regularity of each process as well as to select the candidates for
migration. Heuristics were employed since the problem of finding the optimum scheduling
in heterogeneous system is in general NP-hard (Xhafa & Abraham, 2010).

Concerning the choosing of the processes, MigBSP creates a priority list based on the
highest Potential of Migration (PM) of each process (da Rosa Righi et al., 2010). PM
combines the migration costs with data from both computation and communication phases
in order to create an unified scheduling metric. Using a hierarchy notion based on two
levels (Goldchleger et al., 2004), each PM element concentrates a target process and a specific
destination site. Figure 1 goes through the PM approach. The process denoted in the top
of the mentioned list was always selected to be inspected for migration viability. Although
we achieved good results when using this approach, we agree that an optimized one can
deal with multiple processes when rescheduling verification takes place. A possibility could
concern the selection of a percentage of processes based on the highest PM. Nevertheless, a
question arises: How can one reach an optimized percentage value for dynamic applications
and heterogeneous environments? A solution could involve the testing of several hand-tuned
parameter instances and the comparison of the results. Certainly, this idea is time consuming
and new applications and resources require a new series of tests.

Computation Metric

BSP Process
Migration

Communication Metric

Memory Metric

FavourOpposite

Fig. 1. Potential of Migration (PM) combines Computation, Communication and Memory
data in order to offer an unified scheduling metric. The rationale of creating PM consists in
evaluating migrations of processes to different sites, reducing the number of tests in the
rescheduling moment.

After developing the first version of MigBSP, we have observed the promotion of
intelligent scheduling systems which adjust their parameters on the fly and hide intrinsic
complexity and optimization decisions from users (Ding et al., 2009; Nascimento et al., 2007;
Sanjay & Vadhiyar, 2009). In this context, we developed a new heuristic named AutoMig
that selects one or more candidates for migration automatically. We took advantage of both
List Scheduling (Duselis et al., 2009) and Backtracking (Baritompa et al., 2007) concepts to

4 Production Scheduling

www.intechopen.com

Process Rescheduling in High Performance Computing Environments 3

evaluate the migration impact on each element of the PM list in an autonomous fashion.
In addition, other AutoMig’s strength comprises the needlessness to complete an additional
MigBSP parameter for getting more than one migratable process on rescheduling activation.
The scheduling evaluation uses a prediction function (pf) that considers the migration costs
and works following the concept of a BSP superstep (Bonorden, 2007). The lowest forecast
value indicates the most profitable plan for process rescheduling.

This book chapter aims to describe AutoMig in details. Particularly, we evaluated it by using
a BSP application that computes image compression based on the Fractal method (Guo et al.,
2009). Considering that the programmer does not need to change his/her application nor add
a parameter on rescheduling model, the results with migration were satisfactory and totaled a
mean gain of 7.9%. Furthermore, this classification is due to fact that AutoMig does not know
any application and resource descriptions in advance. The results showed a serie of situations
where AutoMig outperforms the heuristic that elects only one process. Next section shows
MigBSP briefly and serves as the basis for understanding the proposed heuristic.

2. MigBSP: Rescheduling model

MigBSP answers the following issues regarding load balancing: (i) “When” to launch the
migration; (ii) “Which” processes are candidates for migration; (iii) “Where” to put an
elected process. In a previous paper we described the ideas to treat these questions in
details (da Rosa Righi et al., 2010). The model requires both unicast and asynchronous
communications among the processes. The target architecture is heterogeneous and
composed by clusters, supercomputers and/or local networks. The heterogeneity issue
considers the processors’ clock speed (all processors have the same machine architecture),
as well as network speed and level (Fast and Gigabit Ethernet and cluster-of-clusters
environments, for instance). Such an architecture is assembled with abstractions of Sets
(different sites) and Set Managers. As an example, a specific Set could be composed by the
nodes from a cluster. Set Managers are responsible for scheduling, capturing data from a
specific Set and exchanging it among other managers.

Average (A) of
the superstep

time of all processes

A . (1-D) A . (1+D)
execution time

BalancingUnbalancing Unbalancing

Fig. 2. Analysis of balancing and unbalancing situations which depend on the distance D
from the average time A.

The decision for process remapping is taken at the end of a superstep. Aiming to generate
the least intrusiveness in application as possible, we applied two adaptations that control the
value of α (α ∈ N

∗). α is updated at each rescheduling call and will indicate the interval for
the next one. To store the variations on system state, a temporary variable called α

′ is used and
updated at each superstep through the increment or decrement of one unit. The adaptations’
objectives are: (i) to postpone the rescheduling call if the processes are balanced or to turn it

5Process Rescheduling in High Performance Computing Environments

www.intechopen.com

4 Will-be-set-by-IN-TECH

more frequent, otherwise; (ii) to delay this call if a pattern without migrations on ω past calls
is observed. A variable denoted D is used to indicate a percentage of how far the slowest and
the fastest processes may be from the average to consider the processes balanced. In summary,
the higher the value of α, the lower the model’s impact on application runtime.

C
a
ll

fo
r

P
ro

c
e
s
s
 R

e
s
c
h
e
d
u
lin

g

Superstep 1 Superstep Superstep k

Time

Computation of

!

!'

!update of using the value of !'

P
ro

c
e
s
s
e
s

Fig. 3. Overview of an application execution with MigBSP: α parameter indicates the next
interval for process rescheduling and depends on the value of α’, which is updated at each
BSP superstep.

The balanced state is based on the superstep time of each BSP process. Figure 2 depicts
how both balanced and unbalanced situations can be reached. In implementation view,
the processes save their superstep time in a vector and pass it to their Set Managers when
rescheduling is activated. Following this, all Set Managers exchange their information. Set
Managers have the times of each BSP process and compute the balancing situation. Therefore,
each manager knows the α

′ variation locally. Figure 3 illustrates an example of the interaction
between a BSP application and MigBSP. As we can observe, this figure presents the expected
result when calling rescheduling actions since a reduction in time can be verified in the
remaining BSP supersteps.

The answer for “Which” is solved through our decision function called Potential of Migration
(PM). Each process i computes n functions PM(i, j), where n is the number of Sets and j means
a Set. The key rationale consists in performing only a subset of the processes-resources tests at
the rescheduling moment. Considering that Grid scheduling is multi-objective in its general
formulation (Xhafa & Abraham, 2010), PM(i, j) is found using Computation, Communication
and Memory metrics as we can see in Equation 1. The relation among them is based on the
notion of force from Physics. Computation and Communication act in favor of migration,
while Memory works in an opposite direction. The greater the value of PM(i, j), the more
prone the BSP processes will be to migrate.

PM(i, j) = Comp(i, j) + Comm(i, j)− Mem(i, j) (1)

The Computation metric — Comp(i, j) — uses a Computation Pattern Pcomp(i) that measures
the stability of a process i regarding the number of instructions at each superstep (see Equation
2). This value is close to 1 if the process is regular and close to 0 otherwise. Other element
in Comp(i, j) is a computation time prediction CTPk+α−1(i) of the process i at superstep
k + α − 1 (last superstep executed before process rescheduling). Supposing that CTt(i) is the

6 Production Scheduling

www.intechopen.com

Process Rescheduling in High Performance Computing Environments 5

computation time of the process i during superstep t, then the prediction CTPk+α−1(i) uses
the Aging concept as follows(da Rosa Righi et al., 2010; Tanenbaum, 2003).

CTPt(i) =

{

CTt(i) i f t = k
1
2 CTPt−1(i) +

1
2 CTt(i) i f k < t ≤ k + α − 1

Comp(i, j) also presents an index ISetk+α−1(j). This index informs the average capacity of
Set j at the k + α − 1th superstep. For each processor in a Set, its load is multiplied by its
theoretical capacity. Concerning this, the Set Managers compute a performance average of
their Sets and exchange this value. Each manager calculates ISet(j) for each Set normalizing
their performance average by its own average. In the sequence, all Set Managers pass ISet(j)
index to the BSP processes under their jurisdiction.

Comp(i, j) = Pcomp(i) . CTPk+α−1(i) . ISetk+α−1(j) (2)

In the same way, the Communication metric — Comm(i, j) — computes the Communication
Pattern Pcomm(i, j) between processes and Sets (see Equation 3). Furthermore, this metric uses
a communication time prediction BTPk+α−1(i, j) involving the process i and Set j between
two rebalancing activations. This last parameter employs the same idea used to compute
CTP_t(i), where the prediction value is more strongly influenced by recent supersteps. The
result of Equation 3 increases if the process i has a regularity considering the received bytes
from processes of Set j and performs slower communication actions to this Set.

Comm(i, j) = Pcomm(i, j) . BTPk+α−1 (3)

The Memory metric — Mem(i, j) — composition can be seen in Equation 4. Firstly, the memory
space in bytes of considered process is captured through M(i). After that, the transfer time
of 1 byte to the destination Set is calculated by T(i, j) function. The communication involving
process i is established with the Set Manager of each considered Set. Finally, the time spent
on migration operations of process i to Set j is calculated through Mig(i, j) function. These
operations are dependent of operating system, as well as the tool used for providing process
migration.

Mem(i, j) = M(i) . T(i, j) + Mig(i, j) (4)

BSP processes calculate PM(i, j) locally. At each rescheduling call, each process passes its
highest PM(i, j) to its Set Manager. This last entity exchanges the PM of its processes
with other managers. As mentioned earlier, there is a heuristic to choose the candidate for
migration which is based on a decreasing-sorted list composed by the highest PM value of
each process. This heuristic chooses the head of the list. PM(i, j) of a candidate process i is
associated to a Set j intrinsically. The manager of this Set will select the most suitable processor
to receive the process i.

Before any migration, its viability is verified considering the following data: (i) the external
load on source and destination processors; (ii) the BSP processes that both processors are
executing; (iii) the simulation of considered process running on destination processor; (iv) the
time of communication actions considering local and destination processors; (v) migration

7Process Rescheduling in High Performance Computing Environments

www.intechopen.com

6 Will-be-set-by-IN-TECH

costs. Then, we computed two times: t1 and t2. t1 means the local execution of process i,
while t2 encompasses its execution on the other processor and includes the costs. For each
candidate, a new resource is chosen if t1 > t2.

3. AutoMig: A novel heuristic to select the suitable processes for migration

AutoMig’s self-organizes the migratable processes without programmer intervention. It can
elect not only one but a collection of processes at the rescheduling moment. Especially,
AutoMig’s proposal solves the problem described below.

• Problem Statement - Given n BSP processes and a list of the highest PM (Potential of
Migration) of each one at the rescheduling moment, the challenge consists in creating and
evaluating at maximum n new scheduling plans and to choose the most profitable one
among those that outperform the current processes-resources mapping.

AutoMig solves this question by using the concepts from List Scheduling and Backtracking.
Firstly, we sort the PM list in a decreasing-ordered manner. Thus, the tests begin by the
process on the head since its rescheduling represents better chances of migration gains.
Secondly, AutoMig proposes n scheduling attempts (where n is the number of processes) by
incrementing the movement of only one process at each new plan. This idea is based on the
Backtracking functioning, where each partial candidate is the parent of candidates that differ
from it by a single extension step. Figure 4 depicts an example of this approach, where a
single migration on level l causes an impact on l + 1. For instance, the performance forecast
for process “A” in the third PM considers its own migration and the fact that “E” and “B”
were migrated previously. Algorithm 1 presents AutoMig’s approach in details.

1st PM (Process E, Set 2) = 3.21

2nd PM (Process B, Set 1) = 3.14

3rd PM (Process A, Set 2) = 3.13

4th PM (Process C, Set 2) = 2.57

5th PM (Process G, Set 2) = 2.45

6th PM (Process D, Set 1) = 2.33

7th PM (Process F, Set 1) = 2.02

1st Scheduling = 2.34

E

2nd Scheduling = 2.14

3rd Scheduling = 1.34

4th Scheduling = 1.87

5th Scheduling = 1.21

6th Scheduling = 2.18

7st Scheduling = 4.15 B A C G D F

E B A C G D

E B A C G

E B A C

E B A

E B

E

Decreasing-sorted list based on the
highest PM of each process

Value of the Scheduling
prediction pf

Emulated migrations at
each evaluation level

Fig. 4. Example of the AutoMig’s approach. Only one process is migrated at each level of the
PM list. A migration of a process on level l presents an impact in l + 1 and so on.

8 Production Scheduling

www.intechopen.com

Process Rescheduling in High Performance Computing Environments 7

The main part of AutoMig concerns its prediction function pf. pf emulates the time of a
superstep by analyzing the computation and communication parts of the processes. Both
parts are computed through Equations 5 and 6, respectively. They work with data collected at
the superstep before calling the rescheduling facility. In addition, pf considers information
about the migration costs of the processes to the Sets. The final selection of migratable
processes is obtained through verifying the lowest pf. The processes in the level belonging
to this prediction are elected for migration if their rescheduling outperforms the pf for the
current mapping.

At the rescheduling call, each process passes the following data to its manager: (i) its highest
PM; (ii) a vector with its migration costs (Mem metric) for each Set; (iii) the number of
instructions; (iv) a vector which contains the number of bytes involved on communication
actions to each Set. Each manager exchanges PM values and uses them to create a
decreasing-sorted list. Task 5 of Algorithm 1 is responsible for getting data to evaluate the
scheduling of the current mapping.

At each level of the PM list, the data of the target process is transferred to the destination Set.
For instance, data from process ’E’ is transferred to Set 2 according to the example illustrated
in Figure 4. Thus, the manager on the destination Set will choose a suitable processor
for the process and will calculate Equations 5 and 6 for it. Aiming to minimize multicast
communication among the managers at each pf computation, each Set Manager computes
Timep and Commp for the processes under its jurisdiction and save the results together with the
specific level of the list. After performing the tasks for each element on PM list, the managers
exchange their vectors and compute pf for each level of the list as well as for the present
scheduling (task 12 in Algorithm 1).

Equation 5 computes Timep(i), where i means a specific process. Timep(i) uses data related to
the computing power and the load of the processor in which process i executes currently
or is being tested for rescheduling. cpu_load(i) represents the CPU load average on the
last 15 minutes. This time interval was adopted based on work of Vozmediano and
Conde (Moreno-Vozmediano & Alonso-Conde, 2005). Equation 6 presents how we get the
maximum communication time when considering process i and Set j. In this context, Set j may
be the current Set of process i or a Set in which this process is being evaluated for migration.
T(k, j) refers to the transferring rate of 1 byte from the Set Manager of Set j to other Set
Manager. Bytes(i, k) works with the number of bytes transferred through the network among
process i and all process belonging to Set k. Lastly, Mig_Costs(i, j) denotes the migration costs
related to the sending of process i to Set j. It receives the value of the Mem metric, which also
considers a process i and a Set j.

Timep(i) =
Instruction(i)

(1 − cpu_load(i)).cpu(i)
(5)

Commp(i, j) = Maxk (∀ k ∈ Sets

(Bytes(i, k) . T(k, j))) (6)

9Process Rescheduling in High Performance Computing Environments

www.intechopen.com

8 Will-be-set-by-IN-TECH

Algorithm 1 AutoMig’s approach for selecting the processes

1: Each process computes PM locally (see Equation 1).
2: Each process passes its highest PM, together with the number of instructions and a vector

that describes its communication actions, to the Set Manager.
3: Set Managers exchange PM data of their processes.
4: Set Managers create a sorted list based on the PM values with n elements (n is the number

of processes).
5: Set Managers compute Equations 5 and 6 for their processes. The results will be used

later for measuring the performance of the current mapping. Migrations costs are not
considered.

6: for each element from 0 up to n − 1 in the PM list do
7: Considered element is analyzed. Set Manager of process i sends data about it to the Set

Manager of Set j. The algorithm proceeds its calculus by considering that process i is
passed to Set j.

8: The manager on the destination Set chooses a suitable processor to receive the candidate
process i.

9: Set Managers compute Equations 5 and 6 for their processes.
10: Set Managers save the results in a vector with the specific level of the PM list.
11: end for
12: Set Managers exchange data and compute pf for the current scheduling as well as for each

level on PM list.
13: if Min(p f) in the PM list < current pf then
14: Considering the PM list, the processes in the level where pf was reached are selected

for migration.
15: Managers notify their elected processes to migrate.
16: else
17: Migrations do not take place.
18: end if

pf = Maxi (Timep(i))

+ Maxi,j (Commp(i, j))

+ Maxi,j (Mig_Costs(i, j)) (7)

Considering Equation 7, it is important to emphasize that each part may consider a different
process i and Set j. For instance, a specific process may obtain the largest computation
time, while other one expends more time in communication actions. Finally, AutoMig’s
selection approach uses a global strategy, where data from all processes are considered in the
calculus. Normally, this strategy provides better results but requires synchronization points
for capturing data. However, we take profit from the barriers of the BSP model for exchanging
scheduling information, not paying an additional cost for that.

Kowk and Cheung (Kwok & Cheung, 2004) arranged the load balancing topic in four classes:
(i) location policy; (ii) information policy; (iii) transfer policy and; (iv) selection policy.
AutoMig answers the last issue by using a global strategy (Zaki et al., 1997). In this type
of scheme, the decisions are made using a global knowledge, i.e., data from all processes take

10 Production Scheduling

www.intechopen.com

Process Rescheduling in High Performance Computing Environments 9

part in the synchronization operation for processes replacement. The list of the highest PM of
all BSP processes is known by Set Managers when attempting for migration. Therefore, the
main advantage of global schemes comprises the better quality of load balancing decisions
since the entire studied objects are considered. On the other hand, the synchronization is the
most expensive part of this approach (El Kabbany et al., 2011; Zaki et al., 1997). However, we
take profit from BSP model organization, which already imposes a barrier synchronization
among the processes. Therefore, we do not need to pay an addition cost to use the global idea.

4. Evaluation methodology

We are simulating the functioning of a BSP-based Fractal Image Compression (FIC)
application. FIC has generated much interest in the image compression community as
competitor with well established techniques like JPEG and Wavelets (Guo et al., 2009). One of
the main drawbacks of conventional FIC is the high encoding complexity whereas decoding
time is much lower (Xing, 2008). Nevertheless, fractal coding offers promising performance
in terms of image quality and compression ratios. Basically, FIC exploits similarities within
images. These similarities are described by a contractive transformation of the image
whose fixed point is close to the image itself. The image transformation consists of block
transformation which approximate smaller parts of the image by larger ones. The smaller
parts are called ranges and the larger ones domains. All ranges together form the image. The
domains can be selected freely within the image.

For each range an appropriate domain must be found. A root mean-square-error (rms)
distance is calculated in order to judge the quality of a single map. The encoding time
depends on the number of domains whose each range must be compared to. A complete
domain-poll of an image of size t × t with square domains of size d × d consists of (t − d + 1)2

domains. Furthermore, each domain has 8 isometries. So each range must be compared with
8(t − d + 1)2 domains. The greater the number of domains, the better will be the compression
quality. In addition, the application time increases as the number of domains increases as well.

Our BSP modeling considers the variation of both the range and domain sizes as well as the
number of processes. Algorithm 2 presents the organization of a single superstep. Firstly, we
are computing t

r supersteps, where t × t is the image size and r is the size of square ranges.
The goal is to compute a set of ranges at each superstep. For that, each superstep works over
t
r ranges since the image comprises a square. At each superstep, a range is computed against

8((t
d)

2
. 1
n) domains, where d represents the size of a domain and n the number of processes.

Moreover, each process sends t
r ranges before calling the barrier, which must be multiplied by

8 to find the number of bytes (we considered a range with 8 bytes in memory).

The main aim of the experimental evaluation is to observe the performance of MigBSP when
working with AutoMig heuristic. Considering this, we applied simulation in three scenarios:
(i) Application execution simply; (ii) Application execution with MigBSP scheduler without
applying migrations; (iii) Application execution with MigBSP scheduler allowing migrations.
Scenario ii consists in performing all scheduling calculus and decisions, but it does not
comprise any migrations actually. Scenario iii adds the migrations costs on those processes
that migrate from one processor to another. Both the BSP application and the model were
developed using the SimGrid Simulator (MSG Module) (Casanova et al., 2008). It makes
possible application modeling and processes migration. In addition, it is deterministic, where
a specific input always results in the same output.

11Process Rescheduling in High Performance Computing Environments

www.intechopen.com

10 Will-be-set-by-IN-TECH

Algorithm 2 Modeling of a single superstep for the Fractal Image Compression problem

1: Considering a range-pool rp of the image (0 ≤ rp ≤ t
r − 1), where t and r mean the sides

of the t × t image and r × r range, respectively
2: for each range in rp do
3: for each domain belonging to specific process do
4: for each isometry of a domain do
5: calculate-rms(range, domain)
6: end for
7: end for
8: end for
9: Each process i (0 ≤ i ≤ n − 1) sends data to its right-neighbor i + 1. Process n − 1 sends

data to process 0 (where n is the total number of processes)
10: Call for synchronization barrier

R3
Cluster I
I1...I112

Cluster F
F1...F6

Cluster C
"C1...C16"

Cluster A
A1...A20

R1 R2

Cluster L
"L1 ... L20"

"L1...L20" <-> "R1" = 1 Gbps
"C1...C16" <-> "R1" = 100 Mbps

"F1...F6" <-> "R2" = 100 Mbps

"I1...I112" <-> "R2" = 1 Gbps

"A1...A20" <-> "R3" = 1 Gbps

"R1" <-> "R2" = 1 Gbps

"R2" <-> "R3" = 1 Gbps

"L1...L20"= 1.2 GHz

"C1...C16"= 1 GHz

"I1...I112"= 1.6 GHz

"F1...F6"= 1 GHz

Network Connections

Processing Capacity

Set 1

Set 2

Set 3

Set 4

Set 5 "A1...A20"= 2 GHz

Initial Processes-Resources Mapping

10 processes = L {1-10}

200 processes = L {1-20}, C {1-16}, F {1-6}, I {1-112},

A {1-20}, L {1-20}, C {1-6}

25 processes = L {1-20}, C {1-5}

50 processes = L {1-20}, C {1-16}, F {1-6}, I {1-8}

100 processes = L {1-20}, C {1-16}, F {1-6}, I {1-58}

Fig. 5. Multiple Clusters-based topology, processing and network resources description and
the initial processes-resources scheduling.

Aiming to test the scenarios, we assembled an infrastructure with five Sets which is depicted
in Figure 5. A Set represents a cluster where each node has a single processor. The
infrastructure permits us to analyze the impact of the heterogeneity issue on AutoMig’s
algorithms. Moreover, it represents the current resources at Unisinos University, Brazil. Initial
tests were executed using α equal to 4 and D equal to 0.5. We observed the behavior of 10,
25, 50, 100 and 200 BSP processes. Their initial mapping to the resources may be viewed
in Figure 5. Since the application proceeds in communications from process i to i + 1, we
opted by using the contiguous approach in which a cluster is filled before passing to another
one (Pascual et al., 2009). Furthermore, the values of 40, 20 and 10 were used for the side (d)
of a square domain. The range value (r) is obtained by d

2 . The considered figure is a square
with side 1000. The lower the d variable, the greater the number of domains to be tested by
each process. These parameters turn possible the verification of the AutoMig’s overhead and

12 Production Scheduling

www.intechopen.com

Process Rescheduling in High Performance Computing Environments 11

situations where process rescheduling is applicable. Finally, the migration costs are based on
previous executions with AMPI (Huang et al., 2006) on our clusters.

5. Analyzing AutoMig’s overhead and decisions

Table 1 presents the initial tests when dealing with 40 and 20 for both domain and range sizes,
respectively. This configuration enables a short number of domains to be computed by each
process. Thus, the processes have a small computation grain and their migrations are not
viable. PM values in all situations are negative, owing to the lower weight of the computation
and communication actions if compared to the migration costs. Therefore, AutoMig figures
out the lowest pf in which in reached through the current scheduling. Consequently, both
times for scenario ii and iii are higher than the time spent in scenario i. In this context, a large
overhead is imposed by MigBSP since the normal application execution is close to 1 second in
average.

Processes Scenario i
Scenario ii (MigBSP and AutoMig
without Migrations)

Scenario iii (MigBSP and AutoMig
enabling Migrations)

10 1.20 2.17 2.17
25 0.66 1.96 1.96
50 0.57 2.06 2.06
100 0.93 2.44 2.44
200 1.74 3.41 3.41

Table 1. Results when using 40 and 20 for domain and range, respectively (time in seconds)

0

5

10

15

20
Scenario i

Scenario ii

Scenario iii

10 processes 25 processes 50 processes 100 processes 200 processes

T
im

e
 i
n

 S
e

c
o

n
d

s

Fig. 6. Evaluating the migration model with AutoMig when using 20 and 10 for domain and
range, respectively.

We increase the number of domains when dealing with 20 for the domain’s side. This
context generated the results presented in Figure 6. As presented in the previous execution,
migrations did not take place with 10 processes. They are balanced and their reorganization to
the fastest cluster imposed costs larger than the benefits. pf of 0.21 was obtained for the current
processes-resources mapping by using 20 for domain and 10 processes. All predictions in the

13Process Rescheduling in High Performance Computing Environments

www.intechopen.com

12 Will-be-set-by-IN-TECH

0

50

100

150

200

250

300 Scenario i

Scenario ii

Scenario iii

10 processes 25 processes 50 processes 100 processes 200 processes

T
im

e
 i
n

 S
e

c
o

n
d

s

Fig. 7. AutoMig’s results when enlarging the work per process at each superstep. This graph
illustrates experiments with domain 10 and range 5.

PM list are higher than 0.21 and their average achieves 0.38. However, this configuration of
domain triggers migration when using 25 and 50 processes. In the former case, 5 processes
from cluster C are moved to the fastest cluster named A. AutoMig’s decisions led a gain
of 17.15% with process rescheduling in this context. The last mentioned cluster receives all
processes from cluster F when dealing with 50 processes. This situation shows up gains of
12.05% with migrations. All processes from cluster C remain on their initial location because
the computation grain decreases with 50 processes. Although 14 nodes in the fastest cluster
A stay free, AutoMig does not select some processes for execution on them because BSP
model presents a synchronization barrier. For example, despite 14 migrations from cluster
C to A occur, a group of process in the slower cluster will remain inside it and still limit the
superstep’s time. Finally, once the work grain decreases when enlarging the processes, the
executions with 100 and 200 did not present migrations.

The BSP application demonstrated good performance levels with domain equal to 10 as
illustrated in Figure 7. The computation grain increases exponentially with this configuration.
This sentence may be viewed through the execution of 10 processes, in which are all migrated

to cluster A. Considering that 8((t
d)

2
. 1
10) express the number of domains assigned to each one

of 10 processes, this expression is equal to 500, 2000 and 8000 when testing 40, 20 and 10 values
for domain. Using 10 for both domain and the number of processes, the current scheduling
produced a pf of 1.62. The values of pf for the PM list may be seen as follows:

• p f [1..10] = {1.79, 1.75, 1.78, 1.79, 1.81, 1.76, 1.74, 1.82, 1.78, 1.47}.

Considering the first up to the ninth pf, we observed that although some processes can run
faster in a more appropriate cluster, there are others that remain in a slower cluster. This last
group does not allow performance gains due to the BSP modeling. This situation changes
when testing the tenth pf. It considers the migration of all 10 processes to the fastest cluster
and generates a gain around 31.13% when comparing scenarios iii and i. This analysis is
illustrated in Figure 8.

14 Production Scheduling

www.intechopen.com

Process Rescheduling in High Performance Computing Environments 13

The processes from cluster C are moved to A with 25 processes and domain equal to 10. In
this case, the 20 other processes stay on cluster L because there are not enough free nodes
in the fastest cluster. A possibility is to explore two process in a node of cluster A (each
node has 2 GHz) but AutoMig does not consider it because each node in Cluster L has 1.2
GHz. Considering the growth in the number of domains, the migrations with 100 processes
becomes viable and get 14.95% of profit. Nevertheless, the initial mapping of 200 processes
stands the same position and an overhead of 7.64% in application execution was observed
comparing both scenarios i and ii.

0

5

10

15

20

25

30 Gain with process migration

Number of Processes

P
I

-
P

e
rf

o
rm

a
n

c
e

 I
n

d
e

x

10 25 50 100

Fig. 8. Migration gains by applying AutoMig with domain 10. Performance Index PI

=(scen. i−scen. iii
scen. i ∗ 100).

The previous tests make clear that the higher the computation weight per process, the better
will be the gains with process rescheduling. In this way, we tested AutoMig with shorter
domain and range values as expressed in Table 2. This table shows the behavior for 10 and
25 processes. Gains about 31.62% and 19.81% were obtained when dealing with AutoMig.
In addition, its overhead is shorter than 1%. Observing the results, we can verify that the
more time consuming the application, the lower the AutoMig overhead on that. In addition,
we verify that the benefits with migrations remain practically constant if we compare the
executions with 10 and 4 for the domain values. It is possible to observe that when doubling
the number of processes, the application time is not halved as well. There is a limit where the
inclusion of processes is not profitable due to the larger number of communication actions and
the higher time spent on barriers. Concerning the scalability issue, MigBSP (with AutoMig)
shows similar behaviors if compared to those obtained by scenario i (Figures 6 and 8).

Processes
Scenario i

Old Heuristic AutoMig
Scenario ii Scenario iii Scenario ii Scenario iii

10 12500.51 12511.87 9191.72 12523.22 8555.29
25 6250.49 6257.18 5311.54 6265.38 5011.77

Table 2. Results when using 4 and 2 for domain and range

Table 2 also shows a comparative analysis of the two selection heuristics implemented in
MigBSP. We named the one that selects one process at each rescheduling call as Old Heuristic.
Despite both obtained good levels of performance, AutoMig achieves better migration results

15Process Rescheduling in High Performance Computing Environments

www.intechopen.com

14 Will-be-set-by-IN-TECH

than Old Heuristic (approximately 8%). For instance, 5 processes are migrated already in the
first attempt for migration when testing 25 processes. In this case, all processes that were
running on Cluster C are passed to Cluster A. This reorganization suggested by AutoMig
at the beginning of the application provides a shorter time for application conclusion. In
the other hand, 5 rescheduling calls are needed to reach the same configuration expressed
previously with Old Heuristic. Lastly, AutoMig imposes larger overheads if compared to
Old Heuristic (close to 1%). This situation was expected since two multicast communications
among the Set Managers are performed by AutoMig in its algorithms.

6. Related work

Vadhiyar and Dongarra presented a migration framework and self adaptivity in GrADS
system (Vadhiyar & Dongarra, 2005). The gain with rescheduling is based on the remaining
execution time prediction over a new specified resource. Thus, this framework must work
with applications in which their parts and durations are known in advance. In addition, the
same problem is shown in the following two works. Sanjay and Vadhiyar (Sanjay & Vadhiyar,
2009) present a scheduling algorithm called Box Elimination. It considers a 3-D box of CPU,
bandwidth and processors tuples for selecting the resources with minimum available CPU
and bandwidth. The second work comprises the Ding’s efforts (Ding et al., 2009). He creates
the TPBH (Task Partition-Based Heuristic) heuristic, in which operates with both suffrage
and minimum completion time approaches. These two mentioned works treat applications in
which the problem size is known in advance. Alternatively, AutoMig just uses data collected
at runtime and based on that it takes the performance of different scheduling predictions.

Chen et al. (Chen et al., 2008) proposed processes reassignment with reduced cost for grid
load rebalancing. The heuristics permit only movements between the machine with the
maximum load level and another machine. Furthermore, this work does not consider the
communication issue on selection decisions. Liu et al. (Liu et al., 2009) introduced a novel
algorithm for resource selection whose the application reports the Execution Satisfaction
Degree (ESD) to the scheduling middleware. Then, this last entity tune the environment by
adding/replacing/deleting resources in order to satisfy the user’s performance requirements.
The main weakness of this idea is the fact that users/developers need to define the ESD
function by themselves for each new application.

Concerning the BSP scope, Jiang, Tong and Zhao presented resource load balancing based on
multi-agents in ServiceBSP model (Jiang et al., 2007). Load balancing is launched when a new
task is insert in the system and is based on the load rank of nodes. The selection service sends
the new task to the current lightest node. Load value is calculated taking such information:
CPU, memory resource, number of current tasks, response time and number of network links.
Silva et al. (da Silva e Silva et al., 2010) explained the resource management on the InteGrade
grid middleware. They presented a grid as a collection of clusters, where each one runs its
own Cluster Managers (CM). Analogous to MigBSP, CM is responsible for getting data from
a cluster and to exchange it among other CMs.

Concerning the migration context, we can cite two works that enable this feature on BSP
applications. The first one describes the PUBWCL library which aims to take profit of idle
cycles from nodes around the Internet (Bonorden et al., 2005). All proposed algorithms just
use data about the computation times from each process as well as from the nodes. Other
work comprises an extension of PUB library to support migration (Bonorden, 2007). The

16 Production Scheduling

www.intechopen.com

Process Rescheduling in High Performance Computing Environments 15

author proposed both a centralized and a distributed strategies for load balancing. In the
first one, all nodes send data about their CPU power and load to a master node. The master
verifies the least and the most loaded node and selects one process for migration between
them. In distributed approach, every node chooses c other nodes randomly and asks them for
their load. One process is migrated if the minimum load of c analyzed nodes is smaller than
the load of the node that is performing the test. The drawback of this strategy is that it can
create a lot of messages among the nodes. Moreover, both strategies take into consideration
neither the communication among the processes, nor the migration costs.

7. Conclusion

Considering that the bulk synchronous style is a common organization on writing successful
parallel programs (Bonorden, 2007; De Grande & Boukerche, 2011; Hendrickson, 2009;
Hou et al., 2008), AutoMig emerges as an alternative for selecting their processes for running
on more suitable resources without interferences from the developers. AutoMig’s main
contribution appears on its prediction function pf. pf is applied for the current scheduling
as well as for each level of a Potential of Migration-based list. Each element of this list informs
a new scheduling through the increment of one process replacement. pf considers the load on
both the Sets and the network, estimates the slowest processes regarding their computation
and communication activities and adds the transferring overhead of the tested process. The
key problem to solve may be summarized in maintaining the current processes’ location or to
choose a level of the list. AutoMig’s load balancing scheme uses the global approach, where
data from all processes are considered in the calculus (Zaki et al., 1997). Instead to pay a
synchronization cost to get the scheduling information, AutoMig takes profit from the BSP
superstep concept in which a barrier always occurs after communication actions.

AutoMig and an application were developed using SimGrid Simulator. We implemented a
BSP version of the Fractal Image Compression algorithm. Besides its real utility in satellite
and mobile video areas (Guo et al., 2009), this application was taken because it works with a
parameter called domain which turns the creation of different load situations easier. Since the
application is CPU-bound, the shorter the size of domain the higher the application’s time and
migration profitability. The results proved this, indicating gains up to 17.15% and 31.13% for
domains equal 20 and 10. Particularly, the results revealed the main AutoMig’s strength on
selecting the migratable processes. It can elect the whole set of processes belonging to a slower
cluster to run faster in a more appropriate one. But, sometimes a faster cluster has fewer free
nodes than the number of candidates. AutoMig demonstrates that migrations do not take
place in this situation, owing to the execution rules of a BSP superstep. It has a barrier that
always wait for the slowest process (in this case, the process that will remain on the slower
cluster).

Finally, future work comprises the use of AutoMig in a HPC middleware for Cloud
computing. This middleware will work on self-provisioning the resources for executing
parallel applications. Concerning that each application specifies its own SLA (Service
Level Agreement) previously, AutoMig appears as the first initiative to reorganize
processes-resources shaping on the fly when SLA fails. If the rescheduling does not solve
the performance issue, more resources are allocated in a second instance. The final aim is to
reduce the costs on both cloud administrator and user levels.

17Process Rescheduling in High Performance Computing Environments

www.intechopen.com

16 Will-be-set-by-IN-TECH

8. References

Baritompa, W., Bulger, D. W. & Wood, G. R. (2007). Generating functions and the performance
of backtracking adaptive search, J. of Global Optimization 37: 159–175.
URL: http://portal.acm.org/citation.cfm?id=1196588.1196605

Bhandarkar, M. A., Brunner, R. & Kale, L. V. (2000). Run-time support for adaptive load
balancing, IPDPS ’00: Proceedings of the 15 IPDPS 2000 Workshops on Parallel and
Distributed Processing, Springer-Verlag, London, UK, pp. 1152–1159.

Bonorden, O. (2007). Load balancing in the bulk-synchronous-parallel setting using process
migrations., 21th International Parallel and Distributed Processing Symposium (IPDPS
2007), IEEE, pp. 1–9.

Bonorden, O., Gehweiler, J. & auf der Heide, F. M. (2005). Load balancing strategies in a web
computing environment, Proceeedings of International Conference on Parallel Processing
and Applied Mathematics (PPAM), Poznan, Poland, pp. 839–846.

Casanova, H., Legrand, A. & Quinson, M. (2008). Simgrid: A generic framework
for large-scale distributed experiments, Tenth International Conference on Computer
Modeling and Simulation (uksim), IEEE Computer Society, Los Alamitos, CA, USA,
pp. 126–131.

Chen, L., Wang, C.-L. & Lau, F. (2008). Process reassignment with reduced migration cost
in grid load rebalancing, Parallel and Distributed Processing, 2008. IPDPS 2008. IEEE
International Symposium on pp. 1–13.

da Rosa Righi, R., Pilla, L. L., Carissimi, A., Navaux, P. A. & Heiss, H.-U. (2010). Observing
the impact of multiple metrics and runtime adaptations on bsp process rescheduling,
Parallel Processing Letters 20(2): 123–144.

da Silva e Silva, F. J., Kon, F., Goldman, A., Finger, M., de Camargo, R. Y., Filho, F. C. & Costa,
F. M. (2010). Application execution management on the integrade opportunistic grid
middleware, J. Parallel Distrib. Comput. 70(5): 573–583.

De Grande, R. E. & Boukerche, A. (2011). Dynamic balancing of communication and
computation load for hla-based simulations on large-scale distributed systems, J.
Parallel Distrib. Comput. 71: 40–52.
URL: http://dx.doi.org/10.1016/j.jpdc.2010.04.001

Delias, P., Doulamis, A., Doulamis, N. & Matsatsinis, N. (2011). Optimizing resource conflicts
in workflow management systems, Knowledge and Data Engineering, IEEE Transactions
on 23(3): 417 –432.

Ding, D., Luo, S. & Gao, Z. (2009). A dual heuristic scheduling strategy based on task partition
in grid environments, CSO ’09: Proceedings of the 2009 International Joint Conference on
Computational Sciences and Optimization, IEEE Computer Society, Washington, DC,
USA, pp. 63–67.

Duselis, J., Cauich, E., Wang, R. & Scherson, I. (2009). Resource selection and allocation
for dynamic adaptive computing in heterogeneous clusters, Cluster Computing and
Workshops, 2009. CLUSTER ’09. IEEE International Conference on, pp. 1 –9.

El Kabbany, G., Wanas, N., Hegazi, N. & Shaheen, S. (2011). A dynamic load balancing
framework for real-time applications in message passing systems, International
Journal of Parallel Programming 39: 143–182. 10.1007/s10766-010-0134-5.
URL: http://dx.doi.org/10.1007/s10766-010-0134-5

Fan, K. (2011). A special parallel job shop scheduling problem, E -Business and E -Government
(ICEE), 2011 International Conference on, pp. 1 –3.

18 Production Scheduling

www.intechopen.com

Process Rescheduling in High Performance Computing Environments 17

Goldchleger, A., Kon, F., Goldman, A., Finger, M. & Bezerra, G. C. (2004). Integrade
object-oriented grid middleware leveraging the idle computing power of desktop
machines: Research articles, Concurr. Comput. : Pract. Exper. 16(5): 449–459.

Guo, Y., Chen, X., Deng, M., Wang, Z., Lv, W., Xu, C. & Wang, T. (2009). The fractal
compression coding in mobile video monitoring system, CMC ’09: Proceedings of
the 2009 WRI International Conference on Communications and Mobile Computing, IEEE
Computer Society, Washington, DC, USA, pp. 492–495.

Hendrickson, B. (2009). Computational science: Emerging opportunities and challenges,
Journal of Physics: Conference Series 180(1): 012013.
URL: http://stacks.iop.org/1742-6596/180/i=1/a=012013

Hou, Q., Zhou, K. & Guo, B. (2008). Bsgp: bulk-synchronous gpu programming, SIGGRAPH
’08: ACM SIGGRAPH 2008 papers, ACM, New York, NY, USA, pp. 1–12.

Huang, C., Zheng, G., Kale, L. & Kumar, S. (2006). Performance evaluation of adaptive
mpi, PPoPP ’06: Proceedings of the eleventh ACM SIGPLAN symposium on Principles
and practice of parallel programming, ACM Press, New York, NY, USA, pp. 12–21.

Jiang, Y., Tong, W. & Zhao, W. (2007). Resource load balancing based on multi-agent in
servicebsp model, International Conference on Computational Science (3), Vol. 4489 of
Lecture Notes in Computer Science, Springer, pp. 42–49.

Kwok, Y.-K. & Cheung, L.-S. (2004). A new fuzzy-decision based load balancing system for
distributed object computing, J. Parallel Distrib. Comput. 64(2): 238–253.

Liu, H., Sørensen, S.-A. & Nazir, A. (2009). On-line automatic resource selection in distributed
computing, IEEE International Conference on Cluster Computing, IEEE, pp. 1–9.

Min, L., Xiao, L. & Ying, C. (2009). An establishment and management system of production
planning and scheduling for large-piece okp enterprises, Industrial Engineering and
Engineering Management, 2009. IE EM ’09. 16th International Conference on, pp. 964
–968.

Moreno-Vozmediano, R. & Alonso-Conde, A. B. (2005). Influence of grid economic factors
on scheduling and migration., High Performance Computing for Computational Science -
VECPAR, Vol. 3402 of Lecture Notes in Computer Science, Springer, pp. 274–287.

Nascimento, A. P., Sena, A. C., Boeres, C. & Rebello, V. E. F. (2007). Distributed and dynamic
self-scheduling of parallel mpi grid applications: Research articles, Concurr. Comput.:
Pract. Exper. 19(14): 1955–1974.

Pascual, J. A., Navaridas, J. & Miguel-Alonso, J. (2009). Job scheduling strategies for parallel
processing, Springer-Verlag, Berlin, Heidelberg, chapter Effects of Topology-Aware
Allocation Policies on Scheduling Performance, pp. 138–156.

Qin, X., Jiang, H., Manzanares, A., Ruan, X. & Yin, S. (2010). Communication-aware load
balancing for parallel applications on clusters, IEEE Trans. Comput. 59(1): 42–52.

Sanjay, H. A. & Vadhiyar, S. S. (2009). A strategy for scheduling tightly coupled parallel
applications on clusters, Concurr. Comput. : Pract. Exper. 21(18): 2491–2517.

Silva, R. E., Pezzi, G., Maillard, N. & Diverio, T. (2005). Automatic data-flow graph generation
of mpi programs, SBAC-PAD ’05: Proceedings of the 17th International Symposium
on Computer Architecture on High Performance Computing, IEEE Computer Society,
Washington, DC, USA, pp. 93–100.

Tanenbaum, A. (2003). Computer Networks, 4th edn, Prentice Hall PTR, Upper Saddle River,
New Jersey.

Vadhiyar, S. S. & Dongarra, J. J. (2005). Self adaptivity in grid computing: Research articles,
Concurr. Comput. : Pract. Exper. 17(2-4): 235–257.

19Process Rescheduling in High Performance Computing Environments

www.intechopen.com

18 Will-be-set-by-IN-TECH

Wang, Z., Wang, F., Gao, F., Zhai, Q. & Zhou, D. (2011). An electric energy balancing model in
a medium enterprise grid, Power and Energy Engineering Conference (APPEEC), 2011
Asia-Pacific, pp. 1 –4.

Xhafa, F. & Abraham, A. (2010). Computational models and heuristic methods for grid
scheduling problems, Future Gener. Comput. Syst. 26(4): 608–621.

Xing, C. (2008). An adaptive domain pool scheme for fractal image compression, Education
Technology and Training and Geoscience and Remote Sensing 2: 719–722.

Yang, C.-T. & Chou, K.-Y. (2009). An adaptive job allocation strategy for heterogeneous
multiple clusters, Proceedings of the 2009 Ninth IEEE International Conference on
Computer and Information Technology - Volume 02, CIT ’09, IEEE Computer Society,
Washington, DC, USA, pp. 209–214.
URL: http://dx.doi.org/10.1109/CIT.2009.138

Yao, L. & Zhu, W. (2010). Visual simulation framework of iron and steel production scheduling
based on flexsim, Bio-Inspired Computing: Theories and Applications (BIC-TA), 2010
IEEE Fifth International Conference on, pp. 54 –58.

Yu, J. & Buyya, R. (2005). A taxonomy of scientific workflow systems for grid computing,
SIGMOD Rec. 34(3): 44–49.

Zaki, M. J., Li, W. & Parthasarathy, S. (1997). Customized dynamic load balancing for a
network of workstations, J. Parallel Distrib. Comput. 43(2): 156–162.

Zhu, Z., Chu, F., Sun, L. & Liu, M. (2011). Scheduling with resource allocation and
past-sequence-dependent setup times including maintenance, Networking, Sensing
and Control (ICNSC), 2011 IEEE International Conference on, pp. 383 –387.

20 Production Scheduling

www.intechopen.com

Production Scheduling

Edited by Prof. Rodrigo Righi

ISBN 978-953-307-935-6

Hard cover, 242 pages

Publisher InTech

Published online 11, January, 2012

Published in print edition January, 2012

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Generally speaking, scheduling is the procedure of mapping a set of tasks or jobs (studied objects) to a set of

target resources efficiently. More specifically, as a part of a larger planning and scheduling process, production

scheduling is essential for the proper functioning of a manufacturing enterprise. This book presents ten

chapters divided into five sections. Section 1 discusses rescheduling strategies, policies, and methods for

production scheduling. Section 2 presents two chapters about flow shop scheduling. Section 3 describes

heuristic and metaheuristic methods for treating the scheduling problem in an efficient manner. In addition, two

test cases are presented in Section 4. The first uses simulation, while the second shows a real implementation

of a production scheduling system. Finally, Section 5 presents some modeling strategies for building

production scheduling systems. This book will be of interest to those working in the decision-making branches

of production, in various operational research areas, as well as computational methods design. People from a

diverse background ranging from academia and research to those working in industry, can take advantage of

this volume.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Rodrigo da Rosa Righi and Lucas Graebin (2012). Process Rescheduling in High Performance Computing

Environments, Production Scheduling, Prof. Rodrigo Righi (Ed.), ISBN: 978-953-307-935-6, InTech, Available

from: http://www.intechopen.com/books/production-scheduling/process-rescheduling-in-high-performance-

computing-environments

© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.

