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1. Introduction 

This chapter presents a usefulness of wavelet transform (WT) algorithm in pre-processing 
stage of surface electromyography (sEMG) signal analysis particularly in application of 
noise reduction. The successful pre-processing stage based on wavelet decomposition and 
denoising algorithm is proposed in this chapter together with the principle, theory, up-to-
date literature review and experimental results of the wavelet denoising algorithms. Main 
application of this algorithm is sEMG control systems, notably prosthetic devices or 
computers. 
SEMG signal is one of the useful electrophysiological signals. It is measured by surface 
electrodes that are placed on the skin superimposed on the muscle. Rich useful information 
has occurred in the muscles subjacent to the skin as a mixture of the whole motor unit action 
potentials (MUAPs). Such information is also useful in a wide class of clinical and 
engineering researches which may lead to providing the diagnosis tools of neuromuscular 
and neurological problems and to providing the control systems of assistive robots and 
rehabilitation devices (Merletti & Parker, 2004). Generally, in order to use the sEMG as a 
diagnosis signal or a control signal, a feature is often extracted before performing 
classification stage due to a lot of information obtained from raw sEMG data and a low 
computational complexity required in the embedded devices (Boostani & Moradi, 2003). 
However, the sEMG signals that originate in a wide class of human muscles and activities 
are definitely contaminated by different types of noise (De Luca, 2002; Reaz et al., 2006). This 
becomes a main problem to extract certain features and thus the reach to high accurate 
classification. In the last decade, many research works have been interested in developing 
better algorithms and improving the existing methods to reduce noises and to estimate the 
useful sEMG information (De Luca et al., 2010; Mewett et al., 2004; Phinyomark et al., 2011). 
Generally, noises contaminated in the sEMG signal can be categorized into four major types: 
ambient noise, motion artifact, inherent instability of the sEMG signal, and inherence in 
electronic components in the detection and recording equipment (De Luca, 2002). The first 
three types have specific frequency band and do not fall in the energy band of the sEMG 
signal. For instance, power-line interference has the frequency component at 50 Hz (or 60 
Hz), and motion artifact and instability in nature of sEMG signal have most of their energy 
in the frequency range of 0 to 20 Hz. Usage of conventional filters, i.e. band-pass filter and 
band-stop filter, can reduce noises in these types (De Luca et al., 2010). However, the last 
noise type is a central concern in analysis of the sEMG signal. It is an inherent noise that is 
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generated by electronic equipment. The frequency components of this noise are random in 
nature and range in the usable energy of sEMG frequency band from 0 to several thousand 
Hz. It causes difficulty in elimination using the conventional filters. Moreover, using high-
quality electronic components, intelligent circuit design and construction techniques, noises 
can be only reduced but it cannot be entirely eliminated (De Luca, 2002). Hence, it may 
cause a problem in extracting the robust features (Phinyomark et al., 2008; Zardoshti-
Kermani, 1995). 
Wavelet transform and adaptive filter are used in advanced filtering methods that are 
commonly used as a powerful tool to remove random noise in non-stationary signals. 
Nonetheless, the drawback of adaptive filter is the complexity of devising an automatic 
procedure. Its performance depends on a reference input signal which is difficult to apply in 
the real-world applications. On the other hand, wavelet transform method does not require 
any reference signals. The pre-processing stage based on wavelet denoising algorithm for 
sEMG upper- and lower- limb movement recognitions have been a huge success over the 
past few years (Hussain et al., 2007, 2009; Khezri & Jahed, 2008; Phinyomark et al., 2010a, 
2011; Ren et al., 2006). To achieve the best performance in wavelet denoising algorithm, five 
wavelet parameters must be addressed. Hence, in this chapter, we have evaluated all 
wavelet denoising parameters for improving the classification performance of sEMG control 
systems. As a result, the improvement of classification accuracy of the sEMG recognition 
system has been presented and a robustness of the system has also been improved. 
The rest of this chapter is as follows: Section 2 presents various types of electrical noises in 
sEMG signals and discusses how to simulate these artificial noises. In Section 3, principle 
and theory of wavelet transform algorithm in both general and denoising viewpoints are 
described. Extensive review and careful survey of up-to-date wavelet denoising methods in 
numerous biomedical signals and applications are summarized in Section 4 and recent trend 
of wavelet denoising algorithms in the sEMG signal analysis is discussed in Section 5. In 
Section 6, the experimental results of using wavelet denoising algorithms with real sEMG 
signals are presented and discussed. Lastly, conclusion and future trends of using wavelet 
transform to reduce noise in the sEMG signal are proposed in Section 7. 

2. Electrical noises in the SEMG signal 

2.1 Different types of the noises 

Noises contaminated in the sEMG signal can be categorized into four main types: ambient 
noise, motion artifact, sEMG signal inherent instability, and inherence in electronic 
components in the detection and recording equipments (De Luca, 2002; Kale & Dudul, 2009; 
Reaz et al., 2006). More details about source and characteristics of each noise type are 
explained in the following discussion: 
1. Ambient noise: This kind of noise originates from electromagnetic radiation sources 

such as electrical-power wires, light bulbs, fluorescent lamps, radio and television 
transmission, computers, etc. Essentially any electromagnetic device or device that is 
plugged into the A/C power supply generates and may contribute ambient noises. 
Moreover, our body surfaces are persistently flooded with electric-magnetic radiation 
and it is practically impossible to avoid exposure to it on the surface of the earth. The 
dominant frequency of the ambient noise arises from the 50 Hz (or 60 Hz) radiation 
from power sources. Generally, the main concern noise in this type is also called 
“Power-line noise or 50 Hz interference”. The amplitude of the ambient noise is one to 
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three orders of magnitude greater than the sEMG signal. Therefore, in analysis of the 
sEMG signal in various research works have implemented a notch filter (band-stop 
filter) at this frequency (Mewett et al., 2004). Theoretically, this type of filter would only 
remove the unwanted power-line frequency; however, practical implementations also 
remove portions of the adjacent frequency components. Because the dominant energy 
of the sEMG signal is located in the 50-100 Hz range, the use of notch filter is not 
advisable (De Luca, 2002). One of our previous studies (Phinyomark et al., 2009a), the 
effect of this kind of noises with the sEMG feature extraction was investigated. The 
robust features for this kind of noise, notably Willison amplitude, have been found in 
order to avoid the implementing a notch-filter. 

2. Motion artifact: This kind of noise causes irregularities in the signal. When motion 

artifact is putted into the data, the sEMG information may be skewed. There are two 

main sources of motion artifact: 1) the interface between the detection surface of 

electrode and skin 2) the movement of the cable connecting electrode to the amplifier. 

The dominant energy of the electrode motion artifact has been concerned in the 

frequency range from 0 to 20 Hz. The second type of noise source, cable motion artifact 

typically has a frequency range of 1 to 50 Hz. However, both of these sources can be 

essentially reduced by proper design of the electronics circuitry and set-up. Moreover, 

some research works suggest implementing a high-pass filter into the measurement 

instrumentation with a corner frequency of 10 Hz (Clancy et al., 2002) or 20 Hz (De 

Luca et al., 2010). 

3. SEMG signal inherent instability: Amplitude of the sEMG signal is quasi-random in 

nature. This kind of noise is affected by the random in nature of the firing rate of the 

motor units which, in most conditions, fire in the frequency components between 0 and 

20 Hz. Because of the unstable nature of these components of the sEMG signal, it is 

advisable to consider them as unwanted noise and remove them from the sEMG signal. 

Nevertheless, it can be removed using a high-pass filter with a cut-off frequency of 20 

Hz which has already been implemented in the removing of motion artifact. 

4. Inherence in electronic components in the detection and recording equipments: All 

electronics equipments generate electrical noise. This noise has the frequency 

components that range from 0 Hz to several thousand Hz. The problem is that this kind 

of noise cannot be eliminated. It can only be reduced by using high-quality electronic 

components, intelligent circuit design and construction techniques. Therefore, this kind 

of noise is becoming a major problem in analysis of the sEMG signal. Our previous 

studies, we have paid more interest in reducing the effect of noise in this group 

(Phinyomark et al., 2008, 2009b, 2009c, 2009d, 2009e, 2009f, 2009g, 2009h, 2010a, 2010b, 

2010c, 2011). 

Note that during the recording of the sEMG signal, the subject is generally instructed to 

relax. However, regardless of relaxation, muscles always show a basic level of electrical 

activity. It has been suggested that this residual sEMG activity may establish a significant 

part of the total noise level (Huigen et al., 2002). All of these noises also mentioned to the 

background noise. 

2.2 Simulation of noises in SEMG signal analysis 

From the above explanation, we can notice that first three types of noises have the specific 

frequency band and do not fall in the dominant energy band of the sEMG signal. Thus 
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usage of the conventional filters such as band-pass filter, high-pass filter and notch filter can 

eliminate noises in this group (De Luca et al., 2010). However, noise of the last type is a main 

concern in analysis of the sEMG signal. It ranges in the usable energy of sEMG frequency 

band from 0 to several thousand Hz; therefore, it causes difficulty in elimination using the 

conventional filters. Moreover, using high-quality electronic components, intelligent circuit 

design and construction techniques, noise in this group can be only reduced but it cannot be 

entirely eliminated (De Luca, 2002; Kale & Dudul, 2009; Reaz et al., 2006).  
To prepare the noisy sEMG signals, random noise is considered to be used as a 
representative noise, an agent of the fourth noise type. Usually, white Gaussian noise 
(WGN) is used as a representative random noise in the sEMG signal analysis (Boostani & 
Moradi, 2003; Kale & Dudul, 2009; Laterza & Olmo, 1997; Law et al., 2011; Wellig & 
Moschytz, 1998; Zardoshti-Kermani et al., 1995). This noise is also called artificial random 
noise or simulated random noise. The WGN is a random signal with a flat power spectral 
density and a normal amplitude distribution. To more clearly understand, the flat power 
spectral density means that the signal contains equal power within a fixed bandwidth at any 
center frequency and the normal amplitude distribution means that the signal contains 
random values that tend to cluster around a single mean value. Usually the WGN is set to a 
zero mean and a unit standard deviation (Kale & Dudul, 2009; Phinyomark et al., 2009c, 
2010a, 2011). In order to evaluate performance of the denoising algorithms, different levels 
of the WGN are used in the preparation of noisy environment. Zardoshti-Kermani et al. 
(1995) estimated the WGN with root-mean-square (RMS) amplitude on each muscle position 
varying from 0% to 50% of the overall average RMS amplitude of the whole muscle 
activities. The estimated signal-to-noise ratios (SNRs) were varied from 1:3 to 7:1 which 
depended on level of muscle contraction. Subsequently, Andrade et al. (2006) and Law et al. 
(2011) estimated the WGN with amplitude ranging from 20% to 100% and from 2% to 40% 
of the absolute maximum amplitude, respectively. On the other hand, Boostani and Moradi 
(2003) estimated the WGN with one tenth of the peak-to-peak amplitude range of the sEMG 
signal. In our previous studies, noisy sEMG signals were simulated by adding synthetic 
WGNs which resulted in different SNRs. The SNRs ranged from 20 dB (low noise level) to 0 
dB (high noise level) with the increasing step of 5 dB SNR (Phinyomark et al., 2009c, 2010a, 
2011). In addition, some research studies have used our criterion for simulated noisy EMG 
environments; for instance, Huang et al. (2010) designed a robust EMG sensing interface for 
pattern classification by using the simulated WGN in range of 20-0 dB SNRs. 
Other three important types of noises that normally are used and considered in the simulated 
noisy EMG environment are power-line noise, movement artifact, and baseline noise. Firstly, 
power-line interference is used to evaluate ability of both denoising algorithms and robust 
sEMG features (Boostani & Moradi, 2003; Phinyomark et al., 2009a). This kind of noise is easy 
to simulate because its frequency component appears at only one frequency point, 50 or 60 Hz. 
Secondly, movement artifact can be estimated by the volunteer movement which can be 
monitored by using an accelerometer sensor (De Luca et al., 2010). The accelerometers were 
attached in the proximity of the sEMG sensors, such as on the top or the distal. When the 
subjects move their muscles and a movement at the electrode-skin interface is occurred, the g 
value from the accelerometer can be shown that event (De Luca et al., 2010). Thirdly, noise that 
is considered in analysis of the sEMG signal is baseline noise. However, this kind of noise can 
be problematic only when the sEMG signal is very low SNR (Clancy et al., 2002) such as in the 
assessment of antagonist muscle co-activation or in the classification of low-level muscle 
contraction (Baratta et al., 1998; Law et al., 2011). 
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3. Principle and theory of wavelet transform in denoising viewpoint 

3.1 Wavelet decomposition 

Wavelet transform (WT) is a time-scale representation technique, which expresses a signal 
into a two-dimensional function of time and scale (pseudo-frequency). The WT uses the 
correlation with translation and dilation of a wavelet function to yield this transformation. It 
represents a signal as a sum of wavelets with different locations and scales that allows to use 
long time intervals for low-frequency information and to use shorter regions for high-
frequency information. The WT can be categorized into two main types: continuous wavelet 
transform (CWT) and discrete wavelet transform (DWT). Calculating wavelet coefficients at 
every possible scale as implemented in CWT is a fair amount work and it generates an awful 
lot of data. Usually in denoising viewpoint, the researchers obtain such an analysis from 
DWT. The definition of DWT is given by: 

 ,( , ) ( ) ( )j k
n Z

C a b x n g n


   (1) 

where C(a,b) are dyadic wavelet coefficients, a is dilation or scale (a=2-j), b is translation 
(b=k×2-j), x(n) is the input signal, and gj,k(n) is discrete wavelet (gj,k(n)=2j/2×g(2jn-k) where j ∈ 
N and k ∈ Z). When the input signal is decomposed to a certain level using the DWT, a set of 
wavelet coefficients is correlated to the high-frequency components (low-scale) while the other 
wavelet coefficients are correlated to low-frequency components (high-scale). In details, as 
shown in Fig. 1, in the first step, the original signal (S) is passed through two complementary 
filters, a low-pass filter and a high-pass filter, and emerges as two signals, approximations and 
details. The first-level approximation coefficient array (cA1) is obtained from a low-pass filter 
which includes down-sampling and the first-level detail coefficient array (cD1) is passed 
through a high-pass filter with down-sampling. The low-pass and high-pass filtering processes 
are similar to convolving the signal with a scaling function and a wavelet function, 
respectively. For many signals, generally, the low-frequency content (cA) is the most 
important part and the high-frequency content (cD), on the other hand, impacts flavor or 
nuance (noises). Hence, the second-level approximation coefficient array (cA2) and the second-
level detail coefficient array (cD2) are obtained by inputting the cA1 into the filters. This is 
similar to dilating the original scaling function and wavelet function prior to convolving with 
the cA1. The process is repeated until the desired final level approximation and detail 
coefficient arrays are obtained. As shown in Fig. 1, it has 3 decomposition levels. When the 
decomposition is taken as a whole, the denoising process can be employed. If any modification 
process is not required, the reconstruction process will be instantaneously done. The 
reconstructed signal (S’), final level approximation and all level details, are true components of 
the original signal. This is called the perfect reconstruction. The reconstruction process is 
performed by up-sampling each coefficient array prior to refiltering. 
The DWT provides a great advantage over the Fourier analysis and the short-time Fourier 
transform (STFT) analysis. Although the traditional Fourier analysis performs greatly for the 
stationary signals, it has a serious drawback if the interesting signals contain non-stationary 
or transitory characteristics. The STFT and the DWT, on the other hand, map a signal into a 
two-dimensional function of time and frequency by using a windowing technique. Both of 
them thus perform greatly for the non-stationary signals. The DWT shares some similarities 
to the STFT as we described above, except that the fixed window size in the STFT is no more 
flexible for many signals. 

www.intechopen.com



 
EMG Methods for Evaluating Muscle and Nerve Function 

 

112 

 

Fig. 1. Wavelet decomposition and reconstruction process. 

3.2 Wavelet denoising 

The undesired wavelet coefficients containing random noise can be discarded before 
performing the reconstruction process. The cleaner signal will be obtained from that 
process. To grab this outcome, thresholding is used in wavelet domain to remove or to 
shrink some coefficients of DWT detail sub-signals of the measured signal. Usually, the 
denoising method that applies thresholding in wavelet domain has been proposed by 
Donoho (1995). The Donoho’s method for noise reduction works well for a wide class of 
one-dimensional and two-dimensional signals. The basic idea of wavelet-based denoising 
procedure is illustrated in Fig. 2. It consists of three main steps: decomposition, modification 
of detail coefficients and reconstruction. The first and the last main steps are the general 
DWT procedure as we described in the Section 3.1. The middle main step is added into the 
general DWT procedure that involves three parameters: threshold selection rule, threshold 
rescaling method and thresholding function. In other words, two main points must be 
addressed: how to choose the threshold value and how to perform the thresholding. In 
addition, two parameters in decomposition step must be evaluated that are wavelet function 
and decomposition level. 
 

 

Fig. 2. Wavelet denoising procedure. 
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In details, the first step in producing a wavelet denoising is to choose a wavelet function 

(first parameter) to be used in signal decomposition. Different types of wavelet are 

available which each type has different sub-types. The second step, the selection of a 

suitable decomposition level (second parameter) must be selected with a candidate 

wavelet function. The third step, the threshold value THR (third parameter) to be applied 

in the wavelet domain is calculated by the product of the standard deviation of the noise 

energy σ and the small factor that depends on the length N of the data sample (Donoho 

and Johnstone, 1994). There are many modified versions of threshold selection rule. In 

order to rescale the threshold value THR obtained from the third step; the estimation of 

the noise energy σ (fourth parameter) is specified in this step. The fifth step, after 

threshold THR is smoothed, the thresholding is based on a threshold value THR which is 

used to compare with all the detailed coefficients. Ordinarily, two types of thresholding 

functions (fifth parameter) are often used: hard thresholding and soft thresholding 

(Donoho and Johnstone, 1994). The choice of threshold values and thresholding functions 

plays an important role in the global performance of a wavelet processor for noise 

reduction. Wavelet-based denoising algorithm is based on the underlying model. It is 

basically of the following form: 

 ( ) ( ) ( )s n x n e n  , (2) 

where s(n) is the measured or noisy signal, x(n) is the original or clean signal and e(n) is a 

Gaussian white noise N(0,1), σ is the strength of the noise, and time n is equally spaced.  

4. Review and theory of modified wavelet denoising methods 

From the last section, the application of wavelet-based denoising algorithm requires the 

selection of five processing parameters named “wavelet denoising parameters”, including: 

(1) the type of wavelet basis function, (2) the decomposition level, (3) threshold selection 

rule (4) threshold rescaling method, and (5) thresholding function. Throughout the extensive 

review and careful survey of up-to-date wavelet denoising methods in a wide class of 

biomedical signals and applications, theory and definition of all methods are summarized in 

the following.  

4.1 Wavelet basis functions 

Wavelet function or mother wavelet can be categorised into two main types: orthogonal 

and biorthogonal wavelets. Orthogonal wavelet is entirely defined by the scaling filter (a 

low-pass finite impulse response (FIR) filter). For analysis with this wavelet, the high-pass 

filters are calculated as the quadrature mirror filter of the low-pass filters and 

reconstruction filters are defined as the time reverse of the decomposition filters. In 

biorthogonal wavelet, decomposition and reconstruction filters are defined as the separate 

filters. Commonly, there are 6 wavelet families: Daubechies wavelets (10 sub-types), 

Symlets wavelets (7 sub-types), Coiflet wavelets (5 sub-types), BiorSplines wavelets (15 

sub-types), ReverseBior wavelets (15 sub-types) and Discrete Meyer wavelet. All of 

wavelet functions are presented in Table I. It is important for choosing the right wavelet 

function (Kania et al., 2007; Tan et al., 2007). The right filter determines perfect 

reconstruction and performs better analysis. 
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Wavelet family Wavelet subtypes

Daubechies db1 or haar, db2, db3, db4, db5, db6, db7, db8, db9, db10

Symlets sym2, sym3, sym4, sym5, sym6, sym7, sym8

Coiflet coif1, coif2, coif3, coif4, coif5

BiorSplines bior1.1, bior1.3, bior1.5, bior2.2, bior2.4, bior2.6, bior2.8, bior3.1, bior3.3, 
bior3.5, bior3.7, bior3.9, bior4.4, bior5.5, bior6.8 

ReverseBior rbio1.1, rbio1.3, rbio1.5, rbio2.2, rbio2.4, rbio2.6, rbio2.8, rbio3.1, rbio3.3, 
rbio3.5, rbio3.7, rbio3.9, rbio4.4, rbio5.5, rbio6.8 

Discrete Meyer dmey

Table 1. List of 53 wavelet functions from 6 wavelet families. 

4.2 Decomposition levels 

Next step is the selection of the number of decomposition level of the signal. The 
decomposition level can be varied from 1 (the first level of decomposition) to J=log2N (the 
maximum depth of decomposition) where N is the length in samples of time-domain signal.  

4.3 Threshold selection rules 

Threshold selection rule refers to “how to choose the threshold value”. Generally, most of 
research works have used universal threshold selection rule proposed by Donoho. It has 
been shown that its denoising capability is better than other classical methods such as SURE 
method, Hybrid method, and minimax method (Phinyomark et al., 2009f). The definition 
and description of four mainly threshold selection rules are summarized in Table 2. Hence, 
in our studies, we have interested in numerous modified versions of universal rule (rule 1 in 
Table 2). Six modified universal rules have been proposed as described in the following. In 
this chapter, we provide the specific name to each rule as follows. 
 

Thresholding rule Description

Rule 1: Universal It uses a fixed form threshold (Donoho & Johnstone, 1994) which can be 

defined as 2 log( )UNITHR N , where N is the length in samples of time-

domain signal and σ is standard deviation of noise. The parameter σ can be 
estimated using median parameter which can be calculated as 

 median 0.6745jcD   where cDj is the detail wavelet coefficients at 

scale level j and 0.6475 is a normalization factor. 

Rule 2: SURE Threshold is selected using the rule of Stein’s Unbiased Estimate of Risk 
(SURE). It gets an estimate of the risk for a particular threshold THR, 
where risk is defined by SURE (Stein, 1981). Minimizing the risk in THR 
gives a selection of the threshold. 

Rule 3: Hybrid This rule attempts to overcome limitation of SURE. It is a mixture of the 
universal and the SURE rules. The exact conditions of this algorithm are 
described in Donoho and Johnstone (1995). 

Rule 4: Minimax This method was also proposed in Stein (1981) work. It used a fixed 
threshold chosen to yield minimax performance for mean square error 
against an ideal procedure. 

Table 2. Four main threshold selection rules. 
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1) Length Modified Universal rule (LMU): It was modified by Donoho to be used with soft-

thresholding function (Donoho, 1995). It is defined as 

 LMU

2 log( )N
THR

N


 . (3) 

2) Scale Modified Universal rule (SMU): It was modified by Donoho to be used with level 

dependent method (Donoho, 1992). It can be expressed as 

 2
SMU 2 log( ) 2

j J

THR N


  , (4) 

where j is scale level from 1 to J and J is the maximum level. 

3) Global Scale Modified Universal rule (GSMU): It was modified by Zhong and Cherkassky 

(2000) to be used in denoising of image. It is given by 

 2
GSMU 2 log( ) 2

J

THR N


  . (5) 

4) Scale Length Modified Universal rule (SLMU): It was modified by Donoho (1992). It is a 

combination between LMU and SMU rules. It is shown as 

 SLMU

2

2 2 log( )

2

J j

N
THR

N






. (6) 

5) Log Scale Modified Universal rule (LSMU): It was modified by Song and Zhao (2001). It 

takes the different thresholds at different scales. It can be defined as 

 LSMU

2 log( )

log( 1)

N
THR

j





. (7) 

6) Log Variable Modified Universal rule (LVMU): It was modified by Zhang and Luo (2006). 

It uses the constant d to adapt the value of threshold THR. Experiment of Zhang and Luo 

(2006) showed that the constant d is associated to the wavelet function and the SNR. It 

should be ranging between 0 and 3. In our study, we used d = 3. The equation can be 

defined as 

 
2log( )

log[ ( 1) ]
LVMU d

N
THR

e j




 
. (8) 

4.4 Threshold rescaling methods 

All threshold selection rules can be smoothing their thresholds by using rescaling methods. 

In threshold rescaling, three categories can be identified: global (GL), first-level (FL) and 

level dependent (LD) (Elena et al., 2006; Johnstone & Silverman, 1997). In the first one, 

standard deviation of noise (σ) can be adapted to three categories (GL, FL and LD). While 

the second one, length of wavelet coefficients (N) can be adapted to only GL and LD 
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thresholding. To identify the threshold rescaling methods, GL defines σ as the estimated 

standard deviation of all wavelet coefficients and N as the length of the total wavelet 

coefficients. FL defines σ1 as the estimated standard deviation of the first-level detail 

coefficients (cD1). LD defines σj as the estimated standard deviation for every possible 

decomposition levels and Nj as the length of the wavelet coefficients at decomposition level j. 

4.5 Thresholding functions 

After threshold values are determined, shrinking can be done using wavelet thresholding 

functions. In this chapter, after extensive review of the available literatures, fifteen wavelet 

thresholding functions were described in the following. 

1) Hard function (HAD): It is the simplest function. All wavelet’s detail coefficients whose 

absolute values are lower than threshold are set to be zero and other wavelet’s detail 

coefficients are kept (Donoho & Johnstone, 1994). It is defined as 

 
, | |

0,

j j j
j

cD if cD THR
cD

otherwise

 
   

. (9) 

2) Soft function (SOF): It is an expanded version of HAD (Donoho & Johnstone, 1994). It can 

be done by first zeroing all wavelet’s detail coefficients whose absolute values are lower 

than threshold same as HAD. Then, non-zero coefficients are shrunk towards zero. SOF 

function is determined by 

 
| |sgn( )( ),

0,

j jj j j
j

if cD THRcD cD THR
cD

otherwise

 


, (10) 

where sgn(x) is a sign function that extracts the sign of a real number x. 

3) Mid function (MID): It is an extension of SOF (Percival & Walden, 2000), small wavelet’s 

coefficients are zeroed, and then large wavelet’s coefficients are not affected. However, 

intermediate wavelet’s coefficients are reduced. MID function can be expressed as 

 

2,

2sgn( )( ) ,

0,

j jj

j j j j j j j

cD THRcD

cD cD cD THR THR cD THR

otherwise


     



. (11) 

4) Hyperbolic function (HYP): It is attempted to address the limitation of SOF. It is described 

in Vidakovic (1999) work and its equation is defined same as modulus squared function 

(Guoxiang & Ruizhen, 2001) that is given by 

 
2 2 | |sgn( ) ( ) ,

0 ,

jj j
j

if cD THRcD cD THR
cD

otherwise

  
 

. (12) 

5) Modified hyperbolic function (MHP): It combines the advantage of HAD and SOF 

functions. It resembles the variance pattern of HAD and the removing of bias problem of 

SOF. It is modified by Poornachandra et al. (2005) and is shown as 
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2
| |

( ) 1 ( ) ,
6

0 ,

j j
jj

j

cD if cD THR
k cD

cD

otherwise

             

, (13) 

where k is the scaling function and, in our studies, we used 1 for the constant k. 
6) Non-negative Garrote function (NNG): It combines Donoho and Johnstone’s thresholding 
function with Breiman’s NNG. The equation is modified by Gao (1998) as 

 

2

| |,

0 ,

j
j jj

j j

THR
if cD THRcD

cD cD

otherwise


 


  

. (14) 

7) Compromising of HAD and SOF function (CHS): It estimates wavelet’s coefficients by 
weighted average of HAD and SOF (Guoxiang & Ruizhen, 2001). For 0<ǂ<1, when ǂ is 0, it 
changed into HAD and when ǂ is 1, it changed into SOF. In our study, we used 0.5 for the 
constant ǂ. It can be expressed as 

 
sgn( )(| | ), | |

0,

j j j j j
j

cD cD THR if cD THR
cD

otherwise

 
  

. (15) 

8) Weighted Averaging function (WAV): It estimates coefficients by weighted average of 
HYP and HAD (Zhang & Luo, 2006). It is given by 

 
2 2 | |(1 )sgn( ) ( ) ( ),

0,

j jj j j j
j

if cD THRcD cD THR cD
cD

otherwise

    


, (16) 

where 0<ǂ<1. If ǂ is 0, Eq. (16) will change to HYP and Eq. (16) will change to HAD, if ǂ is 1. 
We used 0.5 for the constant ǂ. 
9) Adaptive Denoising function (ADP): It is modified based on SOF (Tianshu et al., 2002). It 
is given by 

 
2.1

2

1 j j

j
j j j cD THR

THR
cD cD THR

e
  


. (17) 

10) Improved function (IMP): It is attempted to address the deficiency of HAD and SOF (Su 
& Zhao, 2005). It can be defined as 

 
( ) | |sgn( )( ) ,

0 ,

j jTHR cD
j jj j j

j

if cD THRcD cD THR
cD

otherwise


   

  

, (18) 

where    and ǃ>1. In our study, we used 15 from the suggestion of Su and Zhao work 

(2005). 
11) Custom function (CUT): Idea of this function is similar to that of NNG function, in the 

sense that CUT and NNG are continuous and can adapt to the signal characteristics. Denote 
0 < Ǆ < THRj and 0 < ǂ < 1. In our studies, we used the same threshold as in Yoon and 
Vaidyanathan (2004) work with ǂ = 1 and Ǆ = THRj/2. The equation can be expressed as 
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 
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
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 
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 

     

    
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  
   

4 , otherwise









              

. (19) 

12) Firm function (FIM): It remedies the drawbacks of HAD and SOF functions. Gao and 

Bruce (1997) generalize a general FIM function using double threshold values. The THR2 is 

defined by universal rule but THR1 is scoped to range between 0 and THR2. According to the 

previous experiments, Gao and Bruce (1997) suggested that when THR1 equals 2/3THR2, the 

denoised results would be better. FIM can be expressed as follows 
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2

| |0,
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j j j

j j

if cD THR
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

           
 

. (20) 

13) Modified firm function (MFM): It is a modified version of general FIM function. A 

higher order polynomial is used to replace the linear function in the interval [THR1, THR2]. 

This modification enables to get a differentiable thresholding function. The expression (Gao 

& Bruce, 1997) can be defined as 

   
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2 1 1 1 2
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, (21) 
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 
 

14) Qian function (QIN): It is a compromise shrinkage between HAD and SOF by constant 
parameter Q. Where Q is 1, it is equivalent to SOF and it is equivalent to HAD, when Q is ∞. 
QIN with Q = 2 is suggested from the experiments in (Qian, 2001). It is given by 
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0,

Q Q
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jj Q
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cD THR
if cD THRcD

cD cD

otherwise

  

  

. (22) 

15) Yasser function (YAS): YAS shrinks the wavelet’s detail coefficients which are lower 
than threshold value instead of set to be zero. Moreover, it has a constant parameter Ǆ in 
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order to apply a nonlinear function to the threshold value. When Ǆ is 3, the good results in 
speech signal are obtained (Ghanbari & Karami-Mollaei, 2006), which can be expressed as 

 

1

, | |

sgn( ) ,

j j

j
j

j

cD if cD THR

cD cD otherwisecD
THR



 

  


  


. (23) 

5. Review of wavelet denoising in SEMG signal analysis 

Selection of suitable wavelet denoising parameters is critical for the success of sEMG signal 
filtration in wavelet domain, because there is currently no known method to calculate the 
combination of the above wavelet denoising parameters that gives the best results. 
Therefore, many works have tried to find the optimal wavelet denoising parameters which 
lead to maximum filtration performance. All research studies about wavelet denoising 
parameters in analysis of the sEMG signals have been discussed in this section (Guo et al., 
2004a, 2004b, 2005; Hussain et al., 2007, 2009; Jiang & Kuo, 2007; Khezri & Jahed, 2008; Li et 
al., 2010; Liu & Luo, 2008; Luo et al., 2007; Moshou et al., 2000; Ren et al., 2006; Yang & Luo, 
2004; Zhang & Luo, 2006; Zhang et al., 2010) as summarized in Table 3. 
In details, the sEMG signal analysis based on WT has been firstly proposed in 2000 by 
Moshou et al. (2000). Wavelet-based denoising is used to separate coordinated muscle 
activity of the shoulder of a driver related to certain movements that appear during driving 
a car. The denoised signals show clearly the real muscle activity bursts that mean the small 
activity peaks covered by the screen of noises are now observable. In Moshou et al. (2000) 
work, the simplest thresholding function, HAD, is used with a decomposition using db5 at 5 
decomposition levels. Afterwards, Guo et al. (2004a, 2004b, 2005) compared four classical 
threshold selection rules: Universal, SURE, Hybrid and Minimax, and two classical 
thresholding functions: HAD and SOF, with real sEMG signal acquired from normal 
walking on the flat. They used the sym5 at 3 decomposition levels in their application. 
Evaluation criterion of both Moshou et al. (2000) and Guo et al. (2004a, 2004b, 2005) works is 
based on the observation of the sEMG waveforms between noisy sEMG signal and denoised 
sEMG signal. Jiang and Kuo (2007) compare the similar wavelet denoising parameters as 
Guo et al. (2004a, 2004b, 2005), but the acquired sEMG signals are changed from the normal 
walking activity to the mouse clicking activity; in addition, the simulated signals at 16-dB 
SNR have also been deployed. In Jiang and Kuo (2007) work a new evaluating function is 
proposed which is called signal-to-noise estimator (SNE). They prove that this evaluating 
function works well for the simulated signals but it does not work for the real sEMG signals. 
Subsequently, Jiang and Kuo concluded that the denoised sEMG signal is insensitive to the 
selection of wavelet denoising parameters. Furthermore, the db2 at 6 decomposition levels is 
used in their work due to the suggestion of previous study (Wellig & Moschytz, 1998). 
Zhang and Luo (2006) pay attention to apply wavelet denoising technique with control of 
the upper-limb prostheses. Some classical threshold selection rules and thresholding 
functions are employed (Liu & Luo, 2008; Luo et al., 2007; Yang & Luo, 2004). In addition, in 
one of their works, Zhang and Luo (2006) propose the new modified threshold selection rule 
and thresholding function. The sym8 at 4 decomposition levels is performed in denoising 
and extracting procedures. However, the results in Zhang, Luo and Liu works (Liu & Luo, 
2008; Luo et al., 2007; Yang & Luo, 2004; Zhang & Luo, 2006) are also only observed from the 
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figures as same as employed in Moshou et al. (2000) and Guo et al. (2004a, 2004b, 2005) 
works. 
 

Reference Application 
Wavelet denoising parameters 

1 2 3 4 5 

Moshou et al. 
(2000) 

Identifying car 
driver fatigue and 
movement 

db5 5 - - HAD,
SOF 

Guo et al. 
(2004a, 2004b, 
2005) 

Lower limb 
prosthesis control 

sym5 3 Universal, SURE, 
Hybrid, Minimax 

- HAD,
SOF 

Jiang & Kuo 
(2007) 

MUAP detection db2 6 Universal, SURE, 
Hybrid, Minimax 

- 
 

HAD,
SOF 

Zhang & Luo 
(2006) 

Upper limb 
prosthesis control 

sym8 4 LVMU - HAD,
SOF, 
WAV 

Yang & Luo 
(2004) 

Upper limb 
prosthesis control 

sym8 4 Hybrid - SOF 

Khezri & 
Jahed (2008) 

Upper limb 
prosthesis control 

Daubechies 
Symlets 
Coiflet 
Biorthogonal 

6 Hybrid 
Bayes Shrink 

- SOF 

Hussain et al. 
(2007) 

Detecting muscle 
fatigue 

db2, db6, 
db8, dmey 

4 - - HAD 

Hussain et al. 
(2009) 

Determining 
muscle 
contraction 
(walking speed) 

db2, db4, 
db5, db6, 
db8, sym4, 
sym5, dmey 

4 Universal - HAD 

Li et al.  
(2010) 

Upper limb 
prosthesis control 

- 4 - - SOF 

Zhang et al. 
(2010) 

- sym2 5 Minimax - SOF 

Table 3. Applications of wavelet denoising algorithms with the sEMG signal. Note that 

wavelet denoising parameters: (1) the type of wavelet basis function, (2) the decomposition 

level, (3) threshold selection rule (4) threshold rescaling method, and (5) thresholding 

function. 

Later, Khezri and Jahed (2008) proposed a usefulness of classical threshold selection rule, 
called Hybrid, to estimate the denoised upper-limb sEMG signals. It improved the accuracy 
of the sEMG classification compared with the one without denoising pre-processing stage 
and Bayes Shrink threshold selection rule. Following that, in one of our works (Phinyomark 
et al., 2009f), we compared Hybrid with three other classical threshold selection rules. The 
results showed that Universal yields better denoising performance than the others including 
Hybrid. Moreover, Hussain et al. (2007, 2009) suggested that pre-processing stage using the 
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Universal threshold selection rule and HAD thresholding function was able to improve the 
classification of the lower- and upper- limb activities, respectively. All of these introduced 
literatures work well for the surface EMG signal. On the other hand, for the intramuscular 
EMG signal, Ren et al. (2006) developed a technique for extracting and classifying motor 
unit action potentials (MUAPs) for needle EMG signal decomposition. In that technique, 
noise reduction based on threshold estimation calculated in the WT was proposed. The 
needle EMG signal is decomposed by the WT at ninth level with the db5. HAD thresholding 
is implemented with the semi-automatic threshold estimator, which is defined as THR = σ·λ 
where λ is set to be between 8 and 15 by the user in accordance with the SNR and σ is the 
noise energy estimated from the minimum value of the second moment feature in time 
domain. However, this threshold estimator is not suitable for surface EMG signal because in 
the MUAP detection, useful MUAP components have most of their energy in low-frequency 
components. Therefore, threshold obtained by this estimator has a large value (most high 
frequency components could be set to zeros). On the contrary, some high frequency 
components are still important for surface EMG signal, thus proposed technique in Ren et 
al. work (2006) is not included in our study. However, even though the results from most of 
previous works are not presented using the quantitative results, the improving ability in 
those applications based on wavelet denoising algorithm has been definitely established 
(Hussain et al., 2009; Khezri & Jahed, 2008; Ren et al., 2006; Zhang et al., 2010). In order to 
more clearly understand the effectiveness of wavelet denoising algorithm over conventional 
filters, discussion and illustration have been presented in review of Zhang et al. (2010). 

6. Experimental results with real sEMG signals 

The sEMG data that are used to demonstrate and evaluate the wavelet denoising parameters 
in our study were recorded from two forearm muscles and six upper-limb movements. Two 
forearm muscles are flexor carpi radialis muscle and extensor carpi radialis longus muscle 
and six upper-limb movements are hand open, hand close, wrist extension, wrist flexion, 
pronation, and supination. The sEMG signals were recorded by two pairs of surface 
electrodes (3M red dot 25 mm. foam solid gel). Each electrode was separated from the other 
by 20 mm. A band-pass filter of 10-450 Hz bandwidth and an amplifier with 60 dB gain were 
used. Sampling rate was set at 1000 samples per second using a 16 bit A/D converter board 
(IN BNC-2110, National Instruments Corporation). The sample size of each EMG data is 256 
ms for the real-time constraint that the response time should be less than 300 ms (Englehart 
et al., 2001). 
To evaluate the ability of wavelet denoising algorithm, two criteria are usually used based 
on: (1) the difference between signal values implied by a wavelet denoising method and the 
original signal values; and (2) the difference between classification accuracy obtained from 
the denoised signal and classification accuracy obtained from the raw signal (Phinyomark et 
al., 2010b). However, most studies have focused to evaluate the quality of wavelet denoising 
method based on the first criterion. In this chapter, we have evaluated the ability of wavelet 
denoising methods with only the first criterion; however, the relationship between the first 
criterion and the second criterion has been discussed.  
The first criterion is error measure. One of the most popular methods is mean square error 
(MSE) that is also employed in our study. However, there are a lot of error measures; for 
instances, mean absolute error (MAE), mean absolute percentage error (MAPE), mean error 
(ME), mean percentage error (MPE), root mean square error (RMSE), percentage root-mean-
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square difference (PRD), signal-to-noise ratio output (SNRout), and improved signal-to-noise 
ratio (ISNR). Due to the similarity of these measured indices, normally only one of these 
indices is selected to use in evaluating study. Definition of the MSE can be expressed as 

 

2

1

( )
N

i i
i

f fe

MSE 
N







, (24) 

where fi represents the estimated sEMG signal from the original signal and fei is estimated 
sEMG signal from the noisy signal. The performance of wavelet denoising method is better 
when these indices including MSE are smaller. It means that useful information in the sEMG 
signal is remained and undesirable parts of the sEMG signal are removed. To guarantee the 
best wavelet denoising method achieved and optimized for estimating of useful sEMG 
signals, more than one times of additional noises should be done and in each time the level 
of noises shoud be varied from low noise level to high noise level; for example, 20-0 dB 
SNRs. The effect of different noise levels could be observed through this procedure. 
Example of the original sEMG signal and the sEMG signal with the WGN at 5 dB SNR are 
shown in Fig. 3. The SNR can be calculated by 

 10log clean

noise

P
SNR

P
 , (25) 

where Pclean is power of the original sEMG signal and Pnoise is power of the WGN. 
 

 

Fig. 3. Original sEMG signal (gray line) and noisy sEMG signal at 5 dB SNR (black line) with 
random and repeatable six upper-limb movements. 

6.1 Wavelet basis functions 

Firstly, the selection of an optimal wavelet function was done. The MSE calculated from 53 
wavelet functions (in Table 1) were employed. The results are respectively shown in Fig. 4(a) 
and Fig. 4(b) at two levels of noises, low and high noise levels. The figure is plotted in log-
lin type of a semi-log graph, defined by a logarithmic scale on the y axis, and a linear scale 
on the x axis. From the figure, the results of wavelet functions in high and low levels of 
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noises have the similar trend. As SNR increases, the MSE of each wavelet function also 
increases. The smallest MSE is db1, bior1.1 and rbio1.1. Their MSEs are 0.00407, 0.01242, 
0.04090, 0.12739 and 0.41242 at SNR value of 20, 15, 10, 5 and 0 dB, respectively. It produces 
the best denoising wavelets. The db2, db7, sym2, bior5.5 and rbio2.2 provide marginally 
better performance than the rest candidates. Furthermore, the various orders of Daubechies 
(db1-db10), Symlets (sym2-sym8), BiorSplines (bior1.1-bior1.5, bior4.4, bior5.5, and bio6.8), 
Coiflet (coif1-coif2), and ReverseBior (rbio1.1-rbio3.9, rbio6.8) can be used to reduce noises. 
The most terrible wavelet function is bior3.1. Its MSE is as much as seven of the minimum 
MSE. The third order of decomposition of BiorSplines (Bior3.3, bior3.5, bior3.7, and bior3.9) 
and Discrete Meyer (dmey) are worse performance. Its MSE is as much as two of the 
minimum MSE. Moreover, in high noise, the second order of decomposition of BiorSplines 
(bior2.2-bior2.8) and the fifth order of decomposition of ReverseBior (rbio5.5) are not good. 
Therefore, these functions are not recommended to use for denoising sEMG signal. 
 

 
 

 

Fig. 4. MSE calculated from all wavelet functions (mother wavelet no. refer to the wavelets 
in Table I, i.e. #1-Daubechies order 1, #2-Daubechies order 2, …, #11-Symlets order 2, 
…,#18-Coiflet order 1, …, #53-Discrete Meyer) (a) at 20 dB SNR (b) at 0 dB SNR. Note that 
decomposition level is 4, threshold selection rule is Universal, threshold rescaling method is 
GL for N parameter and LD for σ parameter, and thresholding function is SOF. 

If we consider only optimal wavelets for denoising, we can conclude that db1, bior1.1 and 
rbio1.1 are the best ones. However, the ability of these functions in classification viewpoint 
is poor. Hence, for real-world application, these wavelet functions are not recommended. 
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The db2, db7, sym2, bior5.5 and rbio2.2 are prospective to have good performance in both 
denoising and classification performance. At this point we recommend wavelet functions in 
this group to be used in future works. Note that we are not reported the classification results 
in this work because the suitable wavelet functions depend on the classifier types (such as 
neural network, fuzzy logic, neuro-fuzzy classifier, probabilistic classifier, etc.). One of the 
useful results in classification viewpoint is presented in Englehart (1998) work. In Englehart 
study, wavelet coefficients are extracted from upper-limb sEMG signals and are subjected to 
dimensionality reduction method. As a result, classification errors are reported. Within the 
Daubechies, Coiflet and Symlet families, the best performance is db18, coif4 and sym8, 
respectively. Interesting trend is the improvement of classification performance that it tends 
to increase with the order of wavelet function. Hence, if balance between class separability 
and robustness is considered, the db7, sym5 and coif4 are some compromise wavelets. 

6.2 Decomposition levels 
Secondly, the selection of an optimal decomposition level was done. Fig. 5(a) and Fig. 5(b) 
present the effects of decomposition levels for five wavelet functions. When decomposition 
levels are more than seven, the MSE rapidly increases. Therefore, in Fig. 5(a) and Fig. 5(b), 
only first eight levels are shown. We found that the third and the fourth levels are better 
than other levels for low level of noises (20-10 dB SNRs). On the other hand, the fourth and 
the fifth levels are better than the others for high level of noises (10-0 dB SNRs). The effect of 
wavelet function with an optimal wavelet function is a little bit. The decomposition level 4 is 
suggested to be used as a compromise level between high and low level of noises. 

6.3 Threshold selection rules 
Thirdly, the selection of an optimal threshold selection rule was done. For the classical 
threshold selection rules, Universal rule is better than other classical methods as can be 
observed in Fig. 6. Hence, modified versions of Universal threshold selection rule are 
proposed and also evaluated. The MSE of LSMU rule is the lowest, followed closely by 
LVNU, SMU and Universal rules. GSMU rule have slightly larger error, and LMU and 
SLMU rules have a large error. However, in classification viewpoint, GSMU rule is the best 
threshold selection rule (Phinyomark et al., 2009f). 

6.4 Threshold rescaling methods 
Fourthly, the selection of an optimal threshold rescaling method was done. From our 
previous study (Phinyomark et al., 2009f), the optimal rescaling method is dependent on 
type of threshold selection rules. However, the general trend can be observed. For the 
threshold rescaling of N parameter, the GL is better than the LD. For the threshold rescaling 
of σ parameter, the suitable rescaling method is dependent on the level of noises. At very 
high noise, the LD is better than the FL. On the other hand, at medium to low noise, the FL 
is better than the LD. 

6.5 Thresholding functions 
Fifthly, the selection of an optimal thresholding function was done. In Fig. 7, the MSEs of 15 
thresholding functions and no denoising case with only WT are presented. At medium and 
high levels of noises, SNR is lower than 10 dB, all functions are better than WT except MFM. 
However, at low level of noises, 15 dB SNR, CUT, FIM and MFM are worse than WT. In 
addition, HAD, MHP, CUT and MFM are worse than WT at very low noise, 20 dB SNR. 
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Fig. 5. MSE of five wavelet functions with eight decomposition levels (a) at 20 dB SNR (b) at 
0 dB SNR. Note that threshold selection rule is Universal, threshold rescaling method is GL 
for N parameter and LD for σ parameter, and thresholding function is SOF. 

 

 

Fig. 6. MSE of four classical and six modified threshold selection rules at 20-0 dB SNR. Note 
that wavelet function is db2, decomposition level is 4, threshold rescaling method is GL for 
N parameter and LD for σ parameter, and thresholding function is SOF. 
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Fig. 7. MSE of WT and fifteen modified universal thresholding rules at 20-0 dB SNR. Note 
that wavelet function is db2, decomposition level is 4, threshold selection rule is Universal, 
and threshold rescaling method is GL for N parameter and LD for σ parameter. 

As SNR increases, the MSE of each function as well increases. From the experimental results, 
the MSE of ADP is lowest, followed closely by SOF and IMP. It means that ADP is the best 
thresholding function in denoising viewpoint. MSE of WT is seven times the MSE of ADP at 
low noise and is three times the MSE of ADP at high noise. Moreover, in classification 
viewpoint, ADP is also the best thresholding function (Phinyomark et al., 2010b); whereas, 
the classification performance of SOF is not good. 

7. Conclusion and future trends 

Noises contaminated in the sEMG signals are an unavoidable problem during recording 
data; whereas noises are a main problem in analysis of the sEMG signal both in clinical and 
engineering applications. Random noises that have their frequency components fall in the 
energy band of the sEMG signal are the major problem. Conventional filters do not 
effectively remove random noises but wavelet denoising algorithm is not problematical in 
this way. Hence, numerous wavelet denoising methods have been proposed during the last 
decade. Suggestion of five wavelet denoising parameters in a compromise between two 
viewpoints, denoising and classification, is presented in the following: 

 wavelet function: db2, db7, sym2, sym5, coif 4, bior5.5 and rbio2.2; 

 decomposition level: 4; 

 threshold selection rule: GSMU; 

 threshold rescaling methods: LD for N parameter and FL or LD for σ parameter; and 

 thresholding function: ADP. 
Recommendation above can be useful to apply for many sEMG applications. However, for 
analysis of intramuscular EMG signal, re-evaluation of wavelet denoising parameters 
should be done because the purpose in interpretation is different (Ren et al., 2006). 
However, the pre-processing stage based on wavelet denoising algorithm is recommended 
to be implemented in analysis of sEMG signal, especially in multifunction myoelectric 
control system.  
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