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1. Introduction  

Excessive ingestion of alcohol is one of the major causes of chronic liver disease worldwide. 
Alcoholic liver disease (ALD) encompasses a broad spectrum of diseases ranging from 
steatosis (fatty liver), steatohepatitis, fibrosis, cirrhosis to hepatocarcinoma. Almost all heavy 
drinkers develop fatty liver; however, only up to 30% of heavy drinkers may develop more 
several forms of chronic liver injury such as alcoholic hepatitis, fibrosis, cirrhosis, and 
hepatocellular carcinoma (O'Shea et al., 2010). Despite extensive research, cellular and 
molecular mechanisms contributing to the pathogenesis of ALD remain to be fully 
elucidated. Classically, direct hepatotoxicity and production of reactive oxygen species 
(ROS) induced by alcohol and its metabolites (e.g. acetaldehyde, acetate) are considered the 
major causative factors. Nevertheless, growing evidence suggests innate immunity also 
plays an important role in the pathogenesis of ALD (Byun & Jeong, 2010; Gao et al., 2011; 
Miller et al., 2011).  

In this chapter we discuss the association between innate immunity and ALD. Specifically, 
we discuss the following topics: i) role of liver in innate immunity; ii) mechanisms of 
alcohol-induced dysregulation of innate immunity; iii) role of dysregulation of innate 
immunity in the pathogenesis of ALD; iv) modulation of innate immunity in the treatment 
of ALD. Additionally, we also discuss the role of innate immunity impairment in ALD-
associated infection risk.  In this topic, we detail the data of our recent study on Toll-like 
receptor (TLR)2- and 4-mediated immune response in patients with alcoholic cirrhosis. 

2. Role of liver in innate immunity 

Innate immunity is an important first line of defense against infection, quickly responding to 
potential attacks by pathogens. It consists of anatomic barriers (e.g., skin, epidermis, dermis, 
and mucous membranes), physiologic barriers (e.g., temperature, low pH, oxygen), humoral 
factors (e.g., pepsin, lysozyme, anti-microbial substances, interferons, complement), 
phagocytic cells (e.g., neutrophils and macrophages), and lymphocyte cells (e.g., natural 
killer [NK] and NKT cells). Many of these barriers and factors can prevent or destroy the 
invading pathogens nonspecifically. However, recent evidence suggests that innate 
immunity can also specifically detect infection through pattern-recognition receptors (PRRs) 
that recognize specific structures, called pathogen-associated molecular patterns (PAMPs), 
that are expressed by invading pathogens. Many PAMPs have been identified, including 
bacterial carbohydrates (e.g., lipopolysaccharide or LPS, mannose), bacterial peptides  
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(flagellin), peptidoglycans and lipoteichoic acids (from Gram-positive bacteria), N-

formylmethionine, lipoproteins and fungal glucans, and nucleic acids (e.g., bacterial or viral 

DNA or RNA). The PRRs can be divided into 3 categories: secreted PRRs, membrane-bound 

PRRs, and phagocytic PRRs. Secreted PRRs are a group of proteins that kill pathogens through 

complement activation and opsonization of microbial cells for phagocytosis. Secreted PRRs 

include complements, pentraxins, and peptidoglycan-recognition proteins, which are mainly 

produced by hepatocytes and secreted into the blood stream. Membrane-bound or 

intracellular PRRs include TLRs, nucleotide-binding oligomerization domain (NOD)-like 

receptors, and retinoic acid-induced gene I-like helicases. Phagocytic (or endocytic) PRRs 

which are expressed on the surface of macrophages, neutrophils, and dendritic cells can bind 

directly to pathogens, and this is followed by phagocytosis into lysosomal compartments and 

elimination. These phagocytic PRRs include scavenger receptors, macrophage mannose 

receptors, and ǃ-glucan receptors (Janeway & Medzhitov, 2002).  

Blood circulating from the intestines to the liver is rich in bacterial products, environmental 

toxins, and food antigens. To effectively and quickly defend against potentially toxic agents 

without launching harmful immune responses, the liver relies on its strong immune system. 
Interestingly, increasing evidence has suggested that the immune system in the liver 

consists of predominantly innate immunity (Gao et al., 2008). First, the liver is responsible 

for the biosynthesis of 80–90% innate proteins including complements, secreted PRRs and 

acute phase proteins. Second, the liver contains a large number of Kupffer cells (KCs), which 

account for 80-90% of the total population of fixed tissue macrophages in the body. KCs, in 

combination with liver sinusoidal cells, are responsible for clearance of soluble 

macromolecules and insoluble waste in the body. Third, liver lymphocytes are enriched in 

innate immune cells including NK and NKT cells. Human intrahepatic lymphocyte 

population contain about 30% to 50% NK cells and up to 10% NKT cells. Fourth, liver non-

parenchymal cells also express high levels of membrane-bound PRRs, such as TLRs. Finally 

and interestingly, the adaptive immunity in the liver seems less active because the liver is a 

major site to induce T cell apoptosis. 

3. Dysregulation of innate immunity in ALD 

Growing evidence suggests alcohol induces dysregulation of innate immunity through three 
main mechanisms: i) activation of LPS/TLR4 signalling pathway; ii) activation of 
complement system; iii) inhibition of innate immunity cells, namely NK cells. 

3.1 Activation of LPS/TLR4 signalling pathway 

LPS is a component of Gram-negative bacteria cell wall. It consists of hydrophilic 

polysaccharides of the core and O-antigen and a hydrophobic lipid A component. This 

hydrophobic component corresponds to the conserved molecular pattern of LPS and is the 

main inducer of biological responses to LPS. TLR4, a member of human TLR family, is the 

receptor of LPS. Stimulation of TLR4 by LPS involves the participation of several molecules 

[LPS binding protein (LBP), cluster of differentiation-14 (CD14) and myeloid differentiation-

2 (MD-2)] (figure 1). LBP (a soluble protein) extracts LPS from the bacterial membrane and 

shuttles it to CD14 (a glycosylphosphatidylinositol-anchored protein, which also exists in a 

soluble form). CD14 then transfers the LPS to MD-2 (a soluble protein that non-covalently 
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associates with the extracellular domain of TLR4). Binding of LPS to MD-2 induces a 

conformational change in MD-2 which then allows the complex MD-2-TLR4 to bind to a 

second TLR4 receptor thus achieving TLR4 homo-dimerisation and signalling.  

 

Fig. 1. Overview of LPS/TLR4 signalling pathway. Stimulation of TLR4 by LPS involves the 
participation of several molecules (LBP, CD14 and MD-2). Activation of TLR4 induces two 
downstream signalling pathways. First, the MyD88-dependent pathway is initiated by 
recruitment of TIRAP and MyD88 to the TLR4 complex which leads to early-phase 
activation of NF-κB and subsequent induction of the expression of NF-κB-controlled genes 
including pro-inflammatory cytokines (TNF-ǂ). The MyD88-dependent pathway can also 
activate JNK, leading to transcription of several genes including TNF-ǂ, via activation of 
AP-1. Second, the MyD88-independent pathway is initiated by recruitment of TRAM and 
TRIF to the TLR4 complex, followed by late activation of NF-κB complex and activation of 
IRF3 which leads to the transcription of IFN-ǃ as well as other interferon-induced genes. See 
text for abbreviations. 

Activation of TLR4 induces two downstream signalling pathways (figure 1). First, the 
MyD88-dependent pathway is initiated by recruitment of TIR domain-containing adaptor 
protein (TIRAP) and myeloid differentiation factor 88 (MyD88) to the TLR4 complex which 
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leads to  early-phase activation of nuclear factor-κB (NF-κB) and subsequent induction of the 
expression of NF-κB-controlled genes including pro-inflammatory cytokines  [tumor 
necrosis factor-ǂ (TNF-ǂ), interleukin-6 (IL-6)] and chemokines [monocyte chemotactic 
protein-1 (MCP-1)] genes. The MyD88-dependent pathway can also activate c-Jun N-
terminal kinase (JNK), leading to activator protein-1 (AP-1) activation that initiates the 
transcription of genes involved in regulation of cell proliferation, morphogenesis, apoptosis, 
and differentiation. Second, the MyD88-independent pathway is initiated by recruitment of 
TIR-domain containing adaptor inducing interferon-ǃ (TRIF) and TRIF-related adaptor 
molecule (TRAM) to the TLR4 complex, followed by late activation of NF-κB complex and 
activation of interferon regulatory factor 3 (IRF3) which leads to the transcription of 
interferon-ǃ (IFN-ǃ) as well as other interferon-induced genes (Lu et al., 2008). 

Most parenchymal and non-parenchymal liver cells express TLR4. Nonetheless, with the 
exception of KCs, the amount of TLR4 expression and the level of responsiveness to LPS in 
most liver cells appear to be low in non-inflamed liver (Su et al., 2000; Zarember & 
Godowski, 2002). 

Several studies suggest that chronic alcohol ingestion can enhance hepatic LPS/TLR4 

signalling through increase of portal and systemic levels of LPS and upregulation and 

sensitization of hepatic TLR4 (Soares et al., 2010). Chronic ingestion of alcohol leads to a 

strong elevation of portal and systemic levels of LPS in animal models and humans 

(Mathurin et al., 2000; Parlesak et al., 2000). The elevation of LPS levels appears to be 

predominantly caused by two mechanisms. First, alcohol exposure can promote the growth 

of Gram-negative bacteria in the intestine, which leads to enhanced production of LPS 

(Hauge et al., 1997). Second, alcohol metabolism by Gram-negative bacteria and intestinal 

epithelial cells can result in accumulation of acetaldehyde, which in turn can increase 

intestinal permeability by opening intestinal tight junctions. Increased intestinal 

permeability can lead to increased transfer of LPS from the intestine to portal and systemic 

circulation (Purohit et al., 2008). Furthermore, chronic alcohol consumption upregulates 

hepatic TLR4 and sensitizes it to LPS to enhance TNF-ǂ production, a process known as 

priming (Gustot et al., 2006). 

Besides LPS, TLR4 also senses endogenous ligands initiating danger signals, such as high 

mobility group box 1 (HMGB1), hyaluronan, heat shock protein 60 and free fatty acids 

(C12:0, C14:0, C16:0, and C18:0) (Erridge, 2010). In particular, HMGB1 has been shown to be 

released from damaged hepatocytes and contribute to liver injury (Tsung et al., 2005). Due 

to the association of many endogenous ligands with tissue injury, they are termed damage-

associated molecular patterns (DAMPs). Interestingly, recent studies show that many of the 

proposed endogenous TLR4 ligands may also have the capacity to bind and transport LPS 

and/or enhance the sensitivity of cells to LPS, suggesting that many of these molecules may 

be more accurately described as PAMP-binding molecules or PAMP-sensitizing molecules, 

rather than genuine ligands of TLR4 (Erridge, 2010). Therefore, these endogenous ligands, 

namely HMGB1, may enhance TLR4 signalling in ALD. 

3.2 Activation of complement system 

The complement system is a component of innate immunity that consists of multiple plasma 
proteins which act to fight infection by opsonizing pathogens, inducing inflammatory 
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responses, enhancing antibody responses, and attacking some pathogens directly. 
Activation of the complement cascade relies on cleavage of a zymogen to yield an active 
enzyme that in turns cleaves and activates the next zymogen in the cascade. Through this 
series of cleavage and enzyme activation, the immune system is able to produce a wide-
reaching response to few stimulation events (Gasque, 2004). The complement system is 
activated by three different pathways: classical, lectin and alternative pathways (figure 2). 
The classical pathway is activated by IgM- or IgG-containing immune complexes. The lectin 
pathway is activated when mannose-binding lectin binds its receptor, mannose, which is 
expressed by microbial pathogens. The alternative pathway is activated by C3b-coated 
pathogens. The three pathways converge at the generation of a C3 convertase that cleaves 
C3 to C3a and C3b. C3b is an opsonizing protein that coats pathogen surfaces to facilitate 
their uptake and destruction by phagocytes. C3b can also activate alternative pathway or 
associate to C3 convertase forming C5 convertase that cleaves C5 to C5a and C5b.  C3a and 
C5a lead to increased migration of phagocytes to the site of infection and induce mast cells 
to release histamine and TNF-ǂ, which contribute to the enhancement of inflammatory 
response. C5b forms with C6, C7, C7, C8 and C9 the membrane-attack complex that destroys 
certain pathogens by disrupting their membrane integrity (Gasque, 2004).  

The liver (primarily hepatocytes) is a major site that biosynthesizes complement 
components found in plasma. Hepatocytes are also primarily responsible for the 
biosynthesis of several complement regulator proteins found in plasma, such as factor I, 
factor H, and the C1 inhibitor. Additionally, cells in the liver also express complement factor 
receptors, as well as intrinsic regulatory proteins (Qin & Gao, 2006). 

A growing body of evidence in mouse models suggests that alcohol exposure results in 
activation of the complement system and inhibition of regulatory proteins. Chronic alcohol 
feeding to mice for 4-6 weeks increases activation of C3, as evidenced by increased C3a in 
the circulation (Pritchard et al., 2007), as well as increased accumulation of C3 or its 
proteolytic end product C3b/iC3b/C3c in liver (Jarvelainen et al., 2002; Roychowdhury et 
al., 2009). In rats, chronic alcohol exposure increases C3 activity and decreases expression of 
Crry, the rat homologue of the complement inhibitory protein CD55/DAF (decay-
accelerating factor), and CD59 in the liver (Jarvelainen et al., 2002). 

Complement is activated early in the progression of alcohol-induced liver injury, prior to 
detectable increases in ALT/AST or accumulation of hepatic triglycerides (Roychowdhury 
et al., 2009). Early activation of complement contributes to increased inflammatory cytokine 
expression, mediated via the activation of the anaphylatoxin receptors, C3aR (C3a receptor) 
and C5aR (C5a receptor), on KCs (Roychowdhury et al., 2009). The contribution of each 
pathway of complement activation in response to alcohol exposure is still unclear. It has 
been suggested that alcohol-induced increase in LPS levels may contribute to activation of 
complement via the alternative pathway (Jarvelainen et al., 2002). Recent evidence shows 
that alcohol feeding activates the classical complement pathway via C1q binding to 
apoptotic cells in the liver, suggesting that the classical complement pathway also 
contributes to complement activation in the pathogenesis of ALD (Cohen et al., 2010). It is 
also likely that activation of complement by any mechanism will initiate the alternative 
pathway-mediated feedback loop (Gasque, 2004). Further studies are still needed to 
elucidate the specific role of each pathway of complement activation in response to alcohol 
exposure. 
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Fig. 2. Overview of complement system. The complement system is activated by three 
different pathways: the classical, lectin and alternative pathways. The classical pathway is 
activated by IgM- or IgG-containing immune complexes. The lectin pathway is activated 
when mannose-binding lectin bind its receptor, mannose, which is expressed by microbial 
pathogens. The alternative pathway is activated by C3b-coated pathogens. The three 
pathways converge at the generation of a C3 convertase that cleaves C3 to C3a and C3b. C3b 
is an opsonizing protein that coats pathogen surfaces to facilitate their uptake and 
destruction by phagocytes. C3b can also activate alternative pathway or associate to C3 
convertase forming C5 convertase that cleaves C5 to C5a and C5b.  C3a and C5a lead to 
increased migration of phagocytes to the site of infection and induce mast cells to release 
histamine and TNF-ǂ, which contribute to the enhancement of inflammatory response. C5b 
forms with C6, C7, C7, C8 and C9 the membrane-attack complex that destroys certain 
pathogens by disrupting their membrane integrity. 

3.3 Inhibition of NK cells  

Over last several decades, many studies have shown that liver lymphocytes are rich in NK 
cells and that these cells play an important role in innate immune response against tumors 
and microbial pathogens including viruses, bacteria and parasites (Gao et al., 2009). NK cells 
can kill virus-infected cells and tumor cells via releasing granules containing granzyme and 
perforin, death ligand as TNF-related apoptosis-inducing ligand (TRAIL) and a variety of 
proinflammatory cytokines such as IFN-Ǆ and TNF-ǂ (Gao et al., 2009). Increasing evidence 
suggests that NK cells may also be involved in the pathogenesis of liver injury, fibrosis, and 
regeneration. For example, it has been shown that activation of NK cells inhibits liver 
fibrosis in vivo (Melhem et al., 2006).  
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Chronic alcohol consumption inhibits NK cells and such inhibition likely contributes to the 

pathogenesis of ALD. The inhibitory effect of chronic alcohol consumption on NK cells 

function has been observed for many years in alcoholic patients and rodents fed alcohol 

diets (Cook et al., 1997). This inhibitory effect is mediated by multiple mechanisms. First, 

chronic alcohol consumption directly attenuates NK cell cytotoxicity against activated 

hepatic stellate cells (HSCs) via down regulation of NK cell-associated molecules such as 

TRAIL, Natural killer group 2, member D (NKG2D) and interferon-Ǆ (IFN-Ǆ) (Jeong et al., 

2008). Second, chronic alcohol consumption indirectly attenuates NK cell killing activity by 

stimulating HSCs to produce transforming growth factor-ǃ (TGF-ǃ), an inhibitor of NK cells 

(Jeong et al., 2008), by elevating serum levels of corticosterone, which inhibits NK cells 

functions (Arjona et al., 2004), and by reducing central and peripheral levels of opioid 

peptide ǃ-endorphin that can induce NK cells activation (Boyadjieva et al., 2004). Third, 

chronic alcohol exposure renders activated HSCs resistant to NK cell killing, because it 

induces higher expression of suppressor of cytokine signaling 1 (SOCS1) and ROS that 

inhibit IFN-Ǆ activation of signal transducer and activator of transcription 1 (STAT1) (Jeong 

et al., 2008). Lastly, alcohol consumption blocks NK cells release from the bone marrow and 

enhances splenic NK cell apoptosis (Zhang & Meadows, 2009). 

4. Role of dysregulation of innate immunity in ALD 

Recent studies have revealed how alcohol-induced dysregulation of innate immunity may 
contribute to the pathogenesis of ALD (figure 3). 

4.1 Alcoholic liver steatosis 

Alcoholic liver steatosis corresponds to fat accumulation in hepatocytes, which is the result 

of unbalanced fat metabolism characterized by decreased mitochondrial lipid oxidation and 

enhanced synthesis of triglycerides. This unbalancing may be related with increased 

nicotinamide adenine dinucleotide (NADH)/NAD+ ratio (Fromenty et al., 1997), increased 

sterol regulatory element-binding protein-1 (SREBP-1) activity (You et al., 2004), decreased 

peroxisome proliferator-activated receptor-ǂ (PPAR-ǂ) activity (Ip et al., 2003) and 

decreased AMP-activated protein kinase (AMPK) activity (You et al., 2004).  

In addition to these mechanisms, growing evidence suggests alcohol-induced dysregulation 

of innate immunity may also contribute to alcohol-induced liver steatosis, mainly through 

increased TNF-ǂ production by KCs in response to LPS. Increased expression of TNF-ǂ has 

been observed in alcoholic liver steatosis of mice (Pritchard et al., 2007) and absence of its 

receptor (TNF-ǂ R1) activity inhibits the development of alcoholic liver steatosis (Yin et al., 

1999). In addition, it has been reported that TNF-ǂ has a potential to increase mRNA 

expression of SREBP-1, a potent transcription factor of fat synthesis, in the liver of mice and 

to stimulate the maturation of SREBP-1 in human hepatocytes, respectively (Endo et al., 

2007). In contrast, IL-6 produced by KCs in response to LPS has been shown to protect 

against alcoholic liver steatosis via activation of signal transducer and activator of 

transcription 3 (STAT3), consequently inhibiting of SREBP-1 gene expression in hepatocytes 

(El-Assal et al., 2004). Interestingly, chronic alcohol exposure inhibits IL-6 activation of 

STAT3 in hepatocytes and thus can counterbalance the protective effective of IL-6 (Weng et 

al., 2008). 
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Fig. 3. Overview of the role of alcohol-induced innate immunity dysregulation in the 

pathogenesis of ALD. Chronic alcohol consumption activates complement system (C3a, 

C5a) and LPS/TLR4 signalling pathway on KCs, which produce large amounts of pro-

inflammatory cytokines, including TNF-ǂ, leading to liver steatosis and inflammation. 

LPS/TLR4 signalling pathway activation on hepatocytes may lead to hepatocarcinoma 

through expression of Nanog gene. LPS/TLR4 signalling pathway activation on HSCs 

contributes to liver fibrosis via two independent mechanisms: it induces the secretion of 

chemokines from HSCs leading to chemotaxis of KCs which secrete the profibrogenic 

cytokine TGF-ǃ; additionally, it augments TGF-ǃ signalling on HSCs via down-regulation of 

the TGF-ǃ pseudoreceptor Bambi. Inhibition of NK cells during chronic alcohol 

consumption also contributes to alcoholic liver fibrosis, since NK cells have anti-fibrotic 

effects through suppression of HSCs. See text for abbreviations. 

In addition to alcohol-induced activation of LPS/TLR4 signalling pathway, alcohol-

induced inhibition of NK cell cytotoxicity against HSCs can also contribute liver steatosis 

as HSCs have been shown to stimulate accumulation of fat in hepatocyte (Jeong et al., 

2008). It has been shown that chronic alcohol drinking activates HSCs to produce 2-

arachidonoylglycerol (2-AG), one of endocannabinoids, which, activating its receptor, 

cannabinoid receptor 1 (CB1R) on hepatocytes increases the expression of SREPB-1 and 

fatty acid synthase (FAS) but decreased AMPK activation, consequently leading to 

accumulation of fat in hepatocytes. These data, however, are provided by a single study 

and require further studies. 

4.2 Alcoholic liver steatohepatitis 

Alcoholic steatohepatitis (ASH) refers to infiltration of liver by inflammatory cells, mainly 

granulocytes, in addition to fat accumulation. The recruitment of inflammatory cells 

seems to be related with the production of cytokines, chemokines and ROS. Although this 

production was historically linked to direct hepatotoxicity of alcohol and its metabolites, 

recent evidence suggest that alcohol-induced LPS/TLR4 signalling can also contribute to  
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this production and be a key player in the pathogenesis of ASH. Exposure to LPS during 

chronic alcohol consumption results in increased production of inflammatory mediators 

(TNF-ǂ, IL-1, IL-6 and IL-8) as well as in induction of ROS, which subsequently aggravate 

steatohepatitis (Arteel, 2003). The role of LPS/TLR4 signalling pathway in the 

pathogenesis of ASH is further supported by studies showing that inhibition of 

LPS/TLR4 signalling, by altering intestinal microbiota and LPS production (through the 

use of antibiotics or probiotics) or suppressing TLR4, LBP or CD14 genes expression, 

protects against ASH. Indeed treatment with antibiotics or probiotics suppresses alcohol-

induced liver injury by reducing LPS circulating levels (Adachi et al., 1995; Nanji et al., 

1994). Studies in knockout mouse models have shown that chronic alcohol feeding in mice 

deficient of TLR4, LBP or CD14 results in attenuation of alcohol-induced liver injury 

despite elevated LPS circulating levels (Uesugi et al., 2001; Uesugi et al., 2002; Yin et al., 

2001).  

Recent studies have clarified the cellular and molecular pathways by which LPS/TLR4 

signalling promotes ASH. KCs have been established as a crucial cellular target of LPS in 

ASH as demonstrated by a strong reduction of alcoholic liver injury following depletion of 

KCs with gadolium chloride (Adachi et al., 1994). Moreover, it was shown that disruption of 

the TLR4 downstream signaling molecule MyD88 in mice failed to prevent ASH (Hritz et al., 

2008), while disruption of the MyD88-indepdenent signaling molecule TRIF in mice 

abolished ASH (Zhao et al., 2008), suggesting that the MyD88-independent pathway 

contributes to TLR4-mediated alcoholic liver injury. Further studies suggest that TRIF/IRF-3 

plays a critical role in alcohol-induced transactivation of the TNF-ǂ gene in 

KCs/macrophages in vitro and in vivo, thereby initiating alcoholic liver injury (Zhao et al., 

2008). Furthermore, it was also shown that TLR4 deficiency prevented hepatic alcohol-

induced production of inflammatory mediators (TNF-ǂ and IL-6), TLR4 coreceptors (CD14 

and MD2) and ROS by cytochrome P450 and the nicotinamide adenine dinucleotide 

phosphate (NADPH) complexes (Hritz et al., 2008). These data suggest that TLR4-mediated 

alcoholic liver injury is carried out by increased inflammatory mediators (TNF-ǂ and IL-6) 

and ROS production and that there is a crosstalk between oxidative stress and TLR4 

pathways in ALD. This is further supported by studies showing that mice deficient in 

p47phox, the main cytosolic component of NADPH complex, show an absence of free-

radical production, NF-kB activation, TNF-ǂ mRNA induction and liver pathology after 

alcohol treatment (Kono et al., 2000) and that inhibition of NADPH complex prevents 

upregulation of TLR4 and sensitization to LPS-induced liver injury (Gustot et al., 2006). 

Taken together these data suggest that activation of TLR4 in KCs by LPS is a key 

pathogenetic mediator of ASH, through production of inflammatory cytokines and ROS.  

In addition to alcohol-induced activation of LPS/TLR4 signalling pathway, alcohol-induced 

activation of complement can also contribute to ASH. This is mainly supported by studies 

showing that mice deficient in C3 and C5 are protected against alcohol-induced increases in 

hepatic triglycerides and circulating ALT, respectively (Pritchard et al., 2007) and that 

chronic alcohol-induced liver injury is exacerbated in mice lacking CD55/DAF, a 

complement regulatory protein, compared to wild-type controls (Pritchard et al., 2007). At 

present, the molecular mechanisms by which C3 and C5 contribute to ASH are not fully 

understood and require further studies. 
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4.3 Alcoholic liver fibrosis 

Alcoholic liver fibrosis is characterized by excessive deposition of extracelular matrix 

components due to increased matrix production and decreased matrix degradation 

(Henderson & Iredale, 2007). Several studies have highlighted the central role of HSCs in the 

production of extracellular matrix and the promotion of liver fibrosis.  

Alcohol contributes to activation of HSCs by several mechanisms, including upregulation of 

collagen transcription in HSCs by acetaldehyde or ROS from alcohol-exposed hepatocytes. 

Recently, alcohol-induced innate immunity dysregulation has also been shown to contribute 

to liver fibrosis, mainly through activation of LPS/TLR4 signalling in HSCs and inhibition 

of NK cells, as discussed below (figure 4).  

 

Fig. 4. Overview of the role of alcohol-induced innate immunity dysregulation in liver 

fibrosis. LPS/TLR4 signalling pathway activation on HSCs induces the secretion of 

chemokines that lead to chemotaxis of KCs which secrete the profibrogenic cytokine TGF-ǃ 

(in a TLR4-independent manner); additionally, it augments TGF-ǃ signalling on HSCs via 

down-regulation of the TGF-ǃ pseudoreceptor Bambi. Chronic alcohol consumption directly 

attenuates NK cell cytotoxicity against activated HSCs via down regulation of NK cell-

associated molecules such as NKG2D, TRAIL and IFN-Ǆ. Alcohol also renders HSCs 

resistant to NK cell killing, because it induces higher expression of ROS and SOCS1 that 

inhibit IFN-Ǆ activation of STAT1 and apoptosis. Finally, alcohol stimulates HSCs to 

produce TGF-ǃ, an inhibitor of NK cells. ↓, decrease; ↑, increase. See text for abbreviations. 

The crucial role of LPS/TLR4 signalling in liver fibrosis is supported by studies showing 
that inhibition of LPS/TLR4 signalling by altering intestinal microbiota and LPS production 
(through use of antibiotics or probiotics) or suppressing TLR4, LBP or CD14 genes 
expression protects against liver fibrosis. It has been shown that antibiotics prevent fibrosis 
induced by CCl4 treatment or a choline-deficient diet (MCDD), and that LPS enhances 
hepatic fibrosis induced by a MCDD (Luckey et al., 1954; Rutenburg et al., 1957). Treatment 
of mice with nonabsorbable broad-spectrum antibiotics also resulted in a clear reduction in 
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the fibrotic response of mice, upon bile duct ligation (Seki et al., 2007). Recently, 
Velayudham et al showed that VSL#3 (a probiotic) protects against MCDD–induced liver 
fibrosis, through modulation of collagen expression and inhibition of TGF-ǃ expression and 
signalling (Velayudham et al., 2009). TLR4-, LBP- and CD14-deficient mice also have 
demonstrated the crucial role for the LPS–TLR4 pathway in hepatic fibrogenesis (Isayama et 
al., 2006; Seki et al., 2007). TLR4-mutant mice display a profound reduction in hepatic 
fibrogenesis in three different experimental models of biliary and toxic fibrosis (Seki et al., 
2007). LBP- and CD14-deficient mice also have a marked reduction of hepatic fibrosis upon 
bile duct ligation (Isayama et al., 2006). 

In a recent study, Seki et al analyzed the cell-specific molecular mechanism underlying the 
role of LPS/TLR4 on liver fibrosis (Seki et al., 2007). They showed that chimeric mice that 
contain TLR4-mutant KCs and TLR4-intact HSCs developed significant fibrosis and the 
mice that contain TLR4-intact KCs and TLR4-mutant HSCs developed minimal fibrosis 
after bile duct ligation, indicating that TLR4 on HSCs, but not on KCs, is crucial for hepatic 
fibrosis.  Notably, KCs are essential for fibrosis by producing TGF-ǃ independent of TLR4. 
TLR4-activated HSCs produce CC-chemokines [chemokine ligand (CCL)2, CCL3, and 
CCL4] and express adhesion molecules [inter-cellular adhesion molecule-1 (ICAM-1) and 
vascular cell adhesion molecule-1 (VCAM-1)] that recruit KCs to the site of injury. 
Simultaneously, TLR4 signalling downregulates the TGF-ǃ decoy receptor (Bambi) to boost 
TGF-ǃ signalling and allow for unrestricted activation of HSCs by KCs, leading to hepatic 
fibrosis. Finally, by using adenoviral vectors expressing an inhibitor of NF-κB kinase (IκB)-
superrepressor and knockout mice for MyD88 and the adapter molecule TRIF, the authors 
demonstrated that TLR4-dependent down-regulation of Bambi is mediated via a pathway 
involving MyD88 and NF-κB, but not TRIF. In summary, they demonstrated that 
LPS/TLR4 signalling acts in a profibrogenic manner via two independent mechanisms: it 
induces the secretion of chemokines from HSCs and chemotaxis of KCs which secrete the 
profibrogenic cytokine TGF-ǃ (in a TLR4-independent manner); additionally, TLR4-
dependent signals augment TGF-ǃ signalling on HSCs via down-regulation of the TGF-ǃ 
pseudoreceptor Bambi. 

The strong association of the LPS/TLR4 signalling pathway and liver fibrosis has been 
recently confirmed in patients with chronic hepatitis C virus (HCV) infection by studying 
TLR4 single nucleotide polymorphisms (SNPs). Huang et al conducted a gene centric 
functional genome scan in patients with chronic HCV infection, which yielded a Cirrhosis 
Risk Score signature consisting of seven SNPs that may predict the risk of developing 
cirrhosis (Huang et al., 2007). Among these, a major CC allele of TLR4 encoding a threonine 
at amino acid 399 (p.T399I) was the second most predictive SNP among the seven, 
indicating a protective role in fibrosis progression of its c.1196C>T (rs4986791) variant at this 
location (p.T399I), along with another highly cosegregated c.896A>G (rs4986790) SNP 
located at coding position 299 (p.D299G). In a subsequent study the same group examined 
the functional linkage of these SNPs to HSCs responses (Guo et al., 2009).  They showed that 
both HSCs from TLR4-deficient mice and a human HSC line (LX-2) reconstituted with either 
TLR4 D299G and/or T399I complementary DNAs were hyporesponsive to LPS stimulation 
compared to those expressing wild-type TLR4, as assessed by the expression and secretion 
of LPS-induced inflammatory and chemotactic cytokines (i.e., MCP-1, IL-6), downregulation 
of Bambi expression and activation of NF-κB–responsive luciferase reporter. In addition, 
spontaneous apoptosis, as well as apoptosis induced by pathway inhibitors of NF-κB,  
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extracellular signal-regulated kinase (ERK), and phosphatidylinositol 3-kinase were greatly 
increased in HSCs from either TLR4-deficient or Myd88-deficient mice, as well as in murine 
HSCs expressing D299G and/or T399I SNPs (Guo et al., 2009). Thus, the protective effect of 
the TLR4 SNP (c.1196C>T [rs4986791, p.T399I]) is explained at least in part by its ability to 
increase apoptosis and decrease fibrogenic signalling in HSCs. Recently, Li et al expanded 
the list of TLR4 SNPs that are independently associated with the risk of liver fibrosis 
progression and the development of cirrhosis (Li et al., 2009). Taken together these data 
suggest LPS/TLR4 signalling in HSCs is essential for liver fibrosis development, by 
stimulating production chemokines that recruit KCs and at the same time allowing for 
unrestricted activation of HSCs by KCs-derived TGF-ǃ.    

 

Fig. 5. Mechanisms of killing of activated stellate cells by NK cells. NK cells kill early 
activated HSCs but not quiescent HSCs. This is because early activated HSCs express 
increased RAE-1 via retinol metabolism, a NK cell-activating ligand of NKG2D, but express 
MHC-I, a NK cell-inhibitory ligand of iKIR, thus activating NK cells. After activation, NK 
cells initiate killing of activated HSCs through releasing of TRAIL, which targets TRAILR 
that is upregulated on activated HSCs, and IFN-Ǆ, which targets IFN-ǄR on HSCs to induce 
cell cycle arrest and apoptosis in a STAT1-dependent manner. ↓, decrease; ↑, increase. See 
text for abbreviations.  

In addition to alcohol-induced activation of LPS/TLR4 signalling pathway, alcohol-induced 

NK cells inhibition, can also lead liver fibrosis as these cells have been shown to have anti-

fibrotic effects via multiple mechanisms (figure 5). Interestingly, NK cells directly kill early 

activated HSCs but not quiescent HSCs (Melhem et al., 2006; Radaeva et al., 2006; Radaeva 

et al., 2007). This is because early activated HSCs express increased retinoic acid early 

inducible gene 1 (RAE-1) via retinol metabolism, a NK cell-activating ligand of NKG2D but 

express decreased class I major histocompatibilty complex (MHC-I), a NK cell-inhibitory 

ligand of inhibitory killer immunoglobulin-related receptor (iKIR), thus activating NK cells 

(Radaeva et al., 2007; Taimr et al., 2003). After activation, NK cells initiate killing of activated 

HSCs through releasing of TRAIL, which targets TRAIL receptor (TRAILR) that is 

upregulated on activated HSCs, and IFN-Ǆ, which targets IFN-Ǆ receptor (IFN-ǄR) on HSCs 
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to induce cell cycle arrest and apoptosis in a STAT1-dependetent manner (Baroni et al., 1996; 

Jeong et al., 2006). The crucial role of alcohol-induced NK cells inhibition on alcoholic liver 

fibrosis has been suggested by the finding that attenuated NK cell cytotoxicity against HSCs 

in alcohol-fed mice contributed to acceleration of liver fibrosis associated with CCl(4) 

treatment (Jeong et al., 2008).  

Few studies have evaluated the role of complement in alcoholic liver fibrosis. By using 
intercross studies in animal models of liver fibrosis, Hillebrandt et al (Hillebrandt et al., 
2005) demonstrated that C5 plays an important role in promoting liver fibrogenesis via 
targeting C5aR on activated HSCs and KC in mice, because C5 deficiency resulted in 
lowered liver fibrosis, whereas overexpression of the C5 gene resulted in increased liver 
fibrosis. Thus, C5 activation during alcohol consumption, as discussed above, likely also 
contributes to the development of alcoholic liver fibrosis. In addition, Hillebrandt et al 
(Hillebrandt et al., 2005) also reported that two C5 htSNPs (rs 2300929 and rs17611) are 
associated with the high risk for developing advanced fibrosis in patients with chronic HCV 
infection. At present, the molecular mechanisms by which the C5 contributes to liver fibrosis 
are not fully understood and require further studies. 

4.4 Hepatocarcinoma 

Hepatocarcinoma is a complication of ALD, which always develops in a cirrhotic liver. 
Thus, alcoholic liver cirrhosis is a premalignant condition with approximately fourfold 
increase in the risk of hepatocarcinoma. The five-year cumulative incidence of 
hepatocarcinoma reaches 8%. In addition, clinical and epidemiological evidence implicates 
long-term alcohol consumption in accelerating HCV-mediated tumorigenesis (Hassan et al., 
2002). A recent study provided evidence that TLR4 mediates the synergism between alcohol 
and HCV in hepatic oncogenesis (Machida et al., 2009).  Machida et al studied the molecular 
mechanism of synergism between alcohol and HCV, using mice with hepatocyte-specific 
transgenic expression of the HCV nonstructural protein NS5A, which is known to have a 
cryptic trans-acting activity for cellular gene promoters. They demonstrated that NS5A and 
alcohol synergistically induce hepatocellular damage and transformation via accentuated 
and/or sustained activation of TLR4 signalling, which results from HCV NS5A-induced 
hepatic TLR4 expression and alcohol-induced endotoxaemia. Additionally, Nanog, a stem 
cell marker, was identified as a novel downstream gene transcriptionally induced by 
activated TLR4 signalling, that is largely responsible for TLR4-mediated liver tumor 
development.  

Taken together these data suggest TLR4 signalling in hepatocytes may constitute the link 
between alcoholic liver cirrhosis and hepatocarcinoma.  

5. Role of innate immunity impairment in ALD infection risk  

Patients with ALD are particularly susceptible to infections, with increased morbidity and 
mortality from sepsis, mainly in the presence of cirrhosis (Linderoth et al., 2006; Navasa et 
al., 1999). We and others have shown that in advanced stages of alcoholic liver disease the 
alcohol-induced pro-inflammatory state is replaced by a state of immune paralysis that can 
greatly decrease the innate immune response of immunological cells (Lin et al., 2007; 
Pimentel-Nunes et al., 2010; Wasmuth et al., 2005). These data support the hypothesis that 
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patients with alcoholic cirrhosis are likely to have underlying immune dysfunction, 
particularly innate immunity dysfunction that makes them susceptible to increased risk of 
infections.  

Homman et al have shown that acquired C3 deficiency and decreased haemolytic 
complement function predisposes to infection and increased mortality in patients with 
alcoholic cirrhosis (Homann et al., 1997). 

Recently we evaluated ex vivo TLR2- and TLR4-mediated innate immune response in 
patients with stable well-compensated alcoholic cirrhosis (Pimentel-Nunes et al., 2010). 
Namely, we evaluated TNF-ǂ production by peripheral blood monocytes (PM) primary 
cultures after stimulation with the TLR2/TLR6 ligand zymosan and the TLR2/TLR1 ligand 
lipopeptide, as well as with the TLR4 ligand LPS. We found an attenuated TLR2 response 
to zymosan and lipopetide whereas the TLR4-mediated response to LPS was not 
significantly different to controls. We also studied a subset of patients with decompensated 
liver disease, where in addition to the blunted TLR2 response, the TLR4 response to LPS 
was also defective. Interestingly, we could not find any changes in protein or mRNA 
expression of TLRs between PM of patients and controls, which suggest that this blunted 
TLR2- and TLR4-response probably implies dysfunction in intracellular signalling 
pathways. To further clarify the molecular mechanisms underlying the selective 
attenuation of TLR2-mediated innate immune response in patients with stable 
compensated alcoholic cirrhosis, the differential effect of zymosan and LPS in PM 
stimulation on TLR2 and TLR4 gene expression was analyzed. In fact, zymosan and LPS 
stimulation has distinct effects on TLR2 and TLR4 expression levels. Whereas zymosan-
mediated TLR2 stimulation induced a downregulation of both TLR2 and TLR4, LPS-
mediated TLR4 stimulation was accompanied by a selective upregulation of TLR2 and a 
downregulation of TLR4. These differences could be related to distinct intracellular 
pathway activation. In fact, although TLR2 and TLR4 share most of its intracellular 
pathways, TLR4 also activates MyD88-independent pathways.  

Other authors also found a decrease TLR2- and TLR4- response in immune cells, 
particularly in advanced stages of disease,  that was associated with decreased, normal or 
increased levels of TLRs, depending on the study (Riordan et al., 2003; Stadlbauer et al., 
2008; Stadlbauer et al., 2009; Tazi et al., 2006; Testro et al., 2009; Wasmuth et al., 2005). The 
data of these studies are compared in table 1. Analyzing all these studies, we conclude that 
decreased TLRs levels are insufficient to alter TLR function. Instead blunted TLRs response 
probably implies dysfunction in intracellular signalling pathways. Actually, in our study, 
we found blunted TLR2 activation that was independent of TLR2 levels (Pimentel-Nunes et 
al., 2010). Furthermore, we have shown in vitro that TLR2 and/or TLR4 agonists change the 
expression levels of these receptors (Pimentel-Nunes et al., 2010). Hence, we believe that the 
frequent episodes of bacteraemia that occur in cirrhosis, by changing TLR expression on 
immune cells, can help explain these discrepancies concerning TLR expression. This also 
might be the reason why Stadlbauer et al (Stadlbauer et al., 2008), using probiotics, 
promoted the decrease, and Testro et al (Testro et al., 2009), using antibiotics, the increase in 
TLR4 levels, both trending towards normal levels of expression. Possibly, these two 
different therapeutic agents decrease episodes of bacteraemia, consequently with less 
fluctuation of TLR levels. Why they restored TLR4 function remains unclear because 
expression levels cannot explain the results from these two studies.  
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Taking in consideration data from all these studies several conclusions can be made. Firstly, 

the data point to important role of bacterial translocation, endotoxaemia and alteration of 

TLR2 and TLR4 signalling providing potential biomarkers to identify patients at risk of 

infection and potential targets for intervention. Secondly, our study (Pimentel-Nunes et al., 

2010) and others (Riordan et al., 2003) clearly suggest a blunted TLR2 function even in the 

early stages of cirrhosis, which may help explain the growing risk of Gram-positive bacteria 

infection in these patients. Thirdly, at least in advanced cirrhosis, TLR4 impairment is also 

present (Pimentel-Nunes et al., 2011). Fourthly, taking together the discrepancies in the 

expression levels of TLRs, it appears that other factors, probably intracellular, are 

fundamental to this immunodeficiency. Finally, this process may be reversible with 

antibiotics and/or probiotics (Stadlbauer et al., 2008; Testro et al., 2009). However, further 

studies are needed before generalization since Riordan et al. (Riordan et al., 2003) showed 

that the use of a symbiotic (mixture of probiotic and probiotic) further compromised TLR2 

function, in contrast to the positive immunological effects obtained by Stadlbauer et al. 

(Stadlbauer et al., 2008) and Testro et al. (Testro et al., 2009). 

Study 
Cirrhotic 

population 
Cell 

TLR2 
expression

TLR4 
expression

TLR function 
Therapeutic 
intervention 

Riordan et 
al., 2003† 

Stable (n=36) 
several etiologies

PBMC ↑ = TLR4 = 
TLR2 ↓ 

Symbiotic ↑ TLR2 
levels and ↓ 
function 

Wasmuth et 
al., 2005 

Advanced (n=27) 
alcohol 

PM NE NE TLR4 ↓ NE 

Tazi et al., 
2006‡ 

Advanced (n=48) 
alcohol 

PM NE ↓ TLR4 ↑ NE 

Lin et al., 
2007 

Stable (n=64) 
several etiologies

PM NE NE TLR4 ↓ only in 
Child C 

NE 

Stadlbauer et 
al., 2008† 

Stable (n=12) 
alcohol 

PN ↑ ↑ TLR4 =§ Probiotic decreased 
TLR4 levels to 
normal§ 

Pimentel-
Nunes et al., 
2010*,† 

Stable (n=26) and 
advanced (n=5) 
alcohol 

PM = = TLR4 =;↓ only in 
unstable;  
TLR2 ↓ 

NE 

Testro et al., 
2009† 

Advanced (n=41) 
alcohol 

PBMC = TLR4 ↓ in 
patients 
without 
ATB 

TLR4 apparently 
↓ in patients 
without ATB; 
TLR2 = 

ATB increased 
TLR4 levels to 
normal with 
increase of function 

*TLRs quantified by RNA.  
†TLRs quantified by flow cytometry.  
‡TLR4 quantified by Western blotting.  
§Despite presenting decrease phagocytic capacity, stimulated TNF-ǂ in culture was not different to 
controls and probiotic restored phagocytic capacity.  
ATB, antibiotics; PBMC, peripheral blood mononuclear cell; PM, peripheral monocytes; PN, peripheral 
neutrophils; NE, not evaluated; = , equal to controls; ↓, decrease when compared with controls;  
↑, increase when compared with controls. Adapted with permission from Liver Int 2011;31:140-1. 

Table 1. Review of the studies about the role of TLR2 and TLR4 in cirrhotic patients 
according to TLR expression and function (considered as TNF-ǂ production in culture). 
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6. Modulation of innate immunity in the treatment of ALD  

Recently, a number of different approaches that modulate innate immunity, mainly 
LPS/TLR4 signalling pathway, have been developed and studied in the treatment of ALD 
(Petrasek et al., 2010). Among these approaches, two of them, modulation of LPS release by 
probiotics or antibiotics and interference with cytokines induced by TLR4 signalling, have 
progressed into clinical trials in patients with ALD.  

Modulation of intestinal microbiota using probiotics has been shown to reduce bacterial 
translocation, circulating LPS levels in animal models, and bacterial infection, a marker for 
bacterial translocation, in patients with liver cirrhosis (Petrasek et al., 2010). In liver cirrhosis, 
probiotics have shown positive effects on several parameters including the improvement of 
liver function, prevention of infection, improvement of the hyperdynamic circulation and 
prevention of hepatic encephalopathy (Liu et al., 2004). Beneficial effects of probiotics have 
been reported in an animal model of alcohol-induced liver injury (Nanji et al., 1994) and of 
LPS-induced liver injury (Ewaschuk et al., 2007; Osman et al., 2007). Patients with alcoholic 
liver cirrhosis treated with Lactobacillus casei Shirota three times daily for 4 weeks showed 
restoration of deranged neutrophil phagocytic capacity, compared to controls (Stadlbauer et 
al., 2008). A recent open-label pilot trial showed that a 5-day administration of Bifidobacterium 
bifidum and Lactobacillus plantarum in alcohol-addicted psychiatric patients with mild alcoholic 
hepatitis ameliorated serum markers of liver injury to a significantly higher extent compared 
to control group treated with abstinence only (Kirpich et al., 2008). However, not all studies 
associate probiotics with improvement, since in the study from Riordan et al, the use of 
symbiotic (mixture of probiotic and prebiotic) further compromised TLR2 function (Riordan et 
al., 2003). Other problem with probiotics is that the number of studies is relatively small and 
many of these are uncontrolled studies. The large number of probiotic strains and 
combinations of strains represents other important problem, and it will require additional 
studies to confirm and ideally compare the efficacy of these probiotic strains. 

A second approach to reduce TLR4 ligand is the treatment with antibiotics to achieve 
selective intestinal decontamination of Gram-negative bacteria, the predominant source of 
LPS. Selective intestinal decontamination has been shown to reduce bacterial translocation 
in many studies performed in rats (Runyon et al., 1995). Importantly, norfloxacin 
administration reduced the 1 year probability of developing spontaneous bacterial 
peritonitis (SBP), hepatorenal syndrome, and improved the 3 month and 1 year probability 
of survival compared with placebo (Fernandez et al., 2007). While the reduction of SBP in 
norfloxacin treated patients is a direct consequence of reducing bacterial strains in the 
microbiota responsible for spontaneous peritonitis, some of the positive effect on mortality 
are likely SBP-independent and related to reducing bacterial translocation and circulating 
levels of LPS (Fernandez et al., 2007). One problem with antibiotics is the severe 
consequences of long-term antibiotics treatment. Rifaximin may help to solve this problem 
(Butterworth, 2011). Rifaximin is a minimally absorbed oral antimicrobial agent that is 
concentrated in the gastrointestinal tract, has broad-spectrum in vitro activity against gram-
positive and gram-negative aerobic and anaerobic enteric bacteria, and has a low risk of 
inducing bacterial resistance. In randomized studies, rifaximin was more effective than 
nonabsorbable disaccharides and had efficacy that was equivalent to or greater than that of 
other antibiotics used in the treatment of acute hepatic encephalopathy. Furthermore, with 
minimal systemic bioavailability, rifaximin may be more conducive to long-term use than 
other, more bioavailable antibiotics with detrimental side effects. 
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These data suggest that modulation of the bowel flora may play a role in the pathogenesis 
and treatment of ALD and indicate a need for larger and rigorously designed clinical trials 
to support the use of probiotics or antibiotics in treatment of ALD. 

While the role of TNF-ǂ in the development of ALD has been well characterized, clinical 
investigations of the therapeutic efficacy of antibodies to TNF-ǂ (e.g., infliximab) to treat 
patients with acute alcoholic hepatitis have generated variable results (Naveau et al., 2004; 
Tilg et al., 2003). There is particular concern about off-target effects of completely inhibiting 
TNF-ǂ function. For example, since TNF-ǂ is a critical component of immunity, infectious 
disease is a primary concern during TNF-ǂ therapy (Naveau et al., 2004). Moreover, TNF-ǂ 
is required for normal liver regeneration as hepatocyte proliferation in response to injury is 
impaired in mice lacking TNF-ǂ receptors (Yamada et al., 1997). Etanercept, a TNF-ǂ 
neutralizing antibody, appeared to increase short-term survival of patients with alcoholic 
hepatitis in a small pilot study (Menon et al., 2004), although a subsequent randomized, 
placebo-controlled trial conducted by the same investigators showed a worse 6-month 
survival rate in the group treated with etanercept than in the placebo group (Boetticher et 
al., 2008). Thus, it seems very unlikely that inhibition of TNF-ǂ may become a therapeutic 
target in ALD, especially at the long-term. 

7. Conclusion 

In summary, the liver is an organ with predominant innate immunity function. 
Dysregulation of many components of innate immunity in the liver due to chronic alcohol 
consumption likely contributes additively or synergistically to alcohol-induced liver disease. 
Chronic alcohol consumption activates LPS/TLR4 signalling pathway on KCs, which 
produce large amounts of pro-inflammatory cytokines, including TNF-ǂ, leading to liver 
steatosis and inflammation.  Alcohol-induced LPS/TLR4 signalling pathway activation also 
contributes to alcoholic liver fibrosis via two independent mechanisms: it induces the 
secretion of chemokines from HSCs and chemotaxis of KCs which secrete the profibrogenic 
cytokine TGF-ǃ; additionally, TLR4-dependent signals augment TGF-ǃ signalling on HSCs 
via down-regulation of the TGF-ǃ pseudoreceptor Bambi. Inhibition of NK cells during 
chronic alcohol consumption also seem to contribute to alcoholic liver fibrosis, since NK 
cells have anti-fibrotic effects through suppression of HSCs. Activation of LPS/TLR4 
signalling pathway on hepatocytes may also contribute to hepatocarcinoma development, 
through activation of Nanog gene. In contrast to activation LPS/TLR4 signalling pathway 
and inhibition of NK cells, the role of complement activation in the pathogenesis of ALD 
remains largely obscure. Few studies suggest that alcohol-induced complement activation 
may contribute to liver steatosis, inflammation and fibrosis, but more studies are needed to 
clarify the underlying mechanisms. 

Alcohol-induced dysregulation of innate immunity also seem to contribute to the increased 
risk of infections of patients with alcoholic cirrhosis, as we and others have demonstrated a 
blunted response of immune cells to TLR2/4 ligands, probably associated with 
compromised intracellular signalling, in these patients.  

Modulation of innate immunity, mainly of LPS/TLR4 signalling through the use of 
probiotics or antibiotics, may play a role in the treatment of ALD, but we need for larger and 
rigorously designed clinical trials to support the use of probiotics or antibiotics in treatment 
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of ALD. Inhibition of TNF-ǂ has produced variable results in the treatment of ALD and may 
be associated with serious off-target effects. 

Although, in the last decade, we have gain significant insight over the role of alcohol-
induced innate immunity dysregulation in ALD, further research is still needed to further 
clarify and identify the interrelationships between innate immunity components involved in 
ALD. Examples of questions for future studies are: 

1. Which is the role of other TLRs than TLR2 and TLR4 in the development of ALD? 
2. Which is the role of DAMPs (HMGB1, heat shock proteins) and Myd88-independent 

pathway in ALD progression? 
3. Which are the molecular mechanisms by which complement system contribute to 

alcohol-induced liver steatosis, inflammation and fibrosis? 
4. Which are the molecular mechanisms underlying blunted response of immune cells to 

TLR2/4 ligands in patients with alcoholic cirrhosis? 
5. Is there any correlation between TLR4 SNPs and the progression of ALD? 
6. Which is the effect in ALD of neutralization of LPS or LPS-signalling through the use of 

TLR4 anatgonists (e.g., CyP, CRX-526, Eritoran), or LPS signalling interfering molecules 
(e.g., TAK-242, besifloxacin, compound K)? 

The answers to these questions may help us identify novel therapeutic targets to treat ALD. 
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