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1. Introduction

Recent advances in physiological studies have demonstrated the importance of muscle fatigue
detection and prediction in various aspects of our lives, including sports, rehabilitation
and ergonomics. Automating muscle fatigue detection/prediction in wearable technology
has the potential to aid in many applications. However, current research has made little
progress towards automating muscle fatigue detection/prediction in computational models.
The work presented in this chapter supports the idea that an automated muscle fatigue
detection/prediction system can be used to aid sporting performance and to avoid injury.
In support of this view, a wearable system that operates based on the detection and
classification of three different stages of muscle fatigue (Non-Fatigue, Transition-to-Fatigue
and Fatigue) has been developed. Current research focuses on only two muscle fatigue
stages (Non-Fatigue and Fatigue); with this limitation in mind, data was analysed with
the aim to develop features that best extract muscle fatigue content, using both statistical
models and evolutionary computations tools to help find the number of muscle fatigue
stages. This enabled the development of an automated muscle fatigue detection system, which
provides true prediction capabilities. In doing so, a third stage of fatigue was identified, the
so-called Transition-to-Fatigue stage, which occurs before the onset of fatigue. By identifying
this transitional fatigue stage, it is possible to predict when fatigue will occur, which
provides the foundation of the automated system. To demonstrate the applicability of the
Transition-to-Fatigue class, the classification performance of the two class (Non-Fatigue and
Fatigue) and three class approaches (Non-Fatigue, Transition-to-Fatigue and Fatigue) were
compared. This chapter will include various studies that identify the most suitable methods
to apply in the real-time autonomous system. The first section of studies developed various
statistical features that best distinguished between the different classes of fatigue, resulting in
new combined feature extraction methods called 1D spectro and 1D spectro_std. The second
section used evolutionary computation, evolving features and creating pseudo-wavelets
improving current state of the art. The various features evolved in this work all produced
high classification accuracy from surface electromyography (sEMG) signals emanating from
the biceps brachii during both isometric and non-isometric contractions. In the third section,
a method to predict the time to fatigue was established using artificial neural network
classification based on the three classes of fatigue. This technique was also implemented in
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the final study that developed a working prototype of the wearable autonomous system. One
of the developed feature extraction methods, 1D spectro, was selected for implementation
into the wearable autonomous system. This chapter presents preliminary empirical evidence
demonstrating that the developed features and methods for fatigue detection/prediction
improve the current state of the art. In this chapter, a definition of muscle fatigue is set, then,
an overview of the detection of muscle fatigue will be given, followed by a discussion of
specific approaches for extracting sEMG features which are related to muscle fatigue. The
chapter then concludes with a summary of challenges for the future of this new and exciting
technology.

1.1 Muscle fatigue definition

The term ‘muscle fatigue’ was first introduced by Bills (1943), who categorised it into
three groups: subjective fatigue, which is influenced by psychological factors such as a
lack of motivation; objective fatigue, which indicates a decline in productivity; and finally,
physiological fatigue, which manifests itself by changes in physiological processes. Chaffin
(1973) introduced the term ‘localised muscle fatigue’ as an example of physiological fatigue,
which refers to the inability of a given muscle to maintain a desired force and is associated
with localised pain.
Studies on localised muscle fatigue have focused mainly on the decline in the force of a muscle
contraction during a sustained activity (Barry & Enoka, 2007), which results in a definition
of fatigue as the inability of a muscle to continue exerting force or power. Barry & Enoka
argue that this definition indicates that fatigue occurs quickly after the onset of a sustained
period of exercise, although the subject may be able to sustain the activity. However, the
muscle impairment will eventually lead to total fatigue, where it is impossible for the subject
to continue performing the task (Bigland-Ritchie & Woods, 1984).
Muscle fatigue is a physiological phenomenon that can only be measured precisely by
invasive means, which is clearly unsuitable for most applications, such as in sport science,
human-computer interaction, ergonomics and occupational therapy. Therefore, non-invasive
techniques have been developed to detect signals that are related to muscle fatigue.
Generally, non-invasive clinical studies of muscle fatigue acquire such signals using two main
techniques: mechanomyography (MMG) and/or electromyography (EMG). Historically,
EMG has been chosen as the most suitable clinical research tool. MMG, on the other hand,
is considered to be a mechanical equivalent of surface electromyography (sEMG), that works
by recording the low-frequency oscillations that are produced by the muscle fibres when the
muscle contracts and expands (Gordon & Holbourn, 1948). Nevertheless, there are other
established techniques that are used to detect localised muscle fatigue, such as near infrared
spectroscopy (NIRS) and ultrasound, and methods for assessing muscle fatigue, such as the
Moore-Garg strain index and the CR Borg scale (Borg, 1970).
It has been known for at least 40 years that the sEMG signal carries information related
to muscle fatigue (Edwards, 1981; Lindstrom et al., 1977), making it a suitable method
for non-invasive muscle fatigue detection. Furthermore, the sEMG signal provides useful
information when measuring and analysing localised muscle fatigue (Hagberg, 1981;
Jorgensen et al., 1988; Petrofsky et al., 1982). Myoelectric manifestations of muscle fatigue can
be seen in changes in signal frequency and amplitude and in the muscle conduction velocity
(CV), while the mechanical factors related to muscle fatigue are manifested in a loss in the
force exerted by the muscle (Asghari Oskœi et al., 2008). The myoelectric manifestations are
perceived as an objective means by which to analyse muscle fatigue, since they disregard
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sEMG Techniques to Detect and Predict Localised Muscle Fatigue 3

subjective motivators and, compared to mechanical factors, they provide early indicators of
fatigue. In addition, sEMG is a very portable, easy to use and fairly inexpensive method.

1.2 How can muscle fatigue be detected ?

There are several techniques for signal detection which are often used in conjunction with each
other for the study of muscle fatigue and it may be difficult to determine which to use in a
particular application. Most modern research uses one or more of the methods described here
in conjunction, such as an accelerometer with sEMG electrodes. Usually, the aim of combining
sensors with sEMG or other sensors is validation, labelling or improving the signal to noise
ratio.
To date, no consensus has been reached upon the ideal sensor technology to use for MMG
recordings (Courteville et al., 1998; Gregori et al., 2003; Watakabe et al., 1998). The literature
suggests that accelerometers are more appropriate than condenser microphones due to the
effects of background noise. Also, accelerometers are inexpensive and reliable devices
whereas condenser microphones are more expensive and have a much larger frequency
range (20-2000 Hz) than that needed for accurately recording muscle vibrations (13-35 Hz)
(Armstrong, 2010).
Compared to sEMG data collection, accelerometers are physically bulkier, more susceptible to
noise from sudden movement and are significantly more expensive than sEMG electrodes.
Limitations of NIRS are related to inconsistencies regarding muscle oxygenation during
isometric exercise, making it a less reliable method. NIRS sensors are also very sensitive
to movement, which makes NIRS an unsuitable candidate technique in sports and other
movement-rich scenarios. It is possible to use the goniometer sensor to measure the
development of fatigue in a realistic scenario. However, currently available goniometer
sensors are expensive, have a short lifetime and must be handled with care. Electronic
force gauges are also applicable in measuring fatigue but suffer from fragile construction,
high cost and subject encumbrance in most scenarios. The Moore-Garg strain index and the
modified Borg Scale can be used for fatigue detection in terms of translating facial/body cues
using video processing, but these techniques suffer from privacy issues and can be highly
subjective. In addition the Moore-Garg and Borg methods require a second person to measure
the subjects’ fatigue stages.

1.3 EMG signal pre-processing

Signal filtering is an important process that attenuates unwanted or erroneous electrical
signals picked up by sensors and thus allows the experimenter to focus on a narrow energy
band of interest. In general, filters attenuate signals within certain frequency ranges (the
so-called stopband), thus limiting the frequency spectrum of the recorded signal to that of the
so-called passband (De Luca, 1997). Filters can be categorised into four main types: low-pass,
high-pass, bandpass and bandstop. Modern technologies have enabled the measurement of
EMG signals of low noise and high signal fidelity (i.e., high signal to noise ratio). Filters
can also be characterised by the width of their transition zone (De Luca, 1997), with more
complex filter designs needed to produce tighter transition ranges. In general, the more
complex the filter, the higher is its so-called ‘order’, i.e., a first order filter is a very simple
order filter. The full effective bandwidth of the EMG signal can be measured using differential
amplification. Bandpass refers to the range of frequencies from the low frequency to the high
frequency limit of a signal. Typical bandpass frequency ranges are from between 10 and 20
Hz (high pass filtering) to between 500 and 1000 Hz (low-pass filtering). Movement artifacts,
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which are normally comprised of low frequency components (typically < 10 Hz), are removed
by high-pass filtering, and signal aliasing is avoided by removing high frequency signal
components through the use of low-pass filtering (Gerdle et al., 1999). Merletti (1999) states
that the sEMG signals should be between the range of 5-500 Hz due to negligible contribution
of the signals power density function outside of this range. Invasive EMG, on the other hand,
should have a low-pass cut-off at no less than 1.5 kHz.
EMG signals are filtered by several classical filter types, including the Butterworth filter,
Fourier series, the Chebyshev filter, the Elliptic filter and the Thompson or Bessel Filter, and
filter equations are frequently recursive, such as in the Butterworth filter (De Luca, 1997).
The purpose of the Butterworth filter is to produce a flat as possible frequency response in
the passband, resulting in steep rolloffs in higher order filters, making it an ideal filter for
conditioning the EMG signal (De Luca, 1997). Additionally its maximum passband gain, the
cutoff frequency and the filter order are all clearly specified. In the past, sharp notch filtering
was commonly used to remove power-line (A/C) noise components (i.e., either 50 or 60 Hz).
However, since there are large signal contributions at these frequencies in EMG experiments,
notch filtering results in a loss of information in this setting, and is thus usually avoided (Day,
2010).
Prior to the use of computers in signal processing, signals were mostly filtered by analogue
means. Analogue filters usually employ electronic circuits, making use of three fundamental
components: resistors, capacitors and inductors, which are arranged in circuits designed to
meet particular needs (De Luca, 1997). The performance of an analogue filter is heavily
dependent on the quality of the circuit design and the physical components that are used
in building the circuit.Hence, digital filtering is often considered to be superior to analogue
filtering (Hong & Bartlett, 2008). In the context of this thesis, the versatility of digital filtering
makes it particularly suitable for the filtering of sEMG signals, where they are mostly used
to remove noise, i.e., a band-pass filter, which combines low and high-pass filters, is used to
cut off frequencies from 10-500 Hz. Signals can also be filtered through the application of
a low-pass filter, so that slow changes in the signal amplitude are displayed and the signal
is thus smoothed. According to Basmajian & De Luca (1985), the RMS signal voltage is the
most suited approach to quantify the EMG signal, which is the mathematical equivalent to
the standard deviation of the EMG signal.

1.4 Application of EMG in muscle fatigue research

EMG is an easy to use technique and has therefore been used in a vast range of research on
muscle physiology. Generally, localised muscle fatigue occurs after a prolonged, relatively
strong muscle activity, when a muscle or a group of muscles are fatigued. Due to the
variability of inter-person muscle characteristics, there is no simple function of muscle load
and timing that defines a precise muscle fatigue threshold. Changes in the EMG signals
caused by fatigue are either measured in the time or frequency domain. Integrated EMG
(IEMG) usually uses the time domain, and an increase in the signal period, amplitude and
power reflect a higher muscle fibre recruitment for a fixed external force. The changes in EMG
signal in the frequency domain relate to mean power frequency and median power frequency,
which varies due to a shift towards lower frequencies, a small increase in low-frequency
signal power, a relative decrease in high-frequency signal power, a decrease in low-frequency
spectrum slope and an increase in high-frequency spectrum slope (Eberstein & Beattie, 1985;
Gross et al., 1980; Petrofsky et al., 1982; Sato, 1982; Viitasalo & Komi, 1977). There are several
reasons for these changes in the EMG signal, such as signal synchronisation, modulation of
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the recruitment firing rate, grouping and slowing of the CV (De Luca, 1979; Hermens et al.,
1986; Viitasalo & Komi, 1977).
Although sEMG has been applied in many studies of localised muscle fatigue, it is not
without its limitations, in particular, in studies of dynamic muscle contractions. The use of
sEMG requires proper knowledge of the mechanisms of signal generation and propagation.
Although signal acquisition per se is easy, inaccurate conclusions are easily drawn when
inappropriate experimental methods are used (Merletti et al., 2003).
Most research concentrates on isometric contractions to establish typical sEMG readings when
conducted in controlled settings. Changes in sEMG amplitude and centre frequency have
been studied by Petrofsky et al. (1982), who found a decrease in the centre frequency of the
spectrogram for all muscle groups. Research has also shown that a development in muscle
fatigue correlates with changes in sEMG signal amplitude and MDF (Hagberg, 1981). Muscle
fatigue causes MU recruitment, and the MU firing rate increases as a function of the elapsed
time. These changes are not reflected in the EMG changes which occur during fatiguing
isometric contraction of the arm flexors at 20-30% MVC (Maton & Gamet, 1989). However,
it was recently found that the changes due to fatigue in the sEMG signal (increased amplitude
and decreased frequency) suggest that the recruitment of MU firing rates correlates with
sEMG amplitude (Calder et al., 2008).
Although CV strongly influences the power spectrum density (PSD) and has the highest
inter-person repeatability, it has been argued that fatigue also compresses the frequency
content of the sEMG signal in a proportional manner (Linssen et al., 1993). The PSD
time-dependency can also be analysed, and is usually estimated from the instantaneous
sEMG parameters, although there are shortcomings in the identification of changes in the
short-period sEMG signals. A time-varying autoregressive (AR) model was proposed by
Zhang et al. (2010), which produced a more stable and accurate instantaneous parameter
estimation. Minning et al. (2007) studied differences in the rate of fatigue in the shoulder
muscles during voluntary isometric contractions. They discovered day-to-day inconsistencies
in the rate of fatigue in the middle deltoid muscle, which also fatigued more rapidly than
other muscle groups. However, for the other muscles they found a consistent relationship
between trial, day and muscle type. In a study on the relationship between short-time Fourier
transform (STFT) and continuous wavelet transforms to analyse EMG signals from the back
and hip muscles during fatiguing isometric contractions, it was found that the two methods
reveal similar information regarding EMG spectral variables (Coorevits et al., 2008).
Although the success of sEMG is likely to be more prevalent in isometric muscle contractions,
more recently EMG has been applied to the study of dynamic contractions (Singh et al., 2007).
The analysis of the sEMG spectrum during cycling activities reveals a strong correlation
between the onset of fatigue and the reduction of the MDF in dynamic contractions (Singh
et al., 2007), and sEMG has been validated using biochemical analysis, indicating that the
low-frequency band is a reliable indicator of muscle fatigue in dynamic contractions (Soo et al.,
2009). By analysing the quantitative and qualitative changes in EMG patterns, such as IEMG
and the frequency of the mean power, it has been argued that in dynamic contractions fatigue
is related to qualitative changes in the pattern of MU recruitment, which occurs at a faster
rate when the muscle has a higher degree of fast twitch muscles fibres. For the quantitative
changes, only a small reduction in the amplitude of the IEMG signal was related to a high
percentage of slow twitch muscle fibres (Komi & Tesch, 1979). Masuda et al. (1999) studied
changes in sEMG patterns during static and dynamic fatiguing contractions by looking at the
muscle fibre CV, MDF and mean amplitude in the vastus lateralis muscle. The muscle fibre CV
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appeared to be influenced by the metabolic state in the muscle, as it decreased significantly in
isometric contractions, while it remained constant during dynamic contractions. This suggests
that changes in the MDF cannot be explained wholly by shifts in the muscle fibre CV. Farina
(2006) proposed a technique for detection and processing of muscle CV during dynamic
contractions, and showed that a decline in CV reflects muscle fatigue. Another method for
estimating muscle fatigue during dynamic contraction is to use a source separation technique
related to independent component analysis to test whether the firing of MUs becomes more
synchronised at the onset of localised muscle fatigue. As argued by Naik et al. (2009), it
is widely accepted that lower-frequency sEMG signals indicate muscle fatigue due to MU
synchronisation; however, there is little experimental evidence of this theory. Naik et al.
concluded that during cycling movements, a global matrix is an applicable measurement for
estimating localised muscle fatigue.
Several studies have identified the state of peripheral fatigue (Dimitrov et al., 2006;
Gonzalez-Izal, Malanda, Navarro-Amezqueta, Gorostiaga, Mallor, Ibanez & Izquierdo, 2010).
In a recent study, Gonzalez-Izal, Malanda, Navarro-Amezqueta, Gorostiaga, Mallor, Ibanez
& Izquierdo (2010) compared several EMG parameters to assess peripheral fatigue during
dynamic contractions. In that study, new spectral indices (FInsmX) developed by Dimitrov
et al. (2006) were based on discrete wavelet transforms (DWT) and were compared to spectral
parameters, such as mean average voltage, median spectral frequency and ratios between
different scales obtained by DWT. Results showed the newly proposed spectral indices to be
the best for assessing peripheral fatigue, both in correlation with the power output changes
and in their regression. These new spectral indices have also been shown to be a useful tool
in detecting changes in muscle power output in fatiguing dynamic contractions, and they can
be used as predictors of changes in muscle power output (Gonzalez-Izal, Rodriguez-Carreno,
Malanda, Mallor-Gimenez, Navarro-Amezqueta, Gorostiaga & Izquierdo, 2010).
Detecting muscle fatigue in an automated system requires a real-time measurement of changes
in localised muscle fatigue. Stulen & De Luca (1982) developed a muscle fatigue monitor,
which was a non-invasive device measuring localised muscle fatigue by spectral compression
calculating median frequencies and two other parameters of the spectrum. This study used
the MDF, which the author states is a more reliable analysis feature than other traditional
parameters, e.g. mean or mode frequencies. Kramer et al. (1987) proposed a robust and
relatively reliable parameter of fatigue that could be calculated off-line from computed,
real-time sEMG data obtained from a simple analogue device. Wavelet coefficients can be
used in non-stationary and time-varying signal processing, hence they have been applied in
the assessment of localised muscle fatigue for both static and dynamic contractions using
sEMG signals. The amplitude of approximation coefficients coincide with muscle fatigue
development. Moshou et al. (2005) proposed a method for automating the detection of
muscle fatigue by using NNs, where a two-dimensional self-organising map visualises the
approximation of wavelet coefficients, enabling the visualisation of the onset of fatigue over
time, and thus separating the EMG signal from fresh and fatigued muscles. Tepavac &
Schwirtlich (1997) developed a technique which utilises the processed sEMG signal as an
activation signal that changes the pattern to control a functional electrical stimulation (FES)
system. Their technique is able to notify the user that a rapid drop in the muscle force is
approaching, providing the capability of a simple on-off fatigue detection in FES applications.
In the development of this technique the authors used seven different sEMG parameters,
however the best relationship was established between the MDF and force changes, which
were the parameters used to determine the prediction of the onset of fatigue and detection of
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fatigue. This is an interesting technique although it is not performed in autonomous, real-time
system.

1.5 sEMG signal analysis and feature characterisation

Feature extraction is used in pattern recognition, being a form of dimensionality reduction
(Samet, 2006). This method is used for transforming input data to a certain set of features
which will extract the relevant information from that data. sEMG signals can be analysed to
detect muscle fatigue by examining the changes in EMG measurements. Studies on sEMG
show that an increase in EMG signal amplitude or shifts in the spectrogram are indicators of
muscle fatigue in static contractions (Chaffin, 1973; De Luca, 1997; Duchene & Goubel, 1993;
Kadefors et al., 1968; Lindstrom et al., 1977; Marras, 1990). Hagberg (1981) established that
significant changes in the sEMG signal indicate muscle fatigue. Studies on muscle fatigue
during isometric contraction have established typical sEMG readings when conducted in
controlled settings. Changes in sEMG amplitude and centre frequency were studied by
Petrofsky et al. (1982), who found a decrease in the centre frequency of the spectrogram for all
muscle groups. It has also been shown that a development in muscle fatigue correlates with
changes in amplitude and MDF (Hagberg, 1981). A variety of parameters have been used
to investigate sEMG signals to determine muscle fatigue; however it is common to study the
signal in terms of its frequency at a certain time, in both the time and time-frequency domains.
Table 1 categorized the papers according to the feature extraction methods used by authors.

Feature extraction method Refrence ID
RMS (Basmajian & De Luca, 1985; Kumar & Mital, 1996)
STFT (Merletti & Parker, 2004)
Total Band Power (Welch, 1967)
New spectral parameter FI 1 to FI 5 (Dimitrov et al., 2006)
PSD (Ortengren et al., 1975)
MDF (Kumar & Mital, 1996)
IMDF (Asghari Oskœi et al., 2008; Roy et al., 1998)
Cohen class transformations (Cohen, 1995; Raez et al., 2006; Ricamato et al., 1992)
Gabor Transform (Gabor, 1946)
Wavelet analysis (Kumar et al., 2003; Laterza & Olmo, 1997)
Autogression analysis (Graupe & Cline, 1975; Kim et al., 2005; Tohru, 1992)
Entropy (Jaynes, 1957; Sung et al., 2008)
Recurrence Quantification Analysis (Filligoi et al., 2010; Morana et al., 2009)
HOS (Hussain et al., 2008; Kanosue et al., 1979)
Composite Features (Boostani & Moradi, 2003; Hudgins et al., 1993; Phinyomark et al., 2009)

Table 1. Signal analysis and feature characteristics

1.5.1 Time domain and frequency domain analysis

A signal is acquired, and in some circumstances, analysed, in the time domain where the
signal amplitude/voltage is represented as a function of time. However, for many analysis
techniques, it is the frequency of the signal that is of greater value, and consequently the
signal should be analysed in the frequency-domain, whereby the signal undergoes a Fourier
transform so that it is represented as a function of frequency, rather than time.
Both the average rectified value, which measures the average of the absolute signal value,
and the RMS, which is a measure of the signal power (Kumar & Mital, 1996), are used in the
analysis of the raw EMG signal in the time domain. The RMS of the EMG signal calculates the
square root of the average power of the raw EMG signal over a specific time period (Basmajian
& De Luca, 1985). De Luca’s group acknowledged both the average rectified value and RMS
as appropriate analysis methods, however, several authors prefer the RMS (De Luca, 1997;
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Merletti et al., 2003), since it can be used to obtain a moving average (Basmajian & De Luca,
1985). The moving average approach is used for processing raw EMG signals from dynamic
contractions, as it identifies the rapid changes in the muscle activity during such contractions
by using short duration sampling windows (Payton & Bartlett, 2008). Merletti et al. (2003)
suggested that EMG analysis of dynamic contractions can make use of another processing
method, the ‘linear envelope’, which uses a low pass filter to smooth the rectified EMG.
When a signal crosses the zero amplitude line, it is said to have made a ‘zero-crossing’. When
applied to sEMG data, the general idea is that an active muscle will produce more AP, and
hence generate more zero crossings. However, at the onset of fatigue, the zero crossing
rate drops dramatically due to the reduced conduction of electrical current in the muscle.
Therefore zero-crossings are counted using geometric calculations to give an indication of the
muscle status.
The total band power (TBP) of the sEMG signal can be estimated using the method by Welch
(1967). This method has been used previously in several sEMG fatigue analyses (Cifrek et al.,
2009; Helal et al., 1992) and has proved to be useful in quantifying the power of the EMG
signals.
The frequency content of a signal can be determined by performing a Fourier transform to
reveal its individual frequency components. The fast Fourier transform (FFT), a method for
calculating the discrete Fourier transform, is suitable for use in stationary signals. EMG
signals, which are non-stationary, should be represented in both the time and frequency
domains. Therefore, the STFT, which analyses a small temporal section of the signal, can
be used to determine the frequency and phase evolution of the EMG signal over time.
The time and frequency resolution depend upon the sampling rate and the temporal length of
the signal section. Due to the inverse relationship between time and frequency in the Fourier
transform, it follows that the higher the time resolution the lower the frequency resolution
will be and vice versa (Merletti & Parker, 2004). The spectogram of the signal is the squared
magnitude of the STFT.
Dimitrov et al. (2006) proposed a new spectral parameter with higher sensitivity than
traditional indices for both dynamic and isometric contractions, which is a valid and reliable
tool for the assessment of muscle fatigue. The parameter used the FFT to calculate ratios
between different spectral moments measured over the power spectral density.
Following an FFT, this parameter represents the ratio between the low- and
high-order spectral moments of the EMG power spectrum. Gonzalez-Izal, Malanda,
Navarro-Amezqueta, Gorostiaga, Mallor, Ibanez & Izquierdo (2010) used this index to
measure the changes in muscle power during a high-intensity dynamic protocol, and
compared it to other frequency and amplitude parameters. It was found that the logarithm of
this index detects the changes most accurately by assessing peripheral impairments.
EMG signals can be analysed in the time-domain using the PSD to describe how the power
of a signal is distributed among its frequency components. Significant changes in the power
spectrum indicate muscle fatigue (Ortengren et al., 1975), such that after fatigue onset the
PSD is increased in the low frequency components and decreased in the higher frequency
components.
Two of the most common frequency-dependent features in sEMG analysis are the MF and
MDF. The MF is “the average frequency of the power spectrum and is defined as its first-order
moment” (Asghari Oskœi et al., 2008), while the MDF is an index used in studies of spectral
shifts and can be defined as “the frequency which divides the power spectrum in two parts
with equal areas” (Kumar & Mital, 1996, p. 170). The power spectrum represents the MDF
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of the power, based on a continuous spectrum distribution. Hagberg (1981) stated that if
the MDF decreases along with as the sEMG signal amplitude increases, which is a strong
indication of fatigue.
The spectral frequency can be redefined to represent the non-stationary nature of the signal,
or the instantaneous frequency, of the frequency content of the signal (Karlsson et al., 1999).
The instantaneous median frequency (IMDF) was introduced by Roy et al. (1998). Studies by
Asghari Oskœi et al. (2008) concluded that a significant decline in the IMDF of the signal
is a significant manifestation of fatigue occurrence. In addition, Georgakis et al. (2003)
demonstrated that the average instantaneous frequency is superior to the mean and median
frequencies for the analysis of muscle fatigue during sustained contractions.
Some analysis methodologies use both the time and frequency domains to analyse the
EMG signal. For example, the Cohen class transformation, a time-frequency representation
applied in biomedical signal processing, is well-suited for analysis of signals from dynamic
contractions. It is a distribution function introduced by Cohen (1995) using bilinear
transformations, giving clearer results than the STFT. However, due to its use of bilinear
transformations, the Cohen class is affected by cross-term contamination in its analysis
of several functions, which can be avoided using window functions. The Wigner-Ville
distribution function (WVD), proposed by Wigner in 1936 (Raez et al., 2006), was first used
for corrections to classical statistical mechanics, however, it is also applicable as a transform
in time-frequency analysis. This transform has higher clarity than the STFT and has more
properties than most other time-frequency transforms, using all available information in the
EMG signal. In 1948 Ville revised this function into a quadratic representation of the local
time-frequency energy of a signal (Raez et al., 2006). It was discovered by Ricamato et al.
(1992) that the WVD would detect the frequency ranges of the MUs, displaying recruitment
patterns as muscles contract. However, Davies & Reisman (1994) found that the WVD joint
density spectrum is noisy although its localisation properties are excellent and “generally
concentrated around the instantaneous frequency of the signal”. Another member of the
Cohen’s class functions is the Choi-Williams distribution (Davies & Reisman, 1994), which
makes use of kernels to reduce the interference, something the Cohen’s class distribution
suffers from, although it is only possible for the kernel function to filter out the cross-term
contamination.
The Gabor transform (named after Dennis Gabor) is a discrete Fourier transform utilising
Gaussian windows, which is used in time-frequency analysis (Gabor, 1946). The transform
determines the sinusoidal frequency and phase content of specific sections of a signal that
changes over time, which is an advantage when representing local features. By using Gaussian
windows, this function gives more weight to the signals near the time being analysed.
Although this method is more precise than other methods, giving few errors, there are some
major problems. The Gabor transform gives imaginary numbers with no physical meaning
and it requires a lot of resources for full computation. Nevertheless, this transform guarantees
energy conservation of the signal.
There are many time-frequency functions which can be used to analyse sEMG signals during
localised muscle fatigue. Davies & Reisman (1994) showed that STFT can most precisely
represent spectrum compression during muscle fatigue. Due to the cross-term contamination
in the WVD, it is not possible to display the changes in the frequency components with
muscle fatigue accurately. In a comparison between the STFT, the WVD, the continuous
wavelet transform and the Choi-Williams distribution, Karlsson et al. (2000) found that the
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continuous wavelet transform resulted in a more precise estimation of EMG signals when
applying various time-scale methods to analyse sEMG signals.

1.5.2 Wavelet analysis

By using a wavelet function (WF), the wavelet transform (WT) decomposes a signal into
numerous multi-resolution components (Kleissen et al., 1998; Laterza & Olmo, 1997). It is
used to detect and characterise the short time component within a non-stationary signal,
providing information regarding the signal’s time-frequency. The WF, being both dilated and
translated in time and a linear function which does not suffer from cross-terms, undertakes a
two-dimensional cross correlation with the time domain sEMG signal, making it an excellent
alternative to other time-frequency parameters (Laterza & Olmo, 1997).
There are a number of so-called ‘mother wavelets’ that can be used for signal decomposition,
including Symm-let, Coiflet, Haar, Morlet, Daubechies and Mexican Hat (Kumar et al., 2003).
To select the most appropriate mother wavelet for a specific application and signal type, the
properties of the WF and the characteristic of the signal should to be analysed and matched.
Certain wavelets have somewhat established guidelines for their use, e.g., Db4 is said to be
suited for signals using feature extractions and linear approximation with more than four
samples, while Db6 is suited for signals that are approximated by a quadratic function over
the support of six and finally coiflet6 is better suited for data compression results (Walker,
2000).
Guglielminotti & Merletti (1992) hypothesised that if the wavelet analysis is selected to fit
with the shape of the MUAP, the WT would give the best energy location in a time-scale.
Kumar et al. (2003) stated that the STFT does not give an optimal time or frequency resolution
for the non-stationary signal, although the relatively short time windows may trace spectral
variations with time. The WT, comprised of numerous WFs, can be used to decompose the
sEMG signal. The output of the power transform domain is calculated and thus functions
as a deciding parameter in selecting the most appropriate WF to give the highest contrast
between sEMG cases. It has been shown that it is possible to detect muscle fatigue status by
determining the Sym4 or Sym5 WFs and decomposing the signal at levels 8 and 9 (out of 10
levels). Kumar et al. (2003) discussed the effectiveness of decomposing the sEMG signal to
measure its power in order to identify muscle fatigue as an automated process.

1.5.3 Autoregression analysis

Regression statistics is used to determine the relationship between an independent variable or
variables and a dependent variable. An autoregressive (AR) model is a random process used
in statistics and signal processing to model and predict natural phenomena. Graupe & Cline
(1975) developed the AR moving average (ARMA) model to represent EMG signals, where
the signals were split into short time intervals and the signal was considered to be stationary.
However, Sherif (1980) replaced this model by a model using the AR integrated moving
average (ARIMA) model, to be used on the non-stationary EMG signals. Hefftner et al. (1988)
exploited the computational speed of the AR model for EMG feature discrimination.
Kim et al. (2005) measured fatigue in the trunk muscle using the first AR model, and
concluded that the model was capable of assessing fatigue in static exercises, being sufficiently
sensitive to detect fatigue at low force levels. Several authors have revised the AR parameters,
adding a non-linear element (ARMA) (Bernatos et al., 1986) and a non-stationary identifier
(Moser & Graupe, 1989). However, the ARIMA model is complex with a high computational
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cost and Tohru (1992) argued that more accurate models (ARMA and ARIMA) are not needed
for studies on dynamic contractions.

1.5.4 Entropy

Entropy is a function that can be used in various fields, such as thermodynamics,
communication and computer science. In physics, entropy is a statistical measure of disorder
in a system, representing the probability that a certain outcome exists, while in information
theory the basis of entropy relates to the randomness in a signal or in a random event
(Jaynes, 1957). This is also applicable to a general probability distribution, rather than a
discrete-valued event. Sung et al. (2008) argue that entropic measures reveal part of the sEMG
signals that are not included in the power spectrum, and can be a useful tool in detecting
muscle fatigue in gender differences.

1.5.5 Recurrence quantification analysis

Recurrence quantification analysis, a method of nonlinear data analysis which is used for
the investigation of dynamical systems, is highly effective in detecting changes in the sEMG
signal and is almost equivalent to the frequency domain analysis of the signal in non-isometric
contractions (Filligoi et al., 2010). Morana et al. (2009) recently used recurrence quantification
analysis in a study of muscle fatigue and stated that this method can be used to detect
peripheral muscle fatigue.

1.5.6 Higher-order statistics

Higher-order statistics (HOS), a technique based on probability theory, characterises and
analyses the nature of a random process, making it appropriate for use in the random
time series produced by EMG signals. Due to the nature of the EMG signals, in particular
when fatigue components are present in the signal, HOS will give more insight in terms
of analysing the complexity of the EMG signal. In muscle fatigue HOS is used due to the
increasing complexity of the EMG signal, the second order HOS (and higher orders) are used
to detect non-gussian/non-linear properties of the signal. This is particularly useful method
in muscle fatigue studies, which is an alternative of using the Gaussian/linear processes, such
as the power spectrum of a signal giving the distribution of power among signal frequency.
Moments and cumulants define the HOS of a signal. When analysing deterministic signals,
moments are of great importance, while cumulants are useful for stochastic type signals
(Gündoğdu et al., 2006). It has been used in sEMG studies to estimate the amplitude and
the number of new MUAPs, as proposed by Kanosue et al. (1979). Several authors have
studied HOS in sEMG signal processing, in particular testing it for Gaussianity and linearity,
coherence and coupling of the signal. Their findings showed that during contractions at low-
and high-force activity, HOS features are non Gaussian, while during the mid-level force the
distribution is maximally Gaussian (Hussain et al., 2008; Raez et al., 2006; Shahid, 2007). HOS
is also used to suppress Gaussian white noise in the sEMG signal (Hussain et al., 2008).

1.5.7 Composite features

The term ‘composite features’ relates to the use of a combination of common features to
develop a new feature that aids in the analysis of sEMG signals. MacIsaac et al. (2006)
presented a mapping function that maps segments of multiple myoelectrical signals for
fatigue estimation of dynamic contractions, where the inputs are time domain features. This
function is tuned by ANNs and is capable of use in real-time applications. Results show
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that this function better maps the sEMG signals than either the MF or the IMDF for different
conditions.
Although combining features is a fairly new approach in the field of localised muscle fatigue
research, there has already been work on multiple features utilised for myoelectric control
of prosthetics. The concept of multiple features was introduced to overcome the stochastic
nature of the the EMG signal, which makes it difficult for only one parameter to reflect the
uniqueness of the EMG signal to a motion command. Hence various features are used for
extraction at different times of the signal. Hudgins et al. (1993) used this method first for
time domain features, such as mean absolute value, mean absolute value slope, wavelength
form, zero crossings and slope sign changes, which were then classified using an ANN. This
new method of control increased the number of prosthetic functions which can be controlled
by a single channel of myoelectric signal without the amputee having to increase his/her
effort. Other researchers have also applied this multiple function technique. Phinyomark
et al. (2009) calculated two novel features by modifying the mean and median frequencies.
Instead of calculating the power spectrum, they calculated the mean and median of the
amplitude spectrum (MMNF). Then they used a combination of the MMNF, a histogram
of EMG and Willison amplitude as a feature vector in a classification task, giving a better
classification recognition result of the EMG in noisy environment than other features. Boostani
& Moradi (2003) aimed at selecting the best features which would give a high rate of motion
classification for controlling an artificial hand. Nineteen EMG signal features were taken into
account, including combining the WT with other signal processing techniques. The results
of this study showed that the best features for motion classification were wavelet coefficients
of EMG signals in nine scales, and the cepstrum coefficients. Although the above-mentioned
studies do not investigate muscle fatigue per se, they all use a combination of features of the
EMG signal to improve the classification outcome.

2. Feature selection

Feature selection is an important process that ensures that the selected features contain
class related information, since most features do not hold such information. In machine
learning and statistics, as well as pattern recognition and data mining, feature selection is
a technique whereby a subset of relevant features is selected from the data, which is then
applied in a learning algorithm (Sewell, 2010). Feature selection typically creates a model
that facilitates the generalisation of the unseen dimensions and may substantially enhance the
comprehension of the classifier model which is produced (Kim & Street, 2010). In supervised
learning, which has been thoroughly investigated, the aim is to select a feature subset which
produces high classification accuracy (Kim & Street, 2010). However, for unsupervised
learning the goal is to identify an optimal subset that produces high quality clusters for a
set number of clusters. There are two main types of feature selection: the wrapper approach
and the filter approach.

2.1 The wrapper approach

The wrapper approach uses a classification method to evaluate the most optimal feature or
feature sub-set. This model, often used in machine learning, is excellent for improving the
performance of the classifier due to using the same bias for both the feature selection and the
learning of the classifier (Kohavi & John, 1997). The wrapper method searches for the optimal
feature subset or a near-optimal subset that will best suit a certain algorithm and a domain,
and it differs from other approaches as the measure of relevance is defined as the accuracy
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obtained by nonlinear regression (Kohavi & John, 1997). The wrapper approach goes through
two phases (Liu & Motoda, 1998). In the first phase, which is the feature sub-set selection, the
best sub-set is selected based on the classifier’s accuracy. It is only the optimal features with
highest accuracy which is kept for use in the second phase. Learning and testing is the second
phase, where a classifier learns and trains from the optimal sub-set and then tests it on the test
data to obtain its predictive accuracy. Cross-validation is then used to estimate the accuracy
as the accuracy of the training data may not ensure accuracy in the testing data. Although
cross-validation may help in the difficult task of estimating the true accuracy, it will lengthen
the process of feature selection. Other disadvantages of the wrapper approach is linked to
being unable to handle great sizes of data and to the limitation in choice of classifiers (Liu &
Motoda, 1998). As the classifier is rebuilt for each feature sub-set in the first phase it eliminates
the use of classifiers which requires great computational resources.

2.2 The filter approach

The filtering approach has been linked to data mining, when a classifier cannot be directly
linked with the data set and where the aim is data reduction (Liu & Motoda, 1998). In this
model the relevance measure is defined independently from the learning algorithm. In the
filtering approach the subset selection procedure is like a preprocessing step (Kojadinovic
& Wottka, 2000). Even this model consists of two phases. Firstly, the feature selection
uses separation index or other measures such as distance, dependency, consistency and
information to get the best feature sub-set. Secondly, the classifiers learns from the training
data set and tests it on the testing data set. This model can handle huge data sets due to the
feature selection process in phase one, which is a less complex and time consuming method.
The filter approach also tend to be much faster and cheaper than the wrapper approach,
however, the disadvantage is that the best subset of variables may not be independent of the
representational biases of the algorithm used in the learning phase (Kojadinovic & Wottka,
2000).
In research on localised muscle fatigue, feature selection is used to facilitate the pattern
recognition and classification of the features analysing the sEMG signals (Tamil et al., 2008;
Yan et al., 2008). Various methods have been applied in this process, however, the DBI for
measuring clustering selection is commonly used for EMG pattern recognition (Huang &
Chen, 1999; Petrofsky, 1981; Wang et al., 2004)
Clustering is generally considered as an unsupervised algorithm for grouping a
heterogeneous population into a set of homogeneous classes. However, this strategy does
not always ensure grouping similar classes together.

2.2.1 Davies-Bouldin index

Cluster validity is an important measurement of how well clusters are related to other
clusters generated by clustering algorithms. In most applications the clustering result needs
validation. The number of clusters is determined as a user parameter in the majority of
clustering algorithms. There are many methods of finding the best number of clusters,
however Davies & Bouldin (1979) developed the Davies-Bouldin index (DBI), which measures
the ratio of the sum of within-cluster scatter to between-cluster separation, so that it uses both
the clusters and their sample means. The DBI evaluates the cluster quality by utilising the
average error of each class, serving as a measure of cluster quality by calculating the distance
of the cluster members to the cluster centroids and the distances between the cluster centroids.
In the DBI small values indicate that clusters are compact with their centres far apart. Hence,
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the optimal number of clusters is considered as the number that minimises the DBI. The
formulation of the modified DBI proposed by Sepulveda et al. (2004) can be used to measure
cluster quality. For data based on real numbers, the DBI always yields a real value ≥ 0. The
DBI is a measure of the standard deviation of the signal. A small DBI indicates well separated
and grouped clusters, which means that the lower the DBI the more separable are the classes.
There are several methods to measure cluster quality, but the DBI has been applied in research
on muscle fatigue (Boostani & Moradi, 2003). The DBI is related to the performance of the
linear Fisher discriminant classifier to pairwise clusters.

3. Classification methods

Classification methods, used in statistics and computational problem solving, are supervised
machine learning procedures where individuals are grouped according to their characteristics,
which can also be called traits, variables, characters, etc. This method bases its training
set on previously labelled individuals. There are many ways of classifying a signal. Signal
classification methods can be in continuous time or discrete time, analog or digital, periodic
or aperiodic, finite or infinite, and deterministic or random. Discrete/continuous classification
is determined by whether the signal is countable (discrete) or continuous.
There are numerous ways to classify the sEMG signals, although the non-stationary nature
of the signals make classification more complicated (Khezri & Jahed, 2007). A number of
classification methods used for sEMG fatigue related signals are described below.
One common method for sEMG classification is to measure the Euclidean distance between
the waveform of an MUAP; where a shimmer is generated in the representation of
time-triggered and non-overlapping MUAPs (Raez et al., 2006). The shimmer is influenced by
external factors, such as background noise and noise from offsets. In addition, the shimmer
of the MUAP is affected by the variance within a class as well as the distance between the
classes.
Christodoulou & Pattichis (1995) suggested using an ANN as a classification method, which
can be implemented in three phases. The first phase is unsupervised learning, which is built
on competitive learning and on a one-dimensional self-organising feature map. In the second
phase the learning vector is quantified, which is a self-supervised learning method which aids
classification performance. Finally, the third phase is that of classification. The fuzzy approach
has been compared with the ANN method on four subjects, and very similar classification
results were obtained. It is superior to the latter in at least three points: slightly higher
recognition rate, insensitivity to over-training and consistent outputs demonstrating higher
reliability (Chan et al., 2000). Table 2 categorized some papers according to the classification
methods used by authors.

Classification method Refrence ID
GP (Holland, 1975; Koza, 1994; Poli et al., 2008)
GA (Koza, 1994; Michalewicz, 1996; Raikova & Aladjov, 2002; Wang, Yan, Hu, Xie & Wang, 2006)
ANN (Bishop, 1995; Xie et al., 2010; 2009)
Fuzzy systems (Chan et al., 2000; Kiryu & Yamashita, 2007; Takagi & Sugeno, 1985)
LDA (Balakrishnama & Ganapathiraju, 2010; Fisher, 1936)
Support Vector Machine (Gunn, 1998; Hsu et al., 2003)
One Clause at a Time (Torvik et al., 1999)
Cross validation (Kohavi, 1995; McLachlan et al., 2004)
Confusion matrix (Kohavi & Provost, 1998)

Table 2. Classification Methods
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3.1 Evolutionary computation

Genetic programming (GP), which implements a learning engine based on Darwin’s theory
of the natural selection of the fittest, was founded by Koza (1994). GP is based on the
concept of evolutionary algorithms introduced in 1954 by Nils Aall Barricelli, who applied
it to evolutionary simulations. GP optimises a computer program in order to solve tasks
and creates computer programs as part of the solution (Holland, 1975). The optimal
program (fittest) is selected from three standard genetic operators (crossover, mutation
and reproduction), which modify the GP’s structure and create new (and often improved)
offspring (generations) (Michalewicz, 1996). GP is closely related to genetic algorithms (GAs)
(Holland, 1975), however, GP actually creates computer programs as part of the solution. GP
uses a tree structure to represent the computer programs it produces and reproduces when
a genetic program is run (Koza, 1994). The tree structures represent the population and the
new generations which are created and is similar in construction (and appearance) to what is
commonly known as a family tree. Setting a maximum tree depth avoids excessive growth of
(tree-based) individuals during the evolutionary process (Koza, 1994). GAs and GPs also work
according to the strategy of the survival of the fittest, this time searching the solution space
of a function. GAs have proved to be a useful means to solve linear and nonlinear problems,
where the areas of the state space are explored through mutation, crossover and selection
operations applied to individuals in the population (Michalewicz, 1996). GAs and GP use the
determination of six fundamental components: solution representation, selection function,
genetic operators, initialisation, termination and a fitness function. This will be explained in
the following sub-sections.

3.1.1 Solution representation

In order to describe each individual in the population of interest, GAs us a chromosome (or
individual) representation in which each individual is made up of a sequence of genes. This
scheme decides which genetic operators it should use, in addition to determining the structure
of the problem (Houck et al., 1996). Each individual consists of a sequence of genes from a
specific alphabet. Binary digits, floating point numbers, integers, symbols etc. can make up
the alphabet. In this thesis, GAs are utilised that use an alphabet consisting of floating point
numbers. Research shows that better solutions are produced with a more natural problem
representation, and it is also more efficient (Michalewicz, 1996). Hence, bounded floating
point numbers are a useful representation of individuals for function optimisation.

3.1.2 Selection function

In a GA, individuals are selected to produce successive generations. The selection is based
upon the fitness of an individual, where the fittest individuals have an increased probability
of being selected and any individual can be selected more than once (Nordin & Banzhaf, 1996).

3.1.3 Genetic operator

Genetic operators are the basis for the search mechanism of GAs. Based on present solutions in
the population, the operators are utilised to establish new solutions. The two main operators
are crossover and mutation. Crossover uses two of the existing individuals to reproduce
two new individuals, while mutation randomly changes the genes in one individual to get
a single new solution (Michalewicz, 1996). A reproduction operator selects a parent based
on its fitness and creates identical copies of that parent in the next generation (Koza, 1994).
There are several options for applying genetic operators to a multi-tree representation. It
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is possible to apply a particular operator that is selected to all trees within an individual.
Another possibility is to iterate over the trees in an individual and select a potentially different
operator for each. Finally it is possible to constrain crossover to occur only between trees at the
same position in the two parents or it was possible to let evolution freely crossover different
trees within the representation.

3.1.4 GA Initialisation and GA termination

An initial population must be provided for the GA and it is common for it to be randomly
generated. Since GAs have the ability to produce exciting solutions, the initial population may
sometimes be seeded with specifically chosen individuals amongst the otherwise randomly
generated individuals. To obtain a termination the GA goes from generation to generation
to select parents and reproduce offspring, which then go on to become the next generation
of parents (Houck et al., 1996). One possible termination strategy is to use the population
convergence criteria, where most of the whole population is forced to converge to a single
solution. However, the most popular termination strategy is to decide on a specified
maximum number of generations.

3.1.5 Fitness function

The fitness function is an important concept of GAs as this is the indicator for how well a
generated solution solves a specific problem; it evaluates the quality of the individuals and
guides the evolution to uncover progressively improved solutions during a system run, while
the fitness measure specifies what needs to be done (Koza, 1994). In order to select the best
suited individuals, a fitness measure is determined by the user and the program will measure
the fitness based on a fitness function. The fitness function is objective and quantifies the
optimality in solutions. There are two main classes of fitness functions: one where the fitness
function can mutate and one where it cannot. In order to calculate the fitness the program may
need to run several times with a variety of parameters so that the output can be evaluated
(Garner, 2010); this is termed ‘training’. One common way to represent the fitness is to
measure the difference between the theoretical or ideal value and the actual value, which
means that a low fitness value indicates less error.

3.2 Artificial neural networks

An artificial neural network (ANN), also called neural network (NN), is an information
processing model inspired by how biological neural networks process information (Bishop,
1995). The key element of ANN is its structure, consisting of interconnected groups of
artificial neurons that processes information by a connectionist approach to computation,
solving a specific problem. It is called an artificial neural ‘network’ as the network describes
the basis of the system with inter-connected neurons in various layers. ANNs are adaptable
systems where the structure is changeable depending on internal and external information
flowing through the network in the learning phase, and are capable of modelling complex
relationships. ANNs are used in classification, in particular for pattern recognition, but also
in data processing (e.g. filtering, clustering, blind source separation and compression) as well
as for robotics, and regression analysis.
One of the advantages of ANNs is their ability to find meaning in complicated data (Bishop,
1995). In pattern recognition, where trends are complex and cannot be derived by humans or
linear computer models, they act as an expert analysing the problem. In addition, ANNs have
other capabilities such as creating their own organisation of information given in the training
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phase and learning tasks simply by training experience. ANNs are also a useful method in
real-time operations, where computations are executed in parallel, hence special hardware
devices can be used in order to take advantage of this capability.

3.3 Fuzzy systems

Fuzzy logic, a form of logic that is tolerant to contradictory data, is used in biomedical
signal processing and classification to overcome problems where signals are stochastic and
therefore may be contradictory in nature (Chan et al., 2000). Fuzzy systems can be trained
to identify patterns which are not identifiable by other methods. Fuzzy systems determine
fuzzy operators, which may be unknown, on fuzzy sets, requiring the use of ‘IF-THEN’ rules.
Fuzzy systems are used to model or classify problems with variables and rules that can be
analysed by a human user. A fuzzy classifier is an algorithm that labels objects by class, and
it is argued that the classifier can predict the class label. Kucheva et al. (2000) argued that any
classifier that uses fuzzy logic in its training set can be considered to be a fuzzy classifier. A
fuzzy system has a vector that contains the values of the features for a specific task, and the
system runs a training algorithm and a training data set. Once the system is trained it can
be applied to unseen objects. There are several models of fuzzy classifiers, and the simplest
method is a rule-based approach that works as an ‘IF-THEN’ rule system, where the class
label is the consequent part of the rule. If the consequent part of the rule contains linguistic
values the output will be a soft label with values from the discriminant function. Takagi &
Sugeno (1985) identified a fuzzy classifier where the function is the consequent. This method
also works according to the IF-THEN rule, however, the rule is a regressor over the feature
data space.

3.4 Linear discriminant analysis

Linear discriminant analysis, (LDA), also related to Fisher’s linear discriminant, is a
technique applied in statistics, pattern recognition and machine learning which finds a linear
combination of features for the characterisation or separation of two or more classes. The
result can be used as a linear classifier or for dimensionality reduction in later classification.
This model is closely related to other techniques, e.g. regression analysis, analysis of variance
and principal component analysis, however, in LDA the variance is categorical. LDA can
easily execute cases with unequal within-class frequencies, whose performance is examined
on randomly produced test data (Balakrishnama & Ganapathiraju, 2010). In this method
the ratio of between-class variance to the within-class variance is maximised in any data set,
which ensures optimal separability.
There are two different approaches for the transformation of data sets and classification of
test vectors in the transformed space: class-dependent transformation and class-independent
transformation (Balakrishnama & Ganapathiraju, 2010; Fisher, 1936). The class-dependent
transformation involves maximising the ratio of between-class variance to within-class
variance. The main aim is high class separability, which is obtained by maximising this
ratio. The data sets are transformed independently by the use of two optimising criteria.
The class-independent transformation maximises the ratio of overall variance to within-class
variance. In this method, only one optimising criterion is used to transform the data sets,
which means that data points are transformed regardless of their class identity. In this
approach, each class is considered as a separate class against all other classes. LDA is often
used for the characterisation of two classes. Here the sample set is considered to be a training
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set which will find a good predictor for the second class. The following linear transformation
describes the classification where the LDA maps the data (feature vector) x:

y = wtx + w0, (1)

where w and w0 are determined by maximising the ratio of between-class variance to
within-class variance to guarantee maximal separability. The LDA uses two classes that are
classified at one time:

X ∈

{

Class 1, if y > 0 ,
Class 2, if y < 0 .

(2)

3.5 Support vector machine

A support vector machine (SVM) is essentially a supervised learning method which can be
used in classification and regression. By undergoing training, the SVM uses an algorithm to
develop a model that will predict which category the examples in the training set belongs to.
SVMs are a useful technique of data classification (Gunn, 1998; Hsu et al., 2003).

3.6 One clause at a time

One clause at a time (OCAT) is a classification function developed by Torvik et al.
(1999), where the aim was to create a flexible, but simple prediction function. In their
study on predicting if a muscle is fatigued or rested by investigating the peaks and
characteristics fractile frequencies in the EMG signals, they found, in their comparison with
other classification methods, that OCAT achieved the highest accuracy. Although ANNs
also showed great accuracy they need subjective fine tuning and are complex in their
interpretation. Nevertheless, they acknowledged that the more classical methods might be
more powerful as long as valid assumptions are made, which is why they stated that more
research is needed. This is an interesting but fairly dated approach that attempts to predict
localised muscle fatigue.

3.7 Research on classification of EMG signals

There are several approaches to signal classification, but for EMG signal processing, NNs,
described in section 3.2, have often been suggested. More specifically, the dynamic recurrent
NN, which has two different adaptive parameters using fully interconnected neuron-like units
and which maps the relationship between arm movement and EMG muscle activity, was
proposed by Cheron et al. (1996). Del Boca & Park (1994) suggested ANNs as a suitable
technique for real-time applications of EMG. Their method can precisely identify the features
of the EMG signals, and the EMG features are extracted by Fourier analysis, using a fuzzy
algorithm for clustering. The operations are undertaken in real-time by an FFT performed by
the multipliers in a digital signal processor. The use of fuzzy systems, as described in section
3.3, is also a classification method that has been used in muscle fatigue research as a fatigue
index, showing better results than conventional fatigue indices (Kiryu & Yamashita, 2007).
Xie et al. used a fuzzy approximate entropy analysis of sEMG signals (Xie et al., 2009) and a
cross-fuzzy entropy (Xie et al., 2010) as means by which to assess muscle fatigue.
As mentioned in section 3.1, GP, a specialisation within the field of GAs (Holland, 1975) and
based on Darwin’s theory of evolution, finds the best suited computer program to perform
a set task. Whereas GAs search the space of a function to find an optimum solution, GP
creates computer programs as part of the solution. Raikova & Aladjov (2002) used hierarchical
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genetic algorithms (HGAs) to investigate the motor control for muscle forces during dynamic
conditions. The HGA used genetic operators to find the moments of neural stimulation of all
the MUs, which are the variables in genetic terms, so that the sum of MU twitches fulfills the
set goals. Results showed that HGAs are a well suited method to examine motor control.
Wang, Yan, Hu, Xie & Wang (2006) have carried out several studies on classification of EMG
signals using the wavelet packet method. One such study developed a classification method
for sEMG signals based on discrete harmonic wavelet packet transform (DHWPT). Firstly,
the relative energy of sEMG signals in each frequency band was extracted using DHWPT,
and, secondly, a GA selected appropriate features that reduced the feature dimensionality.
An NN would classify four types of prosthetic movement, utilising the selected features as
the input vectors. This method produced high classification accuracy, in addition to saving
computational time due to the fast algorithm in the DHWPT. In a similar study, Wang, Wang,
Chen & Zhuang (2006) improved this sEMG signal classification method by using an optimal
wavelet packet (OWP) method based on the DBI. Principle component analysis was applied
for a reduction of the feature dimensionality of the outputs of the OWP decomposition. By
using a neural network classifier to discriminate between the classes, the mean classification
accuracy was 93.75%, outperforming the previous method developed by Wang, Yan, Hu, Xie
& Wang (2006). Despite the fact that these two methods are based on EMG classification used
for prosthetic movement, the classification methodologies are inventive and are of interest if
they are applicable to sEMG signal classification of localised muscle fatigue.

3.8 Validation of classification

A statistical method for validation is cross validation, which evaluates how the classification
results are applicable to an independent data set (Kohavi, 1995). Cross validation is based
on an evaluation on the learning algorithm used for the applied classification technique.
In cross validation the data is divided into two parts, out of which one is used for the
training set and the other for the testing set (to validate the applied technique). There are
several cross validation methods, such as repeated random sub-sampling validation, K-fold
cross-validation, k x 2 cross-validation and leave-one-out cross-validation (Kohavi, 1995).
Repeated random sub-sampling validation involves a random separation of the dataset into
training and validation data. In every separation, the model fits the training set and predicts
the outcomes for the data in the testing set (which is unseen). This strengths of this method
are that it does not take long to compute compared to the other models and the proportion of
the data set separation is not dependent upon the iterations (folds), however, some of the data
may never be selected in the validation sub-sample while other data may be selected several
times (Refaeilzadeh et al., 2008). K-fold cross validation partitions the original data set in for
K sub-samples, out of which one subset is used for the validation process and the rest is used
for the training set. This process is repeated K-times (iterations), ensuring that each of the K
sub-samples are only used once in the validation and all of the observations are used for both
training and validation (McLachlan et al., 2004). This is an advantage of this method, while
the disadvantage is that the training algorithm needs to re-run several times, which means
it requires a lot of time before it can make an evaluation. K × 2 cross validation is a variant
of K-field validation, and this method is useful for large data sets, where the user randomly
assign the data into two equal sets. Leave-one-out cross validation involves using a single
observation from the original sample as the validation data, and the remaining observations
as the training data. This is repeated such that each observation in the sample is used once
as the validation data. This is the same as a K-fold cross-validation with K being equal to
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the number of observations in the original sample. Leave-one-out cross validation is also a
method similar to K-fold classification, however, the number of iterations are equal to the
number of data points in the sets, and each observation is used once as the validation data.
This is an expensive method due to the number of times the training process is rerun.

4. Approaches in labeling the sEMG

In labelling the sEMG signal, only the kinematic data (the elbow angle and its standard
deviation) were considered as they are reliable indicators in healthy individuals when
assessing muscle fatigue onset (Barry, 1992; Guo et al., 2008; Herberts et al., 1980; James et al.,
1995; Jarić et al., 1997; Taimela et al., 1999; Tho et al., 1997; Vedsted et al., 2006). The use of the
kinematic variables defines the boundaries (Non-Fatigue, Transition-to-Fatigue and Fatigue)
of the sEMG signal, providing the basis for training the sEMG classifier.
As the onset of muscle fatigue is diffuse, the use of fuzzy-logic classification is appropriate
for setting the boundaries when labelling the sEMG. This study used both a fuzzy classifier to
automate the labelling and human experts to verify the outcome of the fuzzy classifier. The
two main criteria in labelling the sEMG signal are described below using fuzzy logic terms.
The fuzzy classifier had two inputs (elbow angle and its standard deviation) and a single
output. The labelling by the fuzzy classifier was verified by a human expert using Table 3 as
a guide. The changes in the elbow angle and their indication of fatigue is based on a study by
Van Roy et al. (2005). This study claims that changes in the elbow angle of 1.8 +/- 2.9 degrees
in men indicates fatigue.

• Figure 1 indicates the fuzzy set input for the elbow angle provided by the goniometer
(0 to 180◦): Angles of 89◦ and above indicate Non-Fatigue, while angles below 86.5◦

indicate Fatigue. The figure also has a superimposed illustration of a single goniometer
trial signal giving an example of how the fuzzy classifier identifies the boundaries to enable
the labelling of the sEMG signal.

• Figure 2 indicates the fuzzy set input for the arm oscillations (Hristovski et al., 2010) (i.e.,
the standard deviation of the elbow angle), which was also provided by the goniometer:
An increase in the standard deviation of the goniometer signals indicates either low
angular oscillation or high angular oscillation. Calculation of the standard deviation was
performed using a four-second non-overlapping window of the goniometer signal, then
re-sampled to match the original signal size. Further examination of Figure 2, with the
superimposed standard deviation signal, reveals that for this particular signal, at around
110 seconds, which resides at 0.6 standard deviations, the subject underwent the transition
from the class of Non-Fatigue to that of Transition-to-Fatigue and at around 200 seconds
indicates a Fatigue state at 1.0 standard deviations.

As with all fuzzy classifiers, only a single label was chosen as the final output (Slezak et al.,
2005). Table 3 defines the rule base; the rule with the greatest firing strength was selected.
The above fuzzy classifier inputs (elbow angle and amplitude of arm oscillation), when used
in conjunction, were found to assist in finding the boundaries of the classes. Both inputs
were used to define a 6 rule type-1 fuzzy classifier, using both triangular and trapezoidal
antecedents and product inference.
Preliminary tests showed that the average sEMG signal in this data set was comprised
of the muscle fatigue classes in the following estimated proportions: Non-Fatigue 54.5
%; Transition-to-Fatigue 43.18 % and Fatigue 2.32 %. These proportions varied between
participants, with the only common feature being that the relative sizes and order of each
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Fig. 1. The fuzzy set input for the angular position of the elbow.

Fig. 2. The fuzzy set input for the angular oscillation (i.e., elbow angle standard deviation).

IF THEN
Rule Input 1 Input 2 Output

(Elbow angle) (Oscillation)
1 Non-Fatigue Low Non-Fatigue
2 Non-Fatigue High Transition-to-Fatigue
3 Transition-to-Fatigue Low Transition-to-Fatigue
4 Transition-to-Fatigue High Transition-to-Fatigue
5 Fatigue Low Fatigue
6 Fatigue High Fatigue

Table 3. Rule base for signal labelling.

signal component were always the same: Non-Fatigue component > Fatigue component >
Transition-to-Fatigue component. For illustration purposes, Figure 3 shows an outcome of the
labelling process for a single trial.
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Fig. 3. An illustration of the sEMG signal after labelling (Blue=Non-Fatigue,
Green=Transition-to-Fatigue and Red=Fatigue).

5. Conclusion

The defintion of localised muscle fatigue in the current litrutre has diffrent schools of thought,
this chapter brought forward these definition to the reader. The chapter also looked at
current state of the art in detecting, processing and calssification of sEMG for localized
muscle fatigue. The novel concept of a three-phase approach to muscle fatigue(non-fatigue,
transition-to-fatigue, and fatigue) was presented in this chapter.
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