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1. Introduction 

A Computer-Aided Diagnosis (CAD) system is a set of automatic or semi-automatic tools 
developed to assist radiologists in the detection and/or classification of abnormalities 
presented in diagnostic images of different modalities. Although on the early phase of 
research and development CAD systems were criticized by some computer scientists; 
regardless of this criticism, nowadays’ experimental evidence indicates that success rates of 
radiologists increase significantly when they are helped by these systems: In 
mammography, researchers have reported results from prospective studies on a large 
number of screenees, regarding the effect of CAD on the detection rate of breast cancer. 
Although there is a large variation in the results, it is important to note that all of these 
studies indicated an increase in the detection rates of breast cancer with the use of CAD; as a 
consequence of this, using CAD contributes to decrease cancer-related deceases due to the 
early detection of cancer signs.  

The idea of developing computer systems to assist physicians in the detection of diseases 
has been a challenging matter during the last years, specifically on reducing the number of 
missed diagnosis and the time taken to reach a diagnosis among the different diagnostic 
image modalities. Moreover, the recent development of full-field digital imaging and 
picture archiving and communication systems (PACS) have been a catalyst in the increase of 
such computer systems in developed countries. 

Because of the emphasis on screening programs in almost every country, the number of 
mammograms to be analyzed by the radiologists is enormous but, only a small portion of 
them are related to breast cancer (Oliver et al., 2010). In addition, a mammographic image is 
characterized by a high spatial resolution which is adequate enough to detect subtle fine-
scale signs such as microcalcifications. Consequently, the analysis of mammographic images 
is a complex and cumbersome task which requires highly specialized radiologists.  

During the last years, the number of papers related to CAD has been augmented due to the 
increased interest on improving disease diagnosis using different image modalities. As far 
as the evidence indicates, it appears reasonable to use CAD for screening examinations, 
provided that large fractions of them give normal results and therefore the task of diagnosis 
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becomes both cumbersome and time-consuming. In addition, the current performance of 
commercial CAD systems have shown that there is a substantial gain in detection rates as 
well as an important increase in recall rate, not to mention the overall performance of such 
systems for the detection of disease signs (e.g., 98% sensitivity at 0.25 false positives per 
mammographic image, for one of the latest commercial CAD systems) (Doi, 2007).  

As far as the literature shows, there seems to be only one attempt to integrate CAD systems 
into a multi-organ and multi-disease one incorporating all the diagnostic knowledge 
(Kobatake, 2007). On the other hand, the current status of single-purpose, single-organ CAD 
systems shows some good examples of commercial and functionally CAD systems for 
practical and clinical use. In mammography, chest radiography and thoracic CT, a number of 
commercial systems are available. The former systems include the detection and differential 
diagnosis of masses and microcalcifications. Furthermore, in chest radiography and thoracic 
CT, CAD schemes include the detection and differential diagnosis of lung nodules, interstitial 
lung diseases, and the detection of cardiomegaly, pneumothorax and interval changes (Doi, 
2007). Researchers have reported an important reduction in the mean age of patients at the 
time of detection when CAD was used along with the increase in the detection rates of breast 
cancer (Cupples et al., 2005), similar results were achieved on the detection rates of lung 
cancer, colon diseases, intracranial aneurysms, among others (Doi, 2007).   

Microcalcification detection has been extensively studied. Yu and Guan, 2000, developed a 
technique for the detection of clustered microcalcifications. The first part of the algorithm 
addresses the extraction of features based on wavelet decomposition and gray-level 
statistics, followed by a neural-network classifier. The detection of individual objects 
depends on shape factors, gray-level features, and a second neural network as a 
classification scheme. The algorithm was tested using a set of 40 mammograms and the 
sensitivity reported was 90% at 0.5 false positive per image. 

Christoyianni et al., 2002, proposed a neural classification scheme for different kinds of 
regions of suspicion (ROS) on digitized mammograms; in this approach the Mini-MIAS 
database was used to perform the feature extraction and classification stages. The feature 
extraction stage was based on independent component analysis calculation in order to find a 
set of regions that generates the mammograms observed. The recognition accuracy for the 
detection of abnormalities was 88.23% and 79.31% in distinguishing between benign and 
malignant regions. El-Naqa et al., 2002, used support vector machines to detect 
microcalcification clusters. The algorithm was tested using 76 mammograms, containing 
1120 microcalcifications, and it outperformed several well-known methods for 
microcalcification detection with a sensitivity of 94% at one false positive. 

Vilarrasa, 2006, proposed a variety of visual processing and classification schemes to detect 
and classify mammary tissue. This group of algorithms employs standard segmentation 
procedures such as Tukey outlier test, region growing and segmentation via watershed 
transformation; additionally, a neural classifier is proposed to distinguish between healthy 
and calcified mammary tissue. The results were not good enough (were not reported due to 
its poorness), nevertheless, a morphologic filter was used to increase the success rates of the 
classifier; finally, the system reached 84% sensitivity, 64% specificity and 77.2% accuracy.   

Verma et al., 2009, used a novel soft cluster neural network technique for the classification of 
suspicious areas in digital mammograms; the main idea of the soft clusters is to increase the 
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generalization ability of the neural network; this network used a set of six features and was 
trained and tested using the DDSM benchmark database and the results showed an 
accuracy between 79% and 94%. Wei et al., 2009, proposed a microcalcification classification 
scheme assisted by content-based mammogram retrieval. The algorithm was tested using 
200 different mammographic images from 104 cases. This approach used an adaptive 
support vector machine (Ada-SVM) as classifier which outperformed the classification 
accuracies given by other classifiers due to the incorporation of proximity information; the 
reported classification accuracy was 0.82 in terms of the area under the ROC curve.  

Tsai et al., 2010, proposed an approach in which suspicious microcalcified regions are 

separated from normal tissue by wavelet layers and Renyi’s information theory. 

Subsequently, several statistical shape-based descriptors are extracted; principal component 

analysis (PCA) is used to reduce the dimensionality of the feature space and the data 

classification is performed by a standard MLP neural network. The maximum performance 

achieved by this approach was 97.1 at 0.08 false positives.  

2. Visual cortex mechanisms: Neurobiological considerations and potential 
for CAD 

Up to this moment, microcalcification detection has been largely studied along with the 

development of computer vision algorithms. There are many computational approaches 

which have driven the problem at reasonable cost-effectiveness. Nonetheless, as a matter of 

fact, neurobiologically-inspired approaches have been rather neglected due to the poor 

establishment of the relation between cogent neurobiological principles and their potential 

to visual computer systems development.  

Primates’ visual cortex is capable to interpret dynamical scenes in clutter, in spite of using 
several serial visual processes as the attention shifting and saccadic eye movements suggest. 
As pure parallel processing of visual inputs becomes obscure and cumbersome for the 
visual cortex machinery, it deals with such task by selecting circumscribed regions of visual 
information to be processed preferentially and by changing the processing focus over the 
time course. Up to this moment, there are several approaches for the dynamic routing of 
visual stimuli and information flow through the visual cortex, which accounts for 
competitive interactions and dynamical modifications of the neural activity into the ventral 
and dorsal pathways, and the consequent biasing of these interactions in favor of certain 
objects of the space into scene-dependent (bottom-up) and/or task-dependent (top-down) 
strategies (Itti & Koch, 2000). The interactions among these two visual processes have been 
addressed by many researchers (Fix et al., 2010; Navalpakkam & Itti, 2005; Navalpakkam & 
Itti, 2002; Walther & Koch, 2006; Serre et al., 2006). 

Objects in the visual field must compete for processing within more than 30 different visual 
cortical areas. As the ability to screen out objects during visual search tasks is contextual and 
primates often detect a single target in an array of non-targets, detections –for all the effects– 
depend largely on the correlation between targets and non-targets. According to this biased 
competition model, the targets and non-targets of a scene compete for processing spaces 
during visual search. There may be biases towards sudden appearances of new objects in 
the visual field and towards objects that are larger, brighter, faster moving, etc (Desimone & 
Duncan, 1995).  
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Many computational models of human visual search have embraced the idea of a saliency 
map to accomplish preattentive selection. This representation contains the overall neural 
activity elicited by the objects and non-objects of the space, which compete for processing 
spaces in the visual search according to primary visual features such as intensity, 
orientations, colors and motion. The conformation of feature maps is a consequence of 
highly structured receptive fields of cells in lateral geniculate nucleus (LGN) and, notably, 
V1. Certain well-established neurobiological evidence points out the existence of this 
neuronal map and, on the other hand, some other evidence rejects the idea of a 
topographical representation standing for the overall saliency of visual stimuli and, 
therefore, points out the selectivity as a consequence of interactions among feature maps, 
each codifying the saliency of objects in a specific feature (Itti & Koch, 2000).  

Modeling of visual attention mechanisms seems to have reasonably high promise, and its 
application to microcalcification detection will be the main topic and purpose of this chapter. 
In this approach we perform pre-processing and post-processing stages using several 
computer vision algorithms. This allows us to identify the potential of the neurobiologically-
inspired visual mechanisms model as part of a CAD scheme. We also give some relevant 
comparisons in relation to our previous approach (Ramirez-Villegas et al., 2010). 

3. The proposed algorithm 

The algorithm proposed in this book chapter is illustrated by Figure 1. The overall procedure 
is divided in six stages: (1) Mammographic images were taken from the Mini-MIAS Database 
of Mammograms (see sub-section 3.1. for a detailed description of the data); (2) The region of 
interest (ROI) cropping is accomplished by using the available information on the description 
section of the database; specifically we took into account the location and the approximate 
radius of the circle enclosing the abnormalities (microcalcifications); (3) Adaptive histogram 
equalization and the so-called top-hat algorithm were performed as pre-processing steps in 
order to enhance the microcalcifications’ traces; (4) A pre-attentive bottom-up visual model 
was implemented in order to preliminarily distinguish between calcified and non-calcified 
tissue; (5) Tukey outlier test-based segmentation was used to perform the final segmentation of 
sub-regions via the simulated gaze allocation outcomes obtained in the former step; (6) Finally, 
a Self-Organizing Map (SOM) neural network was implemented in order to adjust 
topologically the microcalcifications and to provide a final visual output. 

 

Fig. 1. Overview of the proposed approach. 
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3.1 Mammographic database 

In this work, a total of 23 mammographic images containing microcalcified tissue were 

taken from The Mini-MIAS Database of Mammograms (Suckling, 1994), which is widely 

used by researchers to carry out and evaluate their research work before other researchers in 

the area of CAD of breast cancer. We have used this database in our previous research 

(Ramirez-Villegas et al., 2010; Ramirez-Villegas & Ramirez-Moreno, 2011). The database 

provides appropriate details of the pathologies and general characteristics of the 

mammograms: The MIAS database reference number, character of background tissue (as it 

can be fatty, fatty-glandular and dense-glandular), class of abnormality (as it can be 

calcification, well-defined/circumscribed masses, spiculated masses, ill-defined masses, 

architectural distortion, asymmetry or normal), severity of abnormality (as it can be benign 

or malignant), the (x,y) image-coordinates of centre of abnormality and the approximate 

radius (in pixels) of a circle enclosing the abnormality. The resolution of the original images 

was 200 micron pixel edge so that every image’s size was 1024 x 1024 pixels. The images are 

centered in the matrix.   

All ROIs (calcified tissue samples) were selected using the reference given in the description 

of the database. 

3.2 Mammograms enhancement 

Enhancement algorithms have been employed for the improvement of contrast features and 

the suppression of noise (Papadopoulos, 2008). They are commonly used to increase the 

radiologist’s detection effectiveness or as pre-processing stages of CAD schemes. In the 

preprocessing module, the significant features of the mammogram are enhanced, recovering 

most of the hidden characteristics and improving the image quality. According to recent 

findings (Papadopoulos, 2008), the contribution of the preprocessing module in the 

detection of ability of the CAD system is definite.  Consequently, the final outcome of the 

CAD scheme depends largely on the pre-processing steps.  

The pre-processing stage of the current approach is divided in two parts: (1) Contrast 

enhancement and, (2) microcalcification enhancement by the so-called top-hat algorithm. 

The usefulness of these methods is reported in the literature along with their potential to 

enhance signs present in mammographic images.  

3.2.1 Adaptive Histogram Equalization (AHE) 

In our previous work (Ramirez-Villegas et al., 2010; Ramirez-Villegas & Ramirez-Moreno, 

2011), we implemented the Adaptive Histogram Equalization (AHE) as preprocessing stage. 

According to our findings, this technique can be applied to enhance the high frequency 

components of the image, i.e., microcalcifications, due to the computations applied to 

central and contextual region pixels. In order to avoid the noise amplification a contrast 

limited-equalization can be performed, especially in homogeneous areas. This method 

exhibits improvements over the Local-Area Histogram Equalization (LAHE), which 

presents high computational load and noise magnification due to standard histogram 

equalization computed for each pixel taking into account its neighborhood (contextual 

region).  

www.intechopen.com



 
Digital Image Processing 

 

166 

In order to decrease the computational load, equalization can be computed only for some 

pixels (and its context regions), as the image is divided into a mosaic; thereby, the modified 

pixel is the central pixel, and the others are obtained using a standard interpolation method. 

In this way, each contextual region will affect, with its equalization, another spatial zone 

which doubles its length. 

The final value of each pixel will be obtained applying the pixel mapping given by 

      1 1 1( ) ( ) ( ) ( ) ( )L i C E N i E N i C E N i E N i                , (1) 

where N  is the mapping of the left superior area, N  is the mapping of the left inferior 

area, and so on; and 

 
 

y y
C

y y


 

  , and 
 

 
x x

E
x x



 

   

3.2.2 Top-hat algorithm 

As a matter of fact, background removal and microcalcification enhancing are considered as 

necessary procedures in many CAD applications, given the initial visibility and detectability 

of such mammographic signs. Morphological operations can be employed to enhance 

mammographic images at reasonable computational load-effectiveness. A large class of 

filters can be represented by mathematical morphology implementing two simple 

operations: Erosion and dilatation. When the signal of gray levels and the background of an 

image are constant, a standard image thresholding procedure can be performed to detect 

objects. Nonetheless, the top-hat algorithm becomes a very good choice when the signal of 

gray levels of the background is highly sparse, as it is the mammary tissue in a 

mammographic image. 

The top-hat algorithm consists of a standard pixel-to-pixel subtraction of the original image 

from its opened version. The image opening is defined as the erosion of the image followed 

by its dilatation. Erosion is the morphologic operation in which a pixel, located at the center 

of the structuring element, is substituted by the minimum value of the pixels of the 

neighborhood. Hence, this operation reduces small regions with higher gray levels than 

those of the structuring element. On the other hand, dilatation is the opposite morphologic 

operation to erosion; in this case, the pixel located at the center of the structuring element is 

substituted by the maximum value of the pixels of the structuring element. Consequently, 

this operation enlarges the regions of the image with high gray levels which did not 

disappear as a result of the erosion step. 

The top-hat algorithm can be formulated as follows: 

        ' , , , ,A x y A x y A x y B x y     , (2) 

where: 

          , , , , ,A x y B x y A x y B x y B x y     , (3) 
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is the opening of the image  ,A x y by a structuring element  ,B x y , where   and 

 denote erosion and dilatation, respectively.  

As images are functions mapping a Euclidean space E into  ,   , where  is the set 

of real numbers, the grayscale erosion and dilatation of  ,A x y by  ,B x y  are given, 

respectively, by: 

      
', '

, , arg min ', ' ( ' , ' )
x y E

A x y B x y A x y B x x y y


       , (4) 

      
', '

, , arg max ', ' ( ', ')
x y E

A x y B x y A x y B x x y y


       , (5) 

3.3 Background suppression (revised method) 

The enhancement stage must be sensitive enough to emphasize small low-contrast objects, 
while it must have the required specificity to suppress the background. Usually the 
background corresponds to some smoothed fractions of the image provided by the tissue 
characteristics and image acquisition process; in consequence, these areas are softened 
regions of image which give no-relevant information about pathologies in many cases. In 
our last work (Ramirez-Villegas et al., 2010), the suppression is performed using difference 
of Gaussians filters according to Eq. (6). 

 ( , ) ( , ) ( , ) ( , )rI x y I x y DoG x y I x y   , (6) 

where ( , )I x y  is the input image, and the additional term of convolution is the filter 

function. In this way, the convolution term corresponds to a smoothed version of the input 

image. DoG (Difference of Gaussians) is a linear filter implemented in several artificial 

vision tasks, which works by subtracting two Gaussian blurs of the image corresponding to 

different functions widths.  

 
2 2 2 2

1 22 2 2 2

1 1 2 2

1 1

2 2 2 2
( , ) exp exp

x y x y
DoG x y A A

   

    
      

      
, (7) 

The enhancing process with the DoG works in both the spatial and frequency domain. The 

performance of the filter is conditioned by parameters n and in one case, nA peaks 

estimation. In Eq. (7), Standard deviation n is related with lateral inhibition of the filter, 

while the term which follows nA peaks normalizes the sum of mask elements to unity in the 

image processing. Typically these parameters are determined in a heuristic way, according 

to the desired performance and microcalcifications and image general characteristics. 

Nevertheless, as a reference method for this research, there are some mathematical 

expressions (Ochoa, 1996) used to determine the DoG parameters according to 

microcalcifications’ average width and Marr’s ratio (Marr, 1982). For reference, an example 

of the DoG processing is in Figure 2. 

As background suppression using DoG filters is a well-known method, it will give us some 
feedback in order to compare the performance of the current approach and, consequently, to 
express where it stands relative to the existing literature. 
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Fig. 2. Example of background suppression by DoG: (a) Input ROI; (b) Enhanced ROI. 

3.4 Bottom-up processing in visual cortex 

The selection of a part of the available sensory information before a detailed processing stage 
by intermediate and high visual centers is an ability of the visual system of primates. Koch and 
Ullman (Koch & Ullman, 1985) introduced the idea of a saliency map to accomplish pre-
attentive selection. Saliency map can be defined as a two-dimensional representation that 
represents topographically the saliency of objects in the visual field. The competitive behavior 
of the neurons in this map gives rise to a single winning location, which corresponds to the 
most salient object. Subsequently, the next conspicuous locations are attended in order of 
decreasing saliency, given the prior inhibition to already attended locations. 

 

Fig. 3. Overview of the visual cortex-like bottom-up processing step. 
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Microcalcifications are low-contrast conspicuous locations in a background of distractors 

(surrounding mammary tissue and noisy regions). The competitive behavior of the neurons 

in the early stages of visual processing guarantees that there would be a biased competition 

in favor of certain objects of the space based on certain characteristics which make them 

‘unique’. But, how do unique features attract attention? Experimental evidence shows that 

neural structures in Lateral Geniculate Nucleus (LGN) and primary visual cortex (V1) are 

responsive to features which are common to all objects of the visual field, e.g., intensity, 

orientation, color opponency, motion, stereo disparity, among others. In this work, we 

assume that visual input is represented in the form of iconic, topographic feature maps. In 

order to construct such representations, we use center-surround computations in every 

feature at different spatial scales and within-feature spatial competition (Itti & Koch, 2000). 

All the information contained in these maps is combined to obtain a single representation, 

i.e., the saliency map. 

This part of our approach computes saliency using two features studied by Itti et al., 1998, 

for the formerly visual attention model proposed model of Koch & Ullman, 1985: Intensity 

and orientation. These features are organized into 30 maps (6 for intensity, 24 for 

orientation; a detailed explanation of this is given further). These maps are combined using 

across-scale sums in order to obtain the conspicuity maps, which provide input for a unique 

saliency map (central representation). Figure 3 illustrates the overview of this processing 

step. 

This model is limited to selective attention given by the properties of the visual stimuli and 

consequently it does not involve any volition-dependent process (top-down visual 

processing). Low-level visual features are directly extracted from the input image over 

different resolution scales using pyramid-like linear filters, i.e., the so-called Gaussian 

pyramids. This approach consists of successive filtering processes and compression of the 

input images (Burt & Adelson, 1983). This process is illustrated by the following equations: 

      
2 2

1

2 2

2 2, , ,l l
m n

g i j w m n g i m j n
 

    , (8) 

where 0 ll N   and , ,i j  0 li C  , 0 lj R  . lN is the number of levels of the pyramid 

and, lC  and lR  are the dimensions of the image at the lth level. Finally, w is defined 

according to Eq. (9) and Eq. (10). 

      ˆ ˆ,w m n w m w n , (9) 

where ŵ  is a normal and symmetric function: 

  
, 2, 2

2
ˆ , 1, 1

, 0

ab x

w x b x

a x

   
  
 

, (10) 

Typically the value of a is 0.4 and the value of b is 0.25, in consequence, the values of  ŵ x  

are given by Eq. (11). 
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  
0 05 2 2

0 25 1 1

0 4 0

. , ,

ˆ . , ,

. ,

x

w x x

x

 
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 

, (11) 

Note that there is a 5x5 pattern of weights w to generate each pyramid array.  

In this step, a total of nine spatial scales  0 1 8, ,...,   are created using the Gaussian 

pyramid scheme. This approach yields horizontal and vertical image reduction factors from 

1:1 (scale zero) to 1:256 (scale eight) in eight octaves.  

Subsequently, each feature is calculated using the center-surround scheme, which is highly 

related to the visual receptive fields. Such center-surround differences are calculated 

between coarse and fine resolution scales in every feature: The receptive center corresponds 

to a pixel at resolution level  2 3 4, ,c in the pyramid, and the surround is the 

corresponding pixel at resolution level s c   , with  3 4,  . As a result of the 

combination between the receptive center and surround resolution levels, we obtain a total 

of six feature maps.  

Intensity contrast is extracted by standard band-pass filtering to calculate center surround 

differences between the established resolution levels: 

      ,I c s I c I s  , (12) 

where  I c  is the center intensity signal,  I s is the surround intensity signal and the 

symbol “ ” is termed across-scale subtraction, i.e., the point-by-point subtraction of images 

of different resolutions by interpolation to the finer scale. 

Orientation is extracted using standard Gabor pyramids  ,O   , where 

 0 45 90 135º , º , º , º   (Greenspan et al., 1994). Thereby, orientation contrast is defined as: 

      , , , ,O c s O c O s    , (13) 

where  ,O c   and  ,O s   are the center and surround orientation signals, respectively. 

The local orientation maps  ,O c   and  ,O s   are computed by convolving the levels of 

the intensity pyramid with standard Gabor filters (note that this procedure can be 

performed either in the frequency or spatial domain): 

          2 2

, * *E OO I O I O              , (14) 

where  is the resolution level, and EO  and OO : 

  
2 2 2

2
2

2

' ' '
, , exp cosE

x y x
O x y


  



            
, (15) 

  
2 2 2

2
2

2

' ' '
, , exp sinO

x y x
O x y


  



            
, (16) 
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are even and odd Gabor filters, respectively, with aspect ratio  , standard deviation  , 

wavelength  , phase  ,  and rotated coordinates by  : 

    ' cos sinx x y   , (17) 

    ' sin cosy x y    , (18) 

Once we obtain the 30 feature maps (6 for intensity and 24 for orientation), feature maps of 
the same type are linearly combined and, consequently, we obtain two conspicuity maps 
(one for each feature): 

  
4 4

2 3

,
c

c s c
I N I c s



  
      , (19) 
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 

4 4

2 3
0 45 90 135º , º , º , º

,
c

c s c
O N N O c s





  

 
      

 
 , (20) 

The purpose of the function  ·N  is to normalize each conspicuity map. The simplest 

procedure to achieve such normalization is to adjust the dynamic range of the maps. 

However, it is possible to obtain a normalized map into an iterative or trained way (Itti & 

Koch, 2000). 

All conspicuity maps are linearly combined into one saliency map according to Eq. (21). 

    1

2
S N I N O    , (21) 

Finally, as the objects in the space compete for processing spaces during visual processing, 

the locations in the saliency map representation compete for the highest saliency value into 

a winner-take-all (WTA) strategy. This means that the next location to be attended 

 ,w wx y is the most salient one in the saliency map; subsequently, the saliency map is 

inhibited by means of the so-called inhibition of return mechanism, allowing the model to 

simulate a visual scan path over the whole content of the image. 

WTA models have been largely implemented for making decisions from a 

neurobiologically-inspired perspective (Koch & Ullman, 1985; Itti et al. 1998; Walther & 

Koch, 2006). It should be noted that in a neuronally plausible implementation, the saliency 

map could be modeled as a layer of leaky integrate-and-fire neurons, as a backwards WTA 

selection mechanism (Walther & Koch, 2006) or as a layer of neurons with logistic profiles 

implemented in the form of mean field equations (Ramirez-Moreno & Ramirez-Villegas, 

2011). In the case of the leaky integrate-and-fire neurons, when a threshold potential is 

reached, a prototypical spike is generated and the capacitive charge of the neuron is shunted 

to zero (note that neurons here are RC circuit-based models). Therefore, the synaptic 

interactions among the units ensure that only the most active location of the saliency map 

remains and the potential elicited by other locations are suppressed. Similarly, using the 

mean field approach in a network of neural populations, the WTA approach emerges 

directly from the competitive behavior of the units, thereby, inhibitory and local excitatory 
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connections among the neurons of the same layer produce the most active location to rise 

above the other ones (Ramirez-Moreno & Ramirez-Villegas, 2011).  

As the main aim of the current approach is not to reproduce the brain dynamics in a one-to-

one implementation, we select the most active location in the saliency map in order to define 

the position where the model should attend; hence, we define the most salient location as 

follows: 

  arg max ,wFOA S x y    , (22) 

where wFOA defines the winning location    , ,w wx y x y  and ,x y , 0 0', 'x N y M     

in the saliency map of dimensions '* 'N M .  

Under this strategy, the focus of attention (FOA) is shifted to the location of the winner 

neuron. Further, local inhibition must be applied in an area in the location of the FOA, in 

order to allow the system to determine a new winning location and then produce a new 

attentional shift. In order to reproduce such inhibition of return mechanism, when selecting 

the most active location in the map, a small excitation is activated in the surrounds of the 

FOA (Koch & Ullman, 1985), consequently, the shape of the FOA can be approximated to a 

disk whose radius is fixed according to the microcalcifications’ average width (in this work, 

we compared the performance obtained using radiuses of 2, 3 and 5 pixels); subsequently, 

such location is inhibited by setting its activity to zero.  

3.5 Serial segmentation procedure 

Frequently the processing in the collected images is varying in quality (satisfactory quality 

and poor quality); hence, this establishes some individuality of the grey level contrast 

(Ramirez-Villegas et al., 2010) provided by the tissue characteristics and image acquisition 

process. Furthermore, regions of images such as mammograms are suitable to several 

segmentation algorithms. The image segmentation procedure must be specific enough to 

avoid false positives in the enhancing process. 

In statistical analysis, when outliers are present, the estimates of the data are distorted. 

Consequently, these estimates are not suitable to make inferences about the data. In this 

case, these erroneous values should be eliminated for subsequent analysis purposes.  

The Tukey outlier test (Hoaglin et al., 1983) assumes that there is no specific distribution of 

the data series. This method is based on the supposition that any distribution has a group of 

typical values surrounded by atypical data (i.e., outliers) that exaggerate the histogram 

length. The larger the sample size, the higher the probability of getting at least one outlier. 

The Tukey outlier test is based in, at least, two assumptions: (1) that the central part of the 

distribution contains most of the information of the genuine reference values; and (2) that 

outliers may be detected as values lying outside limits, taking into account the statistical 

properties of this central part. 

In our work, we implemented this outlier detector as a serial segmentation algorithm using 

the FOAs determined by the saliency-based bottom-up approach described in Section 3.4. 

Each serially attended location (i.e., the circumscribed regions used to simulate attentional 
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shifting) is a subset    ' , ,S x y S x y ; the Tukey outlier test will set aside the observation 

 ' ,o oS x y if one of the following conditions is fulfilled: 

  ' ,o oS x y L , (23) 

where 

  1 3 1
1 5.L q q q     , (24) 

or 

  ' ,o oS x y U , (25) 

where 

  1 3 1
1 5.U q q q     , (26) 

where 
1

q  and 
3

q  denote the first and third quartiles of the sample, respectively. Once the 

arguments of the above expressions are obtained, pixels above U  and below L  are 

considered as outliers of the distribution. As microcalcifications at this stage of the approach 

appear as highly bright regions with atypical gray level values (outliers in the distribution of 

the resulting processed image), the segmentation threshold to segment them is equal to U . 

From a neural networks perspective, the segmentation procedure proposed in this work can 

be seen as a hard-limit transfer function node, where: 

    1

0

' ,
' ,

S x y U
H S x y

otherwise

      
, (27) 

Under this scheme, the typical gray values of the distribution are discarded (set to zero) and 

the others are transferred to the next processing step (SOM neural network).  

3.6 Self-organizing map (SOM) neural network 

The final stage of the approach reported in this chapter, is the implementation of a SOM 

neural network in order to topologically adjust the microcalcifications and show the final 

outcome for diagnosis purposes. Figure 4 illustrates the architecture of the neural network 

with the saliency map as input. 

Self-Organizing Maps (SOM) have been largely implemented for a plethora of tasks, in a 

very similar way to those which other neural networks have been used to, e.g., pattern 

recognition, vision systems, signal processing, among others. In SOM-like neural networks, 

neighboring cells compete through mutual lateral interactions, and develop adaptively into 

specific detectors of different signal patterns (Kohonen, 1990).  Each point of the input data 

shaping the structure of an N-dimensional space determines the spatial location of the 

weight of a cell in the network. Consequently, the network would be capable of giving a 

categorization of the input space. 
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Fig. 4. Scheme of the neural network implemented in this work. 

Let    , ,
T

i i i sX x y S x y   be a two-dimensional input vector in the segmented saliency 

map. The weight vector of the node j
 

in the SOM layer is therefore denoted by 

 1 2, ,, ,j j j sw w w S x y    . We define an analytical measure of match between X and w . 

The simplest way to define the match may be the inner product T
i jX w ; however, the 

Euclidean distance gives better and more convenient matching criterion (Kohonen, 1990). 

The Euclidean distance between the input patterns and the vector of weights is defined as: 

    2

1 2, ,ji j i j i j iE w X w x w y      , (28) 

The minimum Euclidean distance defines the winner neuron at the current iteration. Hence, 
there is a single neuron chosen such that: 

  
,

arg minc ji
j i

E E , (29) 

Lateral interactions among the units are enforced by defining a neighborhood set 'n , 

around the winner unit. At each learning step the cells within the neighborhood are 

updated. Depending on the neighborhood function, the cells outside 'n are left intact or 

almost intact. Such function technically defines the adaptation strength among the 
neurons of the map. For a closer proximity to the winner node, stronger adaptation 
strength is elicited by the other nodes. In our work we used an elliptical Gaussian 
function, which according to our experimentation gave robust solution to the topologic 
adjustment task: 
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  
22

1 2 2 2
1 2 1 2

1
, ; , exp

2 2 2

yx
f x y  

   

  
        

, (30) 

The parameters of the function (the Gaussian widths) define the size of the neighborhood. 
Typically, it changes according to a monotonically decreasing function throughout the 
whole training procedure. In the current implementation such function for either Gaussian 
width is given by: 

   0

0

,
,

,

t
T

n f
n n

n

t


 


 
   

 
, (31) 

where t represents the current training cycle and T the total number of train cycles. The 

initial 
0,n and final ,n f  neighborhood sizes can be estimated according to the map size 

(the neurons’ distribution), the segmented saliency map size or in a heuristic way. It should 

be noted that a wide initial neighborhood first induces a rough global order in the jw values 

after which narrowing the neighborhood improves the spatial resolution of the map. 

Finally, the updating process of the weights is given by the following equation: 

          1 ·j j i jw t w t t f X w t       , (32) 

where  t is the so-called adaptation gain  0 1t  , which is related to the rate at which 

the network learns the topology of the input space. Typically, this parameter is also 

described by a monotonically decreasing function. In our work, it has the following form: 

    0 0f

t
t

T
         

 
, (33) 

here, the initial 
0

  and final f  learning rates must be small values and 
0f  . 

For illustrative purposes, a topology adjustment example by a SOM network is given by 
Figure 5. In this example, the input space is a square-shaped random distribution of points,  

 

Fig. 5. SOM neural network (two-dimensional circular array) in a squared input space: (a) 
Initial weights (iteration 0); (b) weights after several training cycles (iteration 100). 
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while the network (initially) is a circle-shaped array of interconnected units. Note that the 
weight vectors tend to approximate the density function of the input vectors after a few 
training cycles (the blue edges indicate that the neurons are neighbors in the grid). 

4. Results 

As aforementioned, we tested our approach using The Mini-MIAS Database of 
Mammograms (Suckling, 1994), which is widely used by researchers to carry out and 
evaluate their research work before other researchers in the area of CAD of breast cancer. 
From this database, a total of 23 mammographic images made part of our study (those 
containing microcalcifications). The background and tissue character in the images enabled 
us to test the algorithm with certain variability of conditions. ROIs were extracted according 
to the specifications of the database in the form of squared regions enclosing the 
microcalcification clusters. In some cases calcifications were widely distributed throughout 
the mammogram rather than concentrated at single sites; in these cases various ROIs of the 
images containing microcalcifications were extracted. Subsequently, all the processing steps 
were performed according to Figure 1.  

In this section we present the main outcomes of the proposed methodology. In Section 4.1 
we give some relevant examples to illustrate how the proposed CAD application operates 
during mammogram inspection. Similarly, in Section 4.2 we present comparative Free-
Response Operating Characteristic (FROC) curves to test the outcome of our methodology 
varying the radius of the FOAs in the saliency-based bottom-up model. We also conduct 
relevant comparisons between the proposed algorithm and the DoG approach and 
additionally, other comparisons are made between the performance obtained in the 
detection of benign microcalcification signs and the detection of malign microcalcification 
signs.  

4.1 Experimental results 

The analysed ROIs containing the microcalcifications in the mammograms vary in radius 
from 8 to 93 pixels, and the performance of the SOM neural network was achieved in 500 
training cycles, in which location of the possibly pathological regions are given as an output.  

In Figure 6 and Figure 7, examples of microcalcification detection are presented.  Note that 
after the preprocessing stages (the image histogram equalization and the top-hat algorithm), 
the saliency-based bottom-up approach reveals the locations of the image which the visual 
system should attend to. In this case, the visual processing model biases the competition 
among the different locations of the image in favour of certain objects of the space. The 
attended conspicuous objects in this case are the microcalcifications present in the 
mammograms. As the degree of conspicuity of the microcalcifications on the preprecessed 
images varies, the saliency map activity is somewhat heterogeneous. This illustrates that the 
neural responses elicited by the objects and the competitive interactions among certain 
locations in the maps induce one target to rise above the others at a given time instant. In 
addition, our model incorporates the iterative normalization strategy described by Itti & 
Koch, 2000, which consists on iteratively convolving the feature maps by a 2D DoG filter, 
adding the result to the original image and setting the negative results to zero after each 
iteration. We tested the model with a reduced number of iterations (a maximum of 3 
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iterations) and a small inhibition factor (between 0 and 1) in order to avoid undesired over-
competitive behaviour among the neurons of the map.  

 

Fig. 6. Example illustrating the processing steps of the proposed approach: (a) Equalized 
ROI; (b) output of the top-hat algorithm; (c) saliency map; (d) segmented image; (e) 
topologic adjustment of microcalfications by SOM neural network. 

Figure 6(d) and Figure 7(d) illustrate the results of the serial segmentation. Note that the 

specificity of the bottom-up processing increases with the pattern discrimination obtained 

after the serial calculation of the Tukey outlier test. For these examples the radius of the 

FOA was 2 pixels. The white locations in Figure 6(d) and Figure 7(d) were those for which 

the statistical procedure detected at least one outlier. Furthermore, like in many other 

relevant situations, according to our results, it is hard to find an algorithm that can handle 

all the possible scenarios and all mammographic images’ conditions. In addition, regardless 

of the distribution of the FOA, in absence of outliers (microcalcifications), the Tukey 

statistical test provided a low rate of false detections (specificity). We performed extensive 

experiments to evaluate the serial segmentation algorithm by limiting the maximum 

number of attended locations by the saliency-based bottom-up model; the algorithm’s 

outcome limiting the number of attended locations did not present large variations as if the 

attention shifting occurred across the whole saliency map. 

Figure 6(e) and Figure 7(e) show the topologic adjustment of microcalcifications performed 

by the SOM neural network. This performance was obtained by training the network over 

500 cycles, in which the locations of the possibly pathological regions were given. Although 

the topological adjustment made by the SOM network is accurate and suitable for the 

application, some microcalcifications were not associated because the number of neurons in 

the input space was limited due to computational load constraints. Further research will be 

needed to evaluate other schemes in the topologic adjustment task. 
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Fig. 7. Example illustrating the processing steps of the proposed approach: (a) Equalized 
ROI; (b) output of the top-hat algorithm; (c) saliency map; (d) segmented image; (e) 
topologic adjustment of microcalfications by SOM neural network. 

 

Fig. 8. Example of the operation of the visual saliency model with the mammographic ROI 
in Figure 6. Note that once the visual machinery model combines the information of the 
topographic conspicuity maps into the saliency map, the most salient locations of the scene 
are attended into a serial strategy (the black arrows indicate the spatial shifts of the FOA). 
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Additionally, Figure 8 illustrates the FOA shifting for the first six attended locations in the 
saliency map in the example of Figure 6. In this case, the FOA is represented by a disk of 
radius 2 pixels. In general, although it depends on the ROI size, the processed ROI required 
approximately from 16 to 300 shifts (with overlapping) to cover all the possible saliency map 
locations. Since larger ROIs took somewhat longer to be analyzed by the algorithm, in the 
slowest case the processing steps took approximately one minute to be performed. 
Furthermore, since mammographic regions could be considered as highly cluttered scenes, 
the current state of this model reproduces many classical results in psychophysics. 

4.2 Performance evaluation 

The performance of the proposed system is shown by FROC curves in Figure 9 and Figure 
10. A FROC or Free-response Receiver Operating Characteristic curve is the plot of the 
lesion localization vs. the non-lesion localization, as the threshold to report a finding is 
varied; FROC curves are mainly implemented to objectively evaluate and analyse image 
processing algorithms, such as imaging CAD algorithms. Increasing the sensitivity of the 
algorithm can lead to false positives when reaching the detection of subtle signs. The 
experimental results of this algorithm were directed to how the proposed algorithm can 
improve the diagnosis of pathological signs (in this case, microcalcifications). When a 
microcalcification (or microcalcification cluster) is detected at the approximate position 
given in the database specifications, we count a true positive (TP). Otherwise, if a 
microcalcification (or microcalcification cluster) is detected outside the approximate radius 
indicated in the database, we count a false positive (FP). Furthermore, the malignancy of the 
pathologies in diagnostic images in different modalities should be one of the main topics in 
CAD evaluations, as it provides information about how specific are the techniques or 
approaches in detection of pathologies; thereby they can be characterized by powerful 
descriptors such as the size of the signs, character of the background tissue, characterization 
of the abnormality (e. g. single or clustered microcalcifications) and the approximated radius 
of the pathology in each image.  

Figure 9 illustrates the FROC curves for different FOA radiuses. Note that as the FOA 
becomes narrower, the overall performance of the proposed neurobiologically-inspired 
algorithm increases. This is an expected effect that emerges from the visual system’s 
features: As the circumscribed region to which attention is directed reduces, the sensitivity 
of the system increases. Furthermore, this is a convenient strategy when the scenes are too 
cluttered and consequently, difficult to analyse. The maximum performance reached by the 
proposed algorithm was approximately 92.0% at one false positive and 100.0% at 1.5 false 
positives implementing a 2-pixel FOA radius. Note that at this stage, the visual cortex model 
described in this work is limited to the bottom-up control of attention. Furthermore, we 
have followed this strategy as our main concern is the localization of the stimuli to be 
attended, not their identification. 

From the FROC curves in Figure 10 and specifically the true positive ratios and the average 
number of false positives per image, it should be noticed that the pre-attentive bottom-up 
model outperforms the DoG-based approach. In general, DoG kernels exhibit a medium 
specificity, which allows the use of a single filter to enhance all the microcalcifications under 
certain conditions. This means that in order to make the system more robust and make 
microcalcifications of all sizes detectable, a bank of filters would be needed. Although the  
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Fig. 9. FROC curves illustrating the performance of the proposed approach for different 
FOAs’ radiuses (in pixels). 

 

Fig. 10. FROC curves illustrating the performance of (a) the proposed approach; and (b) the 
DoG approach reported by Ramirez-Villegas et al., 2010, for the malign and benign cases. 

performance of the DoG filters could be somewhat limited, DoG filters attenuate (to some 
extent) adequately the low frequencies, which is highly desirable in some of the processing 
stages. On the other hand, the proposed approach adapts better to all mammographic 
conditions given the multi-resolution processing strategy of the visual attention model and 
the center surround interactions; this makes the model selective enough to enhance the 
conspicuous locations and suppress low frequency components as well as some high ones in 
a band pass-like strategy.  

5. Discussion, conclusions and perspectives 

5.1 Visual cortex mechanisms 

Many computational principles regarding bottom-up and top-down visual processing have 

emerged from experimental and modeling studies. Different features contribute to 
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perceptual saliency and their weighing can be influenced by top-down modulation (Deco & 

Rolls, 2004; Peters et al., 2005; Serre et al., 2006). There is experimental evidence concerning 

strong interactions among different visual modalities such as color and orientation for 

certain visual locations; these interactions are subjected to top-down modulation and 

training. On the other hand, the most important issue regarding the bottom-up processing is 

the contrast among features instead of the absolute intensity of each feature. However, the 

primary visual neurons are not only tuned to some kind of local spatial contrast, but also to 

neural responses elicited tightly by context, in a structure that extends the range of the 

classical receptive field.  

It is likely that the relative weight of the features which contribute to the most general 

representation is modulated by higher cortical centers. In this way, the attention process 

selects the necessary information to discriminate between the distractors and the target as 

both bottom-up and top-down processes are carried out to analyze the same scene: Here the 

top-down process is related to previously acquired knowledge that biases the neural 

processing competition among the objects, therefore the recognition is performed by 

selecting the next eye movement that maximizes the information gain. The computational 

challenge, then, lies in the integration of bottom-up and top-down cues, such as to provide 

coherent control signals for the focus of attention, and in the interplay between attentional 

orientating and scene or object recognition (Itti & Koch, 2001). As the current approach is 

familiar only to bottom-up processes, it presents high resemblance and compatibility to 

integrate top-down processes. Integrating such processes would raise the overall 

performance of the mammography CAD system. 

5.2 Could this approach be extended to mass detection? Through multi-sign detection 

Another important issue is the possibility of multi-sign detection, i.e., the detection of 

multiple signs on the same image modality. Current image processing techniques make 

the primitive breast abnormalities detection easier (Verma, 2008), nevertheless, the 

detection of these abnormalities leads to many false detections which depend on the 

robustness of the vision system (Vilarrasa, 2006; Ramirez-Villegas et al., 2010). On the 

other hand, the modular architectures of most of such existing systems lead to the 

necessity of creating separate algorithms for detecting different kinds of cancer signs, e.g., 

microcalcifications and masses. As these two types of abnormalities are in several ways 

remarkably different, many researchers have addressed these two diagnostic tasks 

separately; consequently, the difficulty on detecting cancer rises in direct proportion with 

the number of implemented algorithms for such tasks (in this case, at least two different 

processing pathways). Nevertheless, visual attention modeling could be an important step 

towards the development of a fully-comprehensive CAD system for mammographic 

image analysis. Up to the knowledge of the authors of this chapter, the potential of such 

models in the analysis of mammographic images have not been yet issued, nor identified. 

Theoretically, given the features of the visual processes intended to be modeled, any 

visual cortex-like model would be capable of helping (to some extent) in the analysis of 

any diagnostic image. 

Figure 11 illustrates an example of how the saliency-based bottom-up model operates for a 

mammographic image containing a mass. 
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Fig. 11. Saliency-based bottom-up approach in the detection of masses: (a) Equalized image; 
(b) Saliency map; (c) First attended location by the WTA approach. 

5.3 Perspectives: Through multi-organ and multi-disease CAD 

There are many computational approaches which have addressed the problem of diagnosis 

at reasonable cost-effectiveness relation; however, they commonly are single-purpose 

systems, i.e., their target is the detection of only one disease and one organ. Such schemes 

are referred to as abnormality-dependent approaches. These approaches work well in the case of 

a single-purpose CAD; nonetheless, it is not preferable to apply such approaches to a multi-

disease CAD, given the disproportionately large amount of algorithms that would be 

necessary to detect every single disease (at least one per disease). The future integration of 

CAD systems into multi-disease and multi-organ ones ensures its usage in diagnosing a 

large amount of target diseases with a fully comprehensive and integral architecture. 

Conversely, the diversity of acquisition conditions and the features of different kinds of 

diagnostic images pose additional challenges on well-known CAD processing steps such as 

segmentation, registration and classification, not to mention that the characteristics of 

abnormal regions on these images depend largely on the type of disease. Therefore, it is 

desirable to integrate the diagnostic knowledge of various types of diseases into a universal 

dictionary of features for diagnosis. 

Some research efforts have been made in improving multi-organ and multi-disease CAD. As 
a matter of fact, there is a rising interest on integrating such systems into multi-purpose 
ones. One aspect of this is that cancer, for instance, can spread to other organs in the body. 
Therefore, if a single-disease CAD can detect cancer, it would be of quite limited use for 
predicting metastasis and complications related to such cancer detection; moreover, it also 
would be of little use in order to detect cancer in other organs when such metastasis has 
occurred. 

Conventional single-disease CAD approaches have addressed as many diseases as the 
number of involved computer vision algorithms to detect them. As a matter of fact, the wide 
range of conditions and characteristics of images is the most cumbersome issue that 
abnormality-dependent approaches have to face. Conversely, from the viewpoint of 
computational efficiency, it is not desirable to have as many diagnosis algorithms as the 
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number of target diseases. It has become obvious that a more straightforward strategy will 
be needed to overcome the problem of integrating and understanding all the diagnostic 
knowledge by processing images and extracting candidate regions having structures and/or 
characteristics that are not normal. Furthermore, the integration and processing of such 
wide variety of multi-modal medical images need to be assembled and implemented as part 
of PACS in order to be used in clinical situations.   

For instance, in clinical situations, it is important that the sensitivity of the system to be 

maintained as high as possible, which is achievable using a complex and strongly wired 

computational model (such as cortex-like models), and not with an unnecessarily increased 

number of different and complementary CAD schemes. Furthermore, although a fully-

comprehensive CAD scheme can be seen as a highly robust and integral software, 

processing images from so many modalities is time consuming and therefore, it is likely that 

diagnosis would not be performed in real time; rather than that, image analysis would be 

performed offline. As a first goal towards the development of a multi-organ and multi-

disease CAD, the integration of multi-modal medical images and intelligent assistance in 

diagnosis of multi-dimensional images has been of great interest (Kobatake, 2007). This task 

poses additional challenges from the viewpoint of the computational efficiency and the 

trade-off between the processing efficacy at large datasets and the time taken to reach the 

diagnosis to support the decision of the physician. Moreover, the analysis of structures is 

another important issue to consider for the diagnosis of multiple diseases. For example, the 

thoracic structure contains at least nine different areas of high diagnostic interest (including 

lung area, trachea and pulmonary vessels) related to at least eight pathology-related signs 

(large lesions, pulmonary nodules attached to vessels, isolated pulmonary nodules, among 

others). Therefore, the integrated multi-disease and multi-organ CAD system, in this 

particular case, would extend the standard lung-cancer detection CAD system, irrespective 

of the methods used to detect the disease signs. 

Finally, beyond the quite simple technical predictions of the authors of this book chapter, 

comprehensive CAD systems and the potential of cortex-like mechanisms modeling to 

overcome detection problems and to raise the sensitivity on disease sings detection will 

contribute dramatically to the development and improvement of the current capabilities of 

CAD systems. 
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