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1. Introduction  

Inverse aperture synthesis in the radar theory is a recording of the complex reflective 
pattern (complex microwave hologram) of a moving target as a complex signal. The 
trajectory of moving target limited by the radar’s antenna pattern or time of observation is 
referred to as inverse synthetic aperture, and radar using the principle of inverse aperture 
synthesis is inverse synthetic aperture radar (ISAR). The spatial distribution of the 
reflectivity function of the target referred to as a target image can be retrieved from the 
received complex signals by applying image reconstruction techniques. 

Conventional ISAR systems are coherent radars. In case the radars utilize a range-Doppler 
principle to obtain the desired image the range resolution of the radar image is directly 
related to the bandwidth of the transmitted radar signal, and the cross-range resolution is 
obtained from the Doppler frequency gradient generated by the radial displacement of the 
object relative to the radar. 

A common approach in ISAR technique is division of the arbitrary movement of the target 
into radial displacement of its mass centre and rational motion over the mass centre. Radial 
displacement is compensated considered as not informative and only rotational motion is 
used for signal processing and image reconstruction. In this case the feature extraction is 
decomposed into motion compensation and image reconstruction (Li et al., 2001). Multiple 
ISAR image reconstruction techniques have been created, which can be divided into 
parametric and nonparametric methods in accordance with the signal model description 
and the methods of a target features extraction. (Berizzi et al., 2002; Mrtorella et al., 2003; 
Berizzi et al., 2004). The range-Doppler is the simplest non parametric technique 
implemented by two-dimensional inverse Fourier transform (2-D IFT). Due to significant 
change of the effective rotation vector or large aspect angle variation during integration time 
the image becomes blurred, then motion compensation is applied, which consist in coarse 
range alignment and fine phase correction, called autofocus algorithm. It is performed via 
tracking and polynomial approximation of signal history from a dominant or well isolated 
point scatterer on the target (Chen & Andrews, 1980), referred to as dominant scatterer 
algorithm or prominent point processing, a synthesized scatterer such as the centroid of 
multiple scatterers (Wu et al., 1995), referred to as multiple scatterer algorithm. Autofocus 
technique for random translational motion compensation based on definition of an entropy 
image cost function is developed in (Xi et al., 1999). Time window technique for suitable 
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selection of the signals to be coherently processed and to provide a focused image is 

suggested in (Martorella Berizzi, 2005). A robust autofocus algorithm based on a flexible 
parametric signal model for motion estimation and feature extraction in ISAR imaging of 
moving targets via minimizing a nonlinear least squares cost function is proposed in (Li et 
al., 2001). Joint time-frequency transform for radar range-Doppler imaging and ISAR motion 

compensation via adaptive joint time-frequency technique is presented in (Chen  Qian, 

1998; Qian , Chen 1998). 

In the present chapter assuming the target to be imaged is an assembly of generic point 
scatterers an ISAR concept, comprising three-dimensional (3-D) geometry and kinematics, 
short monochromatic, linear frequency modulated (LFM) and phase code modulated (PCM) 
signals, and target imaging algorithms is thoroughly considered. Based on the functional 
analysis an original interpretation of the mathematical descriptions of ISAR signal formation 
and image reconstruction, as a direct and inverse spatial transform, respectively is 
suggested. It is proven that the Doppler frequency of a particular generic point is congruent 
with its space coordinate at the moment of imaging. In this sense the ISAR image 
reconstruction in its essence is a technique of total radial motion compensation of a moving 
target. Without resort to the signal history of a dominant point scatterer a motion 
compensation of higher algorithm based on image entropy minimization is created. 

2. ISAR complex signal of a point target (scatterer) 

2.1 Kinematic equation of a moving point target 

The Doppler frequency induced by the radial displacement of the target with respect to the 
point of observation is a major characteristic in ISAR imaging. It requires analysis of the 
kinematics and signal reflected by moving target.  Consider an ISAR placed in the origin of 
the coordinate system (Oxy) and the point A as an initial position with vector R(0) at the 
moment t = 0, and the point B as a current or final position with vector R(t) at the moment t 
(Fig. 1). 

 

Fig. 1. Kinematics of a point target. 

Assume a point target is moving at a vector velocity v, and then the kinematic vector 
equation can be expressed as 
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 ( ) (0) .t t R R v  (1) 

which in matrix form can be rewritten as 

 
( ) (0)

.
( ) (0)

x

y

vx t x
t

vy t y

    
      

      
 (2) 

where (0) (0).cosx R  , (0) (0).siny R  are the coordinates of the initial position of the 

target (point A); 2 2(0) (0) (0)R x y  is the module of the initial vector;   is the initial 

aspect angle; .cosxv v  , .sinyv v   are the coordinates of the vector velocity; v is the 

module of the vector velocity and  is the angle between vector velocity and Ox axis. 

The time dependent distance ISAR – point target can be expressed as 

 2 2( ) (0) ( . ) 2( (0). ).R t R v t t   R v , (3) 

where (0).R v  is the inner product, defined by (0). (0) (0)x yx v y v R v  or 

(0). (0). .cosR v R v ;      is the angle between position vector (0)R  and vector 

velocity v , defined by the equation 

 
(0). ( ).

arccos
(0).

x yx v y t v

R v



 . (4) 

Then Eq. (3) can be rewritten as 

 2 2( ) (0) ( . ) 2 (0)( . )cosR t R v t R v t    , (5) 

where (0)R is the distance to the target at the moment t  0, measured on OA, the initial line 

of sight (LOS). 

The radial velocity of the target at the moment t is defined by differentiation of Eq. (5), i.e. 

 
2

2 2

( ) (0). .cos
( )

(0) ( . ) 2 (0). . .cos
r

dR t v t R v
v t

dt R v t R v t






 

 
. (6) 

If t  0, the radial velocity (0) cosrv v  . In case the angle   0, then (0)rv v . At the 

moment t  T when . (0)cosv T R    the target is on the traverse, then ( ) 0rv T  , and  

(0)cosR
T

v


 , which for the kinematics in Fig. 1 requires an angle   to have a value 

/ 2  . The time variation of the radial velocity of the target causes a time dependent 

Doppler shift in the frequency of the signal reflected from the target. 

2.2 Doppler frequency of a moving point target 

Assume that the ISAR emits to the target a continuous sinusoidal waveform, i.e. 
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 0( ) exp( )s t A j t , (7) 

where 0A  is the amplitude of the emitted waveform, 
2 .

2
c

f
 


   is the angular 

frequency, f is the carrier frequency,   is the wavelength of the emitted waveform, c  3.108 

m/s is the speed of the light in vacuum. 

The signal reflected from the target can be defined as a time delayed replica of the emitted 
waveform, i.e. 

 ( ) exp( ( ))i is t A j t t   (8) 

where iA  is the amplitude of the reflected signal, 
2 ( )i

i

R t
t

c
  is the time delay of the replica 

of the emitted waveform, ( )iR t  is the radial slant range distance to the target, calculated by 

Eq. (5). Define the general phase of the reflected signal as 

 
2 ( )

( ) iR t
t t

c
     
 

. (9) 

Then the current angular frequency of the reflected signal can be determined as 

 
( )( )

ˆ( ) 2 . idR td t
t

dt c dt

 
   , (10) 

 
( )( ) 4

ˆ( ) . idR td t
t

dt dt

 



   , (11) 

where 
( )4

( ) . i
D

dR t
t

dt




  is the angular time dependent Doppler frequency. 

For the closing target 
( )

0idR t

dt
 , then the angular Doppler frequency is a negative, 

( ) 0D t  , and current angular frequency of the signal reflected from the target, ˆ( )t , 

increases, i.e. ˆ( ) ( )Dt t    . For a receding target
( )

0idR t

dt
 , then the angular Doppler 

frequency is a positive, ( ) 0D t  , and current frequency of the signal reflected from the 

target, ˆ( )t , decreases, i.e. ˆ( ) ( )Dt t    . 

Based on Eq. (6) the angular Doppler frequency can be expressed as 

 
2

2 2

4 . (0). .cos
( )

(0) ( . ) 2 (0). . cos
D

v t R v
t

R v t R v t

 
 




 
. (12) 

Accordingly the absolute Doppler frequency can be defined as 

 
2

2 2

2 . (0). .cos
( ) .

(0) ( . ) 2 (0). . .cos
D

v t R v
F t

R v t R v t


 




 
. (13) 
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If t  0, then 
2

(0) . .cosDF v 


 . If   0, then 
2

(0) .DF v


 . At the moment t  T, i.e 

. (0)cosv T R    the target is on the traverse, then ( ) 0DF T  .  At the particular moment t 

and 0  , 
2

( ) .DF t v


  is constant, and for / 2  , 
2

2 2

2 .
( ) .

(0) ( . )
D

v t
F t

R v t



. Hence in 

case 0  the Doppler frequency is time dependent during the aperture syntheses, coherent 

processing interval (CPI), but only one value has a meaning for ISAR imaging, the value 
defined at the moment of imaging, which will be proven in subsection 3.3. 

2.3 Numerical experiments 

2.3.1 Example 1 

Assume that the point target is moving at the velocity v =29 m/s and illuminated by a 

continuous waveform with wavelength  = 3.10-2 m (frequency 1010f  Hz). CPI time t = 712 

-722 s s, initial distance R(0) = 105 m, guiding angle   0.9., position angle  = /3. The 

calculation results of the current signal frequency and Doppler frequency are illustrated in 

Figs 2, (a), and (b). 

   
            (a) Current ISAR signal frequency                                (b) Doppler frequency 

Fig. 2. Current ISAR signal and Doppler frequency caused by time varying radial velocity. 

It is worth noting that the current signal frequency decreases during CPI due to the 

alteration of the value and sign of the Doppler frequency varying from -3 to 3 Hz. At the 

moment t = 717 s the Doppler frequency is zero. The time instance where Doppler changes 

its sign (zero Doppler differential) can be regarded as a moment of target imaging. 

Computational results of the imaginary and real part of ISAR signal reflected by a point 

target with time varying radial velocity are presented in Figs. 3, (a), and (b). It can be clearly 

seen the variation of the current frequency of the signal due to the time dependent Doppler 

frequency of the point target. The existence of wide bandwidth of Doppler variation in the 

signal allows multiple point scatterers to be potentially resolved at the moment of imaging. 
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            (a) Imaginary part of an ISAR signal                    (b) Real part of an ISAR signal. 

Fig. 3. Imaginary and real part of ISAR signal reflected by a point target. 

2.3.2 Example 2 

It is assumed that the point target moves at the velocity v =29 m/s and is illuminated with 

continuous waveform with wavelength  = 10-2 m (frequency 103.10f  Hz). CPI time  

t = 0 - 2 s, initial distance R(0) = 30 m, guiding angle  =  and position angle,  = 0. The 

calculation results of the current signal frequency and Doppler frequency are illustrated in 

Figs 4, (a), and (b). 

  
              (a) Current ISAR signal frequency                              (b) Doppler frequency 

Fig. 4. Current ISAR signal frequency and Doppler frequency with a constant radial velocity. 

It can be seen that the current signal frequency has two constant values during CPI due to 

the constant Doppler frequency with two signs, -5.8 Hz and +5.8 Hz. At the moment t = 1.04 

s the Doppler frequency alters its sign. The time instance where Doppler changes its sign 

(zero Doppler differential) can be regarded as a moment of point target imaging that means 

one point target can be resolved.  
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           (a) Imaginary part of an ISAR signal                      (b) Real part of an ISAR signal. 

Fig. 5. Imaginary and real part of ISAR signal reflected by a point target. 

Computational results of the imaginary and real part of ISAR signal reflected by a point 

target with constant radial velocity are presented in Figs. 5, (a), and b. It can be clearly seen 

the change of the phase in the imaginary part of the ISAR signal. 

3. ISAR signal formation and imaging with a sequence of monochromatic 
short pulses 

3.1 3-D ISAR geometry and kinematics 

The basic characteristic in ISAR imaging is the time dependent distance between a particular 

generic point from the target and ISAR. Consider 3-D geometry of ISAR scenario with radar 

and moving target in the coordinate system Oxyz (Fig. 6). The target is located in a regular 

grid, defined in the coordinate system 'O XYZ . The generic point scatterer g from the target 

area is specified by the index vector ( , , )i j k , i.e. ( , , )i j kg . The position vector ( )ijk pR of the 

ijk th generic point scatterer in the coordinate system Oxyz  at the moment p  is described 

by the following vector equation 

 00( ) (0)
2

ijk p ijk

N
p T p

     
 

R R V AR , (14) 

where 2 2( ) ( ), ( ), ( )
T

ijk ijk ijk ijkp x p y p z p   R , ( ), ( )ijk ijkx p y p , and ( )ijkz p  are the current 

coordinates of the generic point, pT denotes the pulse repetition period; 1,p N  denotes 

the index of the emitted pulse, N  denotes the full number of the emitted pulses during CPI; 

 00' 00' 00' 00'(0) (0), (0), (0),
T

x y zR  is the position vector of the target geometric center, that 

locates a point 'O  at the moment 
2

N
p  , [ , , ]Tx y zV V VV  denotes the vector velocity with 

coordinates cosxV V  , cosyV V   and coszV V  ; [ , , ]Tijk ijk ijk ijkX Y ZR  denotes the 

position vector of the ijk th generic point; ( )ijkX i X  , ( )ijkY j Y   and ( )ijkZ k Z   denote 
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the discrete coordinates of the ijk th generic point in the coordinate system 'O XYZ ;  

X , Y  and Z  denote the dimensions of the grid cell; cos , cos  and 

2 2cos 1 cos cos      are the guiding cosines; V  is the module of the vector velocity. 

 

Fig. 6. Geometry of 3-D ISAR scenario. 

The elements of the transformation matrix A  in Eq. (14) are determined by the Euler 
expressions 

 

11

12

13

21 31

22 32

23 33

cos cos sin cos sin ;

cos sin sin cos cos ;

sin sin ;

sin cos cos cos sin ; sin sin ;

sin sin cos cos cos ; sin cos ;

cos sin ; cos .

a

a

a

a a

a a

a a

    
    

 
      
      
  

 
  

  
   
  

 (15) 

The projection angles ,   and  , defining the space orientation of the 3-D grid are 

calculated by components , ,A B C  of the normal vector to the plane that specifies the 

position of the target, and coordinates of the vector velocity, i.e. 

 arctan
A

B
    

 
;

1
2 2 2 2

arccos

[( ) ( ) ( ) ]

C

A B C

 

 

 (16) 

 
1

2 2 2 2 2 2

arccos

{[( ) ( ) ][( ) ( ) ( ) ]}

x y

x y z

V B V A

A B V V V






  

. (17) 
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The components , ,A B C  of the normal vector are determined by the components of the 

position vector  00' 00' 00' 00'(0) (0), (0), (0),
T

x y zR , vector velocity of the target and vector 

position of an arbitrary reference point 0 0 0 0[ (0), (0), (0)]Tx y zR in the coordinate system 

Oxyz by expressions 

 
00' 0 00' 0

00' 0 00' 0

00' 0 00' 0

[ (0) (0)] [ (0) (0)];

[ (0) (0)] [ (0) (0)];

[ (0) (0)] [ (0) (0)].

z y

x z

y x

A V y y V z z

B V z z V x x

C V x x V y y

   

   
   

 (18) 

The projection of the vector equation (14) on Cartesian coordinates yields 

 

00'

11 12 13

00' 21 22 23

31 32 33

00'

(0) .
2( )

( ) (0) . . .
2

( )
(0) . .

2

x p

ijk ijk

ijk y p ijk

ijk ijk

z p

N
x V p T

x p Xa a a
N

y p y V p T a a a Y

a a az p Z
N

z V p T

                                                
  

, (19) 

then the distance between the generic point and ISAR can be expressed as 

 
1

2 2 2 2( ) ( ) ( ) ( )ijk ijk ijk ijkR p x p y p z p    
 (20) 

Eq. (20) is used in calculation of the time delay of the signal reflected by a particular generic 
point scatterer from the target area while signal modeling. 

3.2 Short pulse ISAR signal formation 

Consider 3-D ISAR scenario (Fig. 6) and a generic point g from the target illuminated by 
sequence of short monochromatic pulses, each of which is described by 

 ( ) .rect exp( . )
t

s t A j t
T

   
 

, (21) 

1, 0 1,
rect

0, otherwise.

t
t

T
T

   


 

where A is the amplitude of the emitted signal, 2
c 


  is the angular frequency; c  83.10  

m/s is the speed of the light in vacuum;  is the wavelength of the signal; T is the timewith 
of the emitted pulse. 

The signal reflected by the generic point scatter can be written as 

 
( )

( , ) rect exp{ [ ( )]}
t t p

s p t a j t t p
T




 g
g g g

, (22) 
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( )
( ) 1, 0 1,

rect

0, otherwise.

t t p
t t p

T
T

   


g
g  

where 
2 ( )

( )
R p

t p
c

 g
g  is the time delay of the signal, g stands for the discrete vector  

coordinate that locates the generic point scatterer in the target area G, ag  stands for the 

magnitude of the 3-D discrete image function, mod pt t T  is the slow time, p denotes the 

number of the emitted pulse, pT  is the pulse repetition period,  pt t pT   is the fast time, 

presented as .t k T , where k is the number of range bin, where the ISAR signal is placed. 

The demodulated ISAR signal from the target area is  

 
. ( )

( , ) rect .exp{ ( )]}
k T t p

s p k a j t p
T





  g

g g
g G

. (23) 

The expression (23) is a weighted complex series of finite complex exponential base 

functions. It can be regarded as an asymmetric complex transform of the 3-D image function 

ag , g G , defined for a whole discrete target area G into 2-D signal plane ( , )s p k .  

3.3 Image reconstruction from a short pulse ISAR signal 

Eq. (23) can be rewritten as 

 

2 ( )
.

4
( , ) .rect .exp ( )

R p
k T

cs p k a j R p
T




     


g

g g
g G

 (24) 

Formally for each kth range cell the image function can be extracted by the inverse transform 

 
1

4
ˆ ( , )exp ( )

N

p

a s p k j R p



    
g g

 (25) 

where p is the number of emitted pulse, N is the full number of emitted pulses during CPI. 

Because ( , )s p k  is a 2-D signal, only a 2-D image function âg  can be extracted. Eq. (25) is a 

symmetric complex inverse spatial transform or inverse projective operation of the 2-D 

signal plane ( , )s p k into 2-D image function âg , and can be regarded as a spatial correlation  

between ( , )s p k  and 
4

exp ( )j R p



 
  

g . Moreover, Eq. (25) can be interpreted as a total  

compensation of phases, induced by radial displacement ( )R pg  of the target. Taylor 

expansion of the distance to the generic point, ( )R pg  at the moment of imaging is 

 2 3( ) ( ) ( ) ( ) ...
2! 3!

p p p

a h
R p r v pT pT pT    g g

g g g
, (26) 

where rg , vg , ag  and hg is the distance, radial velocity, acceleration and jerk of the generic 

point, respectively at the moment of imaging. 
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Due to range uncertainty of generic points placed in the kth range resolution cell, rg can be 

assumed constant, and (25) can be written as 

   2 3

1

4 4
ˆ exp , exp [ ( ) ( ) ( ) ...]

2! 3!

N

p p p
p

a h
a j r s p k j v pT pT pT

 
 

            
 g g

g g g
.      (27) 

Eq. (27) stands for a procedure of total motion compensation of every generic point from kth 

range resolution cell. The range distance rg  does not influence on the image reconstruction 

and can be removed from the equation (27), i.e. 

   2 3

1

2 1 1
ˆ , exp 2 [ ( ) ( ) ( ) ...]

3

N

p p p
p

a s p k j v pT a pT h pT
 

     
 

g g g g
. (28) 

For each kth range cell the term 
2

v
 g  stands for the Doppler frequency whereas terms as 

2
a

 g , 
2

h
 g …., denote the higher order derivations of the time dependent Doppler 

frequency, defined at the moment of imaging.  

If the Doppler frequency of generic points in the kth range cell is equal or tends to constant 
during CPI the equation (28) reduces to the following equation of radial motion compensation 

 
1

2
ˆ ( , )exp 2 . ( )

N

p
p

a s p k j v pT


     
  

g g
. (29) 

Denote 
2

ˆ. Dv p F


 g , where 
1

D
p

F
NT

   is the Doppler frequency step; p̂  is the unknown 

Doppler index at the moment of imaging; then the complex image function ˆ ˆ ˆ( , )a a p kg g  in 

discrete space coordinates can be written as 

   
1

ˆ
ˆ ˆ( , ) , exp 2

N

p

pp
a p k s p k j

N




   
 

g
.  (30) 

The equation (30) stands for an IFT of  ,s p k  for each kth range resolution cell and can be 

considered as phase and/or motion compensation of first order. 

Denote 1

2
a v


 g , 2

2
a a




 g , 3

2

3
a h




 g , then (28) can be rewritten as 

      2 3
2 3 1

1

ˆ , exp [ ( ) ( ) ...] exp 2 ( )
N

p p p
p

a s p k j a pT a pT j a pT


  g  (31) 

Denote 2
2( ) ( ) ... ( )m

p m pp a pT a pT    as a phase correction and/or motion compensation 

function of higher order, then 

  
1

ˆ
ˆ ˆ( , ) ( , )exp ( ) .exp 2

N

p

pp
a p k s p k j p j

N




        
g . (32) 
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where ˆ ˆ( , )a p kg  denotes the complex azimuth image of the target, p̂  denotes the unknown 

index of the azimuth space coordinate equal to the unknown Doppler index of the generic 

point scatterer from the target at the moment of imaging. The polynomial coefficients ma , m 

 2, 3, are calculated iteratively via applying image quality criterion, which will be discussed 

in subsections 4.4. 

Eq. (32) can be interpreted as an ISAR image reconstruction procedure implemented 

through inverse Fourier transform (IFT) of a phase corrected ISAR signal into a complex 

azimuth image ˆ ˆ( , )a p kg  for each kth range cell. In this sense the ISAR signal ( , )s p k can be 

referred to as a spatial frequency spectrum whereas ˆ ˆ( , )a p kg  can be referred to as a spatial 

image function defined at the moment of imaging. Based on Eq. (32) two steps of image 

reconstruction algorithm can be outlined. 

Step 1 Compensate the phases, induced by higher order radial movement, by multiplication 

of  ,s p k  with the exponential term exp[ ( )]j p , i.e. 

 ˆ( , ) ( , )exp[ ( )]s p k s p k j p   (33) 

Step 2 Compensate the phases induced by first order radial displacement of generic points in 
the kth range cell by applying IFT (extract complex image), i.e. 

 
1

ˆ
ˆ ˆ ˆ( , ) ( , ).exp 2

N

p

pp
a p k s p k j

N




   
 

g  (34) 

Complex image extraction can be implemented by inverse fast Fourier transform (IFFT). The 

algorithm can be implemented if the phase correction function ( )p  is preliminary known.  

Otherwise only IFT can be applied. Then non compensated radial acceleration and jerk of 

the target still remain and the image becomes blurred (unfocused). In order to obtain a 

focused image motion compensation of second, third and/or higher order has to be applied, 

that means coefficients of higher order terms in ( )p  have to be determined. The definition 

and application of these terms in image reconstruction is named an autofocus procedure 

accomplished by an optimization step search algorithm (SSA) which will be discussed in 

subsection 4.4. 

4. ISAR signal formation and imaging with a sequence of LFM waveforms 

4.1 LFM waveform 

Consider 3-D ISAR scenario (Fig. 6) and a target illuminated by sequence of LFM 
waveforms, each of which is described by 

  2( ) .rect exp
t

s t A j t bt
T

         
, (35) 

where pt t pT   is the fast time and mod pt t T  is the slow time; p is the index of emitted 

pulse; pT  is the pulse repetition period; 2
c 


  is the carrier angular frequency; 83.10c   

m/s is the speed of the light;  is the wavelength of the signal; T  is the timewidth of a LFM 
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waveform; 
2 F

b
T


  is the LFM rate. The bandwidth 2 F  of the transmitted waveform 

provides the dimension of the range resolution cell, i.e. / 2R c F   . 

4.2 LFM ISAR signal model 

The deterministic component of the ISAR signal, reflected by the gth generic point scatterer 
has the form 

    2( )
( , ) rect exp ( ) ( )

t t p
s p t a j t t p b t t p

T


           
g

g g g g  (36) 

( )
( ) 1,0 1

rect

0,otherwise

t t p
t t p

T
T

   


g
g

, 

where ag  is the reflection coefficient of the gth generic point scatterer, a 3-D image function;  

( )
( )

R p
t p

c
 g

g  is the round trip time delay of the signal from gth generic point scatterer; 

( ) mod[ ( )]R p pg gR , min[ ( ) 1]t k p k T   g  is the fast time, 1, ( )k K p K   is the sample 

number of a LFM pulse; /K T T   is the full number of samples of the LFM pulse, T is 

the time duration of a LFM sample, 
min

min

( )
( )

t p
k p

T

 
   

g
g  is the number of the radar range 

cell where the signal, reflected by the nearest point scatterer of the target is detected, 

min
min

2 ( )
( )

R p
t p

c
 g

g  is the minimal time delay of the SAR signal reflected from the nearest 

point scatterer of the target, max min( ) ( ) ( )K p k p k p g g  is the relative time dimension of the 

target; 
max

max

( )
( )

t p
k p

T

 
   

g
g  is the number of the radar range bin where the signal, reflected 

by farthest point scatterer of the target is detected; 
max

max

2 ( )
( )

R p
t p

c
 g

g  is the maximum 

time delay of the SAR signal reflected from the farthest point scatterer of the target.  

The ISAR signal in discrete form can be written as 

   2ˆ( , ) ˆ ˆ( , ) ( , ) rect exp ( , ) ( , )
t p k

s p k s p k a j t p k b t p k
T


 

           
 g g

g G g G

 (37) 

ˆ ( , )ˆ ( , ) 1 if 0 1,
rect

0  otherwise.

t p k
t p k

T
T

      
    

g
g

 

where min
ˆ ( , ) [ ( ) 1] ( )t p k k p k T t p    g g g . 
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Demodulation of the ISAR signal return is performed by its multiplication by the complex 
conjugated emitted waveform, i.e. 

      2 2
( )

ˆ( , ) rect exp ( ) ( ) .exp
t t p

s p t a j t t p b t t p j t bt
T

 


                
 g

g g g
g G

  (38) 

which yields 

   2
( )

ˆ( , ) rect exp 2 ( ) ( )
t t p

s p t a j bt t p bt p
T





      g

g g g
g G

. (39) 

Denote the current angular frequency of emitted LFM pulse as ( ) 2t bt   , which in 

discrete form  can be expressed as 2 ( 1)k b k T     , where   is the carrier angular 

frequency, and b is the chirp rate, k is the LFM sample number, T is the time length of the 

sample, then Eq. (39) can be rewritten as  

 

2
( )

( ) 2 ( )
ˆ( , ) rect exp 2 ( )

R p
t R p R pcs p t a j t b

T c c




                


g

g g
g

g G

, (40) 

which in discrete form can be expressed as 

 

2ˆ ( , ) ( ) 2 ( )
ˆ( , ) rect exp 2 k

t p k R p R p
s p k a j b

T c c




               
 g g g

g
g G

. (41) 

Eq. (41) can be interpreted as a spatial transform of the 3-D image function ag  into 2-D ISAR 

signal plane ˆ( , )s p k  by the finite transformation operator, the exponential term 

 
2

( ) 2 ( )
exp 2 k

R p R p
j b

c c


              

g g . (42) 

Formally the 3-D image function ag  should be extracted from 2-D ISAR signal plane by the 

inverse spatial transform but due to theoretical limitation based on the number of 

measurement parameters only a 2-D image function may be extracted, i.e.  

 
2( )

1 1

( ) 2 ( )
ˆ ˆ( , ).exp 2

K p KN

k
p k

R p R p
a s p k j b

c c





 

              
  g g

g G
. (43) 

Extraction of the image function is a procedure of complete phase compensation of the 
signals reflected by all point scatterers from the object that means total compensation of 
target movement during CPI. The argument of the exponential term (43), 

2
( ) 2 ( )

2 k

R p R p
b

c c


         

g g
 is a complex function infinitely differentiable in a neighborhood 
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of the moment of imaging that allows 2-D Taylor expansion  on range and azimuth direction 
to be applied, i.e. the following polynomial of higher order to be defined 

 

2

2
0 1 2

2
1 2 2

( ) 2 ( )
2 .( ) .( ) ... ( )

.( ) .( ) ... ( ) ( )( ) ...

m
k p p m p

m
m p

R p R p
b a a pT a pT a pT

c c

b k T b k T b k T c pT k T


             
         

g g

 (44) 

The constant terms 0a  has noting to do with phase correction and can be neglected. The 

linear terms 1.( )pa pT  and 1.( )b k T  are redefined as 1

ˆ
( ) 2p

pp
a pT

N
  and 1

ˆ
( ) 2

ˆ
kk

b k T
K

  , 

where ˆ ˆ ˆ ˆ( ), ( )k k p p g g denote the new unknown range and cross-range space coordinates 

of the gth generic point at the instant of imaging, ˆ ( )K K K p   denotes the number of range 

cells for each emitted pulse. The sum of higher order terms is signified as 

 2 2
2 2 2( , ) .( ) ... ( ) .( ) ... ( ) ( )( ) ...m m

p m p m pp k a pT a pT b k T b k T c pT k T             (45) 

then 

 

2 ˆ( ) 2 ( ) ˆ
2 2 2 ( , )k

R p R p pp kk
b p k

c c N K
  

            

g g
. (46) 

Substitute (46) in (43), then  

 

ˆ

1 1

ˆˆˆˆ ˆ ˆ( , ) ( , )exp ( , ) 2 2
N K

p k

pp kk
a p k s p k j k p

N K
 

 

  
         
g , (47) 

where ˆ 1,p N , ˆ 1, ( )k K p K  .  

Eq. (47) can be rewritten as 

  
ˆ

1 1

ˆ ˆˆˆ ˆ ˆ( , ) ( , ).exp ( , ) .exp 2 exp 2 .
ˆ

N K

p k

ppkk
a p k s p k j k p j j

NK
 

 

               
 g  (48) 

Eq. (48) can be considered as an image reconstruction computational procedure, which does 

reveal the 2-D discrete complex image function ˆˆ ˆ( , )a p kg . 

4.3 LFM ISAR image reconstruction algorithm 

Based on the previous analysis the following image reconstruction steps can be defined.  

Step 1 Compensate phase terms of higher order by multiplication of complex matrix ˆ( , )s p k  

by a complex exponential function  exp ( , )j p k , i.e. 

  ˆ( , ) ( , ).exp ( , )s p k s p k j p k   (49) 
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Step 2 Range compress ( , )s p k  by discrete IFT, i.e. 

 
ˆ

1

ˆ1ˆ( , ) ( , ).exp 2
ˆ ˆ

K

k

kk
s p k s p k j

K K




 
   

 
  . (50) 

Step 3 Azimuth compress ˆ( , )s p k , i.e. extract a complex image by IFT 

 
1

ˆ1ˆ ˆˆ( , ) ( , ).exp 2 .
N

p

pp
a p k s p k j

N N




   
 

g               (51) 

Step 4 Compute the module of the complex image by 

 
1

ˆ1ˆ ˆˆ( , ) ( , ).exp 2
N

p

pp
a p k s p k j

N N




   
 

g  . (52) 

The aforementioned algorithm is feasible if the phase correction function ( , )p k  is a priory 

known. Otherwise, a focused image is impossible to extract. In this case taking into account 

the linear property of computational operations in (48) the image extraction algorithm may 

start with 2-D IFT (range and cross range compression) of the demodulated ISAR signal, the 

complex matrix ˆ( , )s p k , i.e. 

 

ˆ

1 1

ˆ ˆˆˆ ˆ( , ) ( , ).exp 2 exp 2 .
ˆ

N K

p k

ppkk
a p k s p k j j

NK
 

 

               
 g  (53) 

It is worth noting that 2-D IFT are interpreted as a spatial correlation of the complex 

frequency spectrum, ˆ( , )s p k with the exponential terms 
ˆ

exp 2
ˆ

kk
j

K


 
  
 

and 
ˆ

exp 2
pp

j
N

 
 
 

that 

reveal unknown range, k̂  and cross range, p̂  space coordinates of a 2-D image function 

ˆˆ( , )a p kg  in the area of all possible values ˆ 1,p N  and ˆ 1, ( )k K p K  . 

4.4 Autofocusing phase correction by image entropy minimization 

If the image obtained by only range (50) and azimuth (51) compression is blurred a higher 

order phase correction has to be applied, i.e. to perform  ˆ( , ) ( , ).exp ( )s k p s k p j p  . The 

phase correction or motion compensation of higher order is an autofocus procedure. It 

requires determination of coefficients 2a … ma , 2b … mb  and 2c of the polynomial (45). The 

computational load is reduced if ( , ) ( )p k p    for each k, i.e. (45) is limited to 

 2
2( ) .( ) ... ( )m

p m pp a pT a pT     (54) 

An iterative SSA is applied to find out optimal values of the coefficients using entropy as a cost 

function to evaluate the quality of the image. At first step 2a  is calculated, at second - 3a , etc. 

The exact value of each coefficient ma , 2,3,...m   is computed iteratively, starting from 
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0ma  and increasing by 0.01ma   in case the image quality gets better. If the image quality 

does not improve or gets worse go to computation of the next coefficient 1ma   or stop the 

procedure. In practice the quadratic term has a major impact on the phase correction process. 

Let ( )s p  be a phase correction function, defined at the sth iteration, and then the phase 

correction is accomplished by 

 ˆ( , ) ( , )exp( ( ))s ss p k s p k j p   . (55) 

After current phase correction and image extraction by range and cross-range (azimuth) 
compression, calculate a power normalized image as 

 

2

,

ˆ
2

,
1 1

ˆˆ( , )
ˆˆ( , )

ˆˆ( , )

s

s N K

s
p k

a p k
I p k

a p k
 





g

g

. (56) 

Calculate entropy of the normalized ISAR image 

 
ˆ

1 1

ˆ ˆˆ ˆ( , )ln[ ( , )]
N K

s s s
p k

H I p k I p k
 

  . (57) 

The estimate of the optimal values of coefficients corresponds to the minimum of the 
entropy image cost function, i.e. 

  ˆˆ ˆarg min [ ( , )]
m

m s s
a

a H I p k . (58) 

The procedure is repeated until the global minimum value of the entropy sH  is acquired. 

4.5 Numerical experiment 

To verify the properties of the LFM ISAR signal model and to prove the correctness of the 

image reconstruction algorithm a numerical experiment is carried out. Assume the target, 

Mig-35, detected in 3-D coordinate system 'O XYZ  is moving rectilinearly in a coordinate 

system Oxyz . Kinematical parameters: velocity 400V   m/s; guiding angles 0.92  ; 

0.5   ; 0.42  , coordinates of the mass-center at the moment ( / 2p N ): 
3

00'(0)  36,3.10x  m; 3
00'(0) 71,3.10y  m; 3

00'(0) 5.10z  m; reference coordinates: 0(0) 10x   

m; 4
0(0) 5.10y   m; 3

0(0) 2.10z  m. LFM emitted pulse: wavelength 23.10   m; pulse 

repetition period 21.32.10pT  s, LFM pulse timewidth 610T  s; number of LFM samples 

K  300; timewidth of LFM sample 80.33.10T   s; bandwidth 81.5.10F  Hz, LFM rate 
143.10b  2s ; number of emitted pulses during CPI N  500. Dimensions of the grid cell: 

X = Y = Z = 0.5  m; reference points on grid axes , ,X Y Z , 1,64i  , 1,64j  1,10k  . 

Target intensities 0.01ijka  , out of target intensities 0.001ijka  . 

The complex spatial frequency spectrum and 2-D space image function are presented in 

Figs. 7 and 8, respectively. The entropy and final focused image of Mig-35 are illustrated in 

Figs. 9 and 10, respectively. 
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           (a) Imaginary part of the ISAR signal                   (b) Real part of the ISAR signal 

Fig. 7. Complex ISAR signal - complex spatial frequency spectrum. 

         
          (a) Module of the 2-D space image function              (b) Unfocused image of Mig-35 

Fig. 8. 2-D isometric space image function and 2-D unfocused image of Mig-35 after azimuth 
compression by second IFT. 

                     
                (a) Evolution of the image entropy                (b) Final focused image of Mig-35 

Fig. 9. Image entropy and final focused image of Mig-35 by step 47 and minimal entropy 6.2. 
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5. ISAR signal formation and imaging with a sequence of PCM waveforms 

5.1 PCM waveform 

Consider 3-D ISAR scenario (Fig. 6) and a target a sequence of phase-code modulated (PCM) 
pulse trains (bursts).  Each PCM pulse train is described by  

   0( ) exp ( )
t

s t A j t b t
T

     rect ,      (59) 

where pt t pT   is the fast time and mod pt t T  is the slow time; p is the index of the 

emitted pulse train; pT  is the burst repetition period; 0  is the initial phase of a PCM 

pulse, 1,k K  is the index of the PCM segment, /K T T   is the full number of PCM 

segments; T  is the time duration of the phase-code modulated pulse train, T is the 

timewidth the phase segment, ( ) {0,1}b t  is the binary parameter of the PCM train.  

5.2 PCM ISAR signal model 

Deterministic component of the ISAR signal return reflected by the gth generic point 

scatterer if 0 0  is defined by 

  ( )
( , ) rect exp ( ( )) ( )

t t p
s p t a j t t p b t

T
 


     

g
g g g , (60) 

( )
( ) 1, if 0 1;

rect

0, otherwise.

t t p
t t p

T
T

   


g
g  

The deterministic component of the ISAR signal return reflected from the target for every 
p th pulse train is described by   

  ( )
( , ) rect exp ( ( )) ( )

t t p
s p t a j t t p b t

T
 




      g

g g
g G

. (61) 

Eq. (61) is a weighted complex series of finite base functions, ISAR signals from all generic 

points. It can be regarded as an asymmetric complex transform of the 3-D image function 

a g G , into a 2-D signal plane ˆ( , )s k p . Computing rect[ ( ) / ]t t p T g  time delays ( )t pg  are 

arranged in ascending order. An index k̂  different from this order is introduced i.e. 
ˆ
( )kt pg . 

Denote 
ˆ ˆ

min
ˆ ( ) ( ( ) 1) ( )k kt p k p k T t p    g g g , then Eq. (60) in discrete form can be written as 

  
ˆ

ˆ
ˆ ( ) ˆˆ( , ) rect .exp ( ) ( 1)

k
k

t p
s p k a j t p b k k T

T
 



         g
g g

g G

, (62) 

ˆ
ˆ ˆ ( )ˆ ( ) 1, if 0 1rect

0, otherwise

k
k t pt p

TT


   



g
g . 
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where k̂  stands for a current range number k for which 
ˆˆrect[ ( ) / ]kt p Tg  yields 1 first time. It 

is possible for many time delays, ( )t pg  the index k̂  to have one and the same value. The 

index k̂  is considered as a space discrete range coordinate of a gth generic point at the 

moment of imaging. 

5.3 PCM ISAR image reconstruction procedure 

Based on the phase demodulated ISAR signal 

  
ˆ

ˆ

min

ˆ ( ) ˆˆ( , ) rect exp ( ( ) ( )) (( 1) )

k
k

t p
s p k a j k p T t p b k k T

T
 



           g
g g g

g G

. (63) 

formally the 3-D image function ag  should be extracted from 2-D ISAR signal plane by the 

inverse spatial transform but due to theoretical limitation based on the number of 

measurement parameters only a 2-D image function may by determined, i.e.  

  
ˆ

ˆ

min
ˆ1

ˆˆ ( , )exp ( ( ) ( )) (( 1) )
N k K

k

p k k

a s p k j k p T t p b k k T 


 

         g g g
, (64) 

Eq. (64) can be rewritten as 

  
ˆ

ˆ

min
ˆ1

ˆˆ ˆ( , )exp[ ( 1) ] .exp ( ) ( )
N k K

k

p k k

a s p k j b k k T j k p T t p 


 

           g g g . (65) 

Taylor expansion of the phase term 
ˆ

min( ) ( )k
ijk ijkt p t p   

 can be presented as a polynomial 

function of higher order, i.e. 

 
ˆ 2

min 0 1 2( ) ( ) ( ) ( ) ... ( )k m
ijk p p m pk p t p a a pT a pT a pT        g

. (66) 

The linear term 1( )pa pT  is reduced to 
2

ˆ.p p
N


 and considered as a Fourier operator, p̂ is the 

discrete unknown coordinate of the gth generic point scatterer placed in the kth range cell, N 
is the number of emitted PCM trains during CPI. The constant term has nothing to do with 
the image reconstruction and is removed. The rest sum of the terms in (66) are denoted as 

 2
2( ) ( ) ... ( )m

p m pp a pT a pT    , (67) 

then (65) can expressed as 

  
ˆ

ˆ1

2ˆ ˆˆ ˆ ˆ ˆ( , ) ( , )exp ( 1) exp ( )
N k K

p k k

a p k s p k j b k k T j pp p
N




 

             
g

, (68) 

Based on the linearity of the operations (68) can be rewritten as 

  
ˆ

ˆ1

2ˆ ˆˆ ˆ ˆ ˆ( , ) ( , ).exp( ( ) .exp[ ( 1) )] exp
N k K

p k k

a p k s p k j p j b k k T j pp
N




 

                  
 g

. (69) 
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Accordingly, the image extraction algorithm can be outlined as follows. 

Step 1 Phase correction by multiplication of the phase demodulated ISAR signal with an 

exponential phase correction function, i.e. 

 ˆ( , ) ( , ).exp[ ( )]s p k s p k j p  . (70)  

Step 2 Range compression is by correlating of the phase corrected ISAR signal ( , )s p k  with 

reference function, complex conjugated of the transmitted PCM signal ˆexp[ ( 1) ]j b k k T    , 

i.e. 

 

ˆ

ˆ

ˆ ˆˆ( , ) ( , )exp[ ( 1) ]
k K

k k

s p k s p k j b k k T




     ,  (71) 

where 1,p N , ˆ 1, ( )k K p . 

Step 3 Azimuth compression and complex image extraction by Fourier transform of the 
range compressed ISAR data, i.e. 

  
1

2ˆ ˆˆ ˆ ˆ( , ) ( , )exp
N

p

a p k s p k j pp
N





       
g  . (72) 

Then the module of the target image can be calculated by 

 
1,

2ˆ ˆˆ ˆ ˆ( , ) ( , )exp
p N

a p k s p k j pp
N





       
g  . (73) 

The aforementioned algorithm is feasible if the phase correction function ( , )p k  is a priory 

known. Otherwise, a focused image is impossible to extract. In this case taking into account 

the linear property of computational operations in (68) the image extraction algorithm may 

start with correlation along range coordinate (range compression) and Fourier transform 

along cross range coordinate (range compression) of the demodulated ISAR signal, the 

complex matrix ˆ( , )s p k , i.e. 

 

ˆ

ˆ1

2ˆ ˆˆ ˆ ˆ ˆ( , ) ( , ).exp[ (( 1) )] exp
N k K

p k k

a p k s p k j b k k T j pp
N




 

                 
 g . (74) 

If the image obtained by only range (71) and azimuth (72) compression is blurred a higher 

order phase correction algorithm has to be applied. It requires determination of coefficients 

2a … ma  in polynomial (67) using a phase correction SSA described in 4.4. 

5.4 Numerical experiment 

A numerical experiment is carried out to verify the properties of the PCM ISAR signal 

model and to prove the correctness of the image reconstruction algorithm. It is assumed that 

the target, helicopter is detected in a coordinate system 'O XYZ and illuminated by Barker’s 
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PCM burst and moving rectilinearly in a coordinate system Oxyz . Kinematic parameters: 

velocity module 25V   m/s; velocity guiding angles 0  , 0.5  , 0.5  ; 

coordinates of the mass-centre: 00'(0) 0x  m, 4
00'(0) 5.10y  m, 3

00' 3.10z  m. Barker’s PCM 

binary function ( )b t : ( ) 0b t   if (1,5,8,9,11,13)t T  , and ( ) 1b t   if (6,7,10,12) ;t T   

wavelength 23.10   m; burst repetition period 35.10pT   s; PCM sample timewidth 
93.3.10T   s; number of burst samples 13K  ; sample index 1,13k  ; PCM burst 

timewidth 942.9.10T  s; number of bursts emitted during CPI 500N  . Grid’s cell 

dimensions 0.5X Y Z      m. Reference points on axes , ,X Y Z  1,100i j   

and 1,40k  , respectively. Isotropic point scatterers are placed at each node of the regular 

grid. Target’s intensities 0.01ijka  , out of target’s intensities 0.001ijka  . 

The real and imaginary part of the complex Barker’s PCM ISAR signal is presented in Fig. 
10, the final image – 2-D space image function - in Fig. 11, and entropy evolution in Fig. 
12. 

   

               (a) Real part of ISAR signal                                (b) Imaginary part of ISAR signal 

Fig. 10. Complex Barker’s PCM ISAR signal as a complex spatial frequency spectrum. 

  
                  (a) Unfocused ISAR image                                      (b) Focused ISAR image 

Fig. 11. Final image – 2-D space image function (pseudo color maps). 
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Fig. 12. Entropy evolution: min 7,43H  by optimal vale of 2 390a  . 

6. Conclusion 

In the present chapter a mathematical description and original interpretation of ISAR signal 

formation and imaging has been suggested. It has been illustrated that both of these 

operations can be interpreted as direct and inverse spatial complex transforms, respectively. 

It has been proven that the image extraction is a threefold procedure; including phase 

correction, range compression performed by IFT in case LFM waveforms and by cross-

correlation in case PCM waveforms, and azimuth compression performed by IFT in both 

cases. It has been underlined that the image reconstruction is a procedure of total motion 

compensation, i.e. compensation of all phases induced by the target motion. Only phases 

proportional to the distances from ISAR to all point scatterers on the target at the moment of 

their imaging still remain. These phases define a complex character of the ISAR image. The 

drawback of the proposed higher motion compensation algorithm is the existence of 

multiple local minimums in entropy evolution in case the target is fast maneuvering. In 

order to find out a global minimum in the entropy and optimal values of the polynomial 

coefficients the computation process has to be enlarged in wide interval of their variation. 

The subject of the future research is the exploration of the image reconstruction algorithm 

with higher order terms and cross-terms of the phase correction polynomial while the target 

exhibits complicated movement. 
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