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1. Introduction 

The seed, which contains the embryo, is the primary entity of reproduction in angiosperms. 

In flowering plants, as in other eukaryotes, the embryo develops from the zygote formed by 

gametic fusion. However, during the course of evolution many plant species have evolved 

different methods of asexual embryogenesis to overcome various environmental and genetic 

factors that prevent fertilization (Sharma & Thorpe, 1995; Raghavan, 1997). 

Somatic embryogenesis (SE), starting from somatic or gametic (microspore) cells without 

fusion of gametes (Williams & Maheswaran, 1986), is one form of asexual reproduction. This 

process occurs either naturally or in vitro after experimental induction (Dodemam et al., 

1997), and is a remarkable phenomenon unique to plants. The process is feasible because 

plants possess cellular totipotency, whereby individual somatic cells can regenerate into a 

whole plant (Reinert, 1959).  

SE has been observed in tissue cultures of several angiosperm and gymnosperm plant 

species, and involves a series of morphological changes that are similar, in several aspects, 

to those associated to the development of zygotic embryos. In soybean (Glycine max (L.) 

Merrill), histological sections of embryogenic structures can be found in some reports 

(Barwale et al., 1986; Finer & McMullen, 1991; Kiss et al., 1991; Liu et al., 1992; Sato et al., 

1993). A characterization of the developmental stages of soybean somatic embryos was 

performed by Christou & Yang (1989), Fernando et al. (2002), Rodrigues et al. (2005), and 

Santos et al. (2006). The pro-embryo, globular, heart-shaped, torpedo and cotyledonary 

embryo stages were found, closely resembling the ontogeny of zygotic embryos. However, 

the absence of a characteristic suspensor, as well as the delay in the establishment of inner 

organization were the main differences between zygotic and somatic embryogenic processes 

(Santos et al., 2006). 
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2. Soybean somatic embryogenic process 

In general, the in vitro soybean somatic embryogenic process can be divided into different 
phases: induction, proliferation, histodifferentiation, maturation, germination and conversion 
into plants.  

2.1 Somatic embryo induction 

According to Sharp et al. (1982), the induction of somatic embryogenesis (Fig. 1 A1, B1, C1) 
can be considered as termination of the existing gene expression pattern in the explant 
tissue, and its replacement for an embryogenic gene expression program in those cells of the 
explant tissue which will give rise to somatic embryos. These authors used the term 
“induced embryogenic determined cell” (IEDC) to describe an embryogenic cell that has 
been originated from a non-embryogenic cell. Cells from very immature zygotic embryos, 
which already have their embryogenic gene expression program activated, were termed 
“pre-embryogenic determined cells” (PEDCs). For the purposes of regeneration, both terms 
may be referred to simply as “embryogenic cells” (ECs) (Carman, 1990; Merkle et al., 1995).  

There is a major developmental difference among explants with respect to the ontogeny of 
somatic embryos. The obtainment of somatic embryogenesis in legumes depends on 
whether the explant tissue consists of PEDCs (for example, very immature zygotic embryos) 
or non-ECs (for example, differentiated plant tissues). In the first case, a stimulus to the 
explant may be sufficient to induce cell division for the formation of somatic embryos, 
which appear to arise directly from the explant tissue in a process referred to as direct 

embryogenesis (Fig. 1 A1, B1). In contrast, non-EC tissue must undergo several mitotic 
divisions in the presence of an exogenous auxin for induction of the ECs. Cells resulting 
from these mitotic divisions are manifested as a callus, and the term indirect embryogenesis 
is used to indicate that a callus phase intervenes between the original explant and the 
appearance of somatic embryos (Fig. 1 C1) (Merkle et al., 1995).  

Thus, the somatic embryo induction process can be achieved using different approaches, as 
illustrated in Figure 1. Somatic embryos induced from very immature zygotic embryos 
(torpedo-stage) upon exposure to cytokinins were only obtained in clovers (Trifolium ssp.) 
(Maheswaran & Williams, 1984) (Fig. 1 A). In soybean, somatic embryos can be induced in 
response to auxins, and regenerated directly from cotyledonary-stage zygotic immature 
embryos without an intervening callus phase (Lazzeri et al., 1985; Finer, 1988; Bailey et al., 
1993; Santarém et al., 1997) (Fig. 1 B). Finally, some legumes, notably alfalfa (Medicago sativa), 
can be regenerated from leaf-derived callus (Bingham et al., 1988). In this case, the tissue 
responds to combinations of auxins and cytokinins (Fig. 1 C).  

The type of growth regulator and explant, as well as genotype ability to respond to in vitro 
stimulus, are the main factors affecting somatic embryogenesis induction. The role of 
exogenous cytokinins during the induction phase depends on whether somatic 
embryogenesis is direct or indirect. When SE is originated from callus, the frequency of 
somatic embryo formation is enhanced by cytokinins. However, in direct systems, such as in 
soybean, in which somatic embryos are formed directly from immature zygotic embryos, 
addition of a cytokinin reduces the frequency of embryo formation (Merkle et al., 1995). 

Soybean SE is induced by two auxins: α-naphthaleneacetic acid (NAA) and  
2,4-dichlorophenoxyacetic acid (2,4-D), but the most commonly used is 2,4-D. The exact 
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mechanism underlying the auxin-induced somatic embryo formation is not understood, but 
some studies with other legumes suggested certain auxin-induced cellular processes such as 
embryo-specific DNA methylation (Vergara et al., 1990), disruption of tissue integrity by 
interrupting cell–cell interaction (Smith & Krikorian, 1989) and establishment of cell polarity 
(Merkle et al., 1995). However, auxins are not the only substances able to induce 
embryogenesis. Several other factors that alter gene expression programs (e.g., stress) or 
disrupt cell-cell interaction (physical disruption of the tissue) can also direct this transition 
(Gharyal & Maheshwari, 1983; Dhanalakshmi & Lakshmanan, 1992).  

 

Fig. 1. Embryogenic processes in legumes. Somatic embryos may be induced (1), 
histodifferentiated/matured (3), desiccated (4), germinated (5), and converted into plants 
(6). Alternatively, auxin can be used to maintain repetitive embryogenesis – embryo 
proliferation (2), which continues until auxin is withdrawn from the medium, allowing 
somatic embryos to resume their development. (A) The youngest zygotic embryos respond 
to cytokinin; (B) older zygotic embryos respond to auxin, and (C) differentiated plant tissues 
respond to combination of auxin and cytokinins by forming callus. (Adapted from Parrott et 
al., 1995. Drawing by S. N. C. Richter) 

www.intechopen.com



 
Genetic Engineering – Basics, New Applications and Responsibilities 

 

148 

The choice of explant is a critical factor that determines the success of most tissue culture 
experiments. Immature, meristematic tissues proved to be the most suitable explant for 
somatic embryogenesis in legumes (Lakshmanan & Taji, 2000). For instance, cotyledons of 
immature zygotic embryos have been the most used explants for the induction of SE in 
soybean (Lazzeri et al., 1985; Finer, 1988; Bailey et al., 1993; Santarém et al., 1997; Droste et 
al., 2002). However, in this species, somatic embryos have also been obtained from leaf and 
stem (Ghazi et al., 1986), cotyledonary node (Kerns et al., 1986), anther (Santos et al., 1997; 
Rodrigues et al., 2005) and embryonic axes (Kumari et al., 2006).  

The last but not least important factor affecting somatic embryo induction is plant genotype 
(Merkle et al., 1995). In soybean, considerable variation in embryogenic capacity was found 
to exist between individual genotypes (Komatsuda et al., 1991; Bailey et al., 1993a, b; Santos 
et al., 1997; Droste et al., 2001; Meurer et al., 2001; Tomlin et al., 2002; Hiraga et al., 2007; 
Yang et al., 2009; Droste et al., 2010) as will be discussed below (Genotype-dependent 
response and screening of highly responsive cultivars section).  

2.2 Embryo proliferation 

A common characteristic of embryogenic tissue is that it can remain embryogenic 
indefinitely. This proliferative process has been variously termed secondary, recurrent or 
repetitive embryogenesis (Fig. 1 B2). In soybean, the primary somatic embryos can have 
multicellular origins, while secondary somatic embryos (i.e. originating from another 
somatic embryo) tend to have unicellular origins (Merkle et al., 1995). Hartweck et al. (1988) 
found somatic embryos originating from groups of cells in soybean zygotic cotyledons, 
while Sato et al. (1993) found embryos proliferating from globular-stage soybean somatic 
embryos that originate from single cells. 

Proliferation of embryogenic cells is apparently influenced by a variety of factors, some of 
which are controlled during the culture process, and some of which are yet undefined. Some 
of the factors that have been investigated are also associated with induction phase, such as 
plant genotype and growth regulators (Merkle et al., 1995).  

The most broadly documented factor associated with continuous proliferation of 
embryogenic cells is auxin. For soybean, secondary somatic embryo proliferation is possible 
if it is maintained in a medium containing the auxin 2,4-D (Finer & Nagasawa, 1988). Single 
epidermal cells have been shown to initiate soybean secondary somatic embryos (Sato et al., 
1993). The exact role of auxin in triggering proliferation is unknown. Furthermore, the level 
of auxin required to maintain repetitive embryogenesis depends on the culture protocol 
adopted.  

2.3 Embryo histodifferentiation and maturation 

After induction, somatic embryos start an ontogenetic development process similar to that 
of their zygotic counterparts (Merkle et al., 1995). The process of organ formation through 
which a globular-stage embryo develops into a cotyledon-stage embryo has been termed 
histodifferentiation (Fig. 1 B3) (Carman, 1990). 

In general, continued embryo histodifferentiation beyond the globular stage and subsequent 
maturation requires the removal of growth regulators from the medium - or at least a 
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decrease in growth regulator concentrations associated with induction and proliferation - 
down to levels that enable proper embryo development (Merkle et al., 1995). Auxins 
suppress the development of the apical meristem, probably governed by the same 
mechanism involved in the establishment of apical dominance (Parrott et al., 1995).  

The role of cytokinins during the histodifferentiation is more difficult to assess. Aung et al. 
(1982) observed a decrease in endogenous cytokinin levels during soybean zygotic embryo 
development. On the other hand, the inclusion of a cytokinin during the histodifferentiation 
phase can compensate for auxin-induced detrimental effects on meristem development. 
Globular-stage soybean somatic embryos, when exposed to a cytokinin, decrease the 
development rates while the apical meristem elongates so as to form multiple shoots 
(Wright et al., 1991).  

Due to the fact that traditional embryogenesis protocols have typically used the same 
medium for histodifferentiation and the subsequent maturation phases, it is difficult to 
review the literature and determine if a given treatment affects the histodifferentiation stage 
or the maturation stage (Merkle et al., 1995). 

Following histodifferentiation, the period of embryo development in which cell expansion 
and reserve deposition occur is considered the maturation phase (Fig. 1 B3) (Bewley et al., 
1985). The time required for somatic embryos to achieve physiological maturity is species-
specific, mirroring the maturation period of zygotic embryos in planta (Parrott et al., 1995). 
Analyses of reserve accumulations in developing somatic embryos have revealed both 
similarities and differences in comparison to zygotic embryos. These differences may 
primarily be attributed to the in vitro maturation conditions used. Many reports on somatic 
embryos reserve accumulations have not been carried out with optimal maturation 
protocols. Hence, manipulation of culture conditions to prolong and improve embryo 
maturation, and to prevent precocious germination, will probably add to the similarities 
observed between zygotic and somatic embryos (Merkle et al., 1995).  

Currently, a trend is observed in the specification of numerous protocols towards providing 
various growth regulators in the medium during embryo maturation. Yet, there is ample 
information suggesting that neither exogenous auxin nor cytokinin is actually required for 
normal embryo maturation, as evidenced by the normal development of soybean zygotic 
(Hsu & Obendorf, 1982) or somatic embryos (Parrott et al., 1988) in media devoid of any 
growth regulators. Indeed, poorly developed meristem or swollen hypocotyls may be an 
undesired outcome of the application of exogenous auxins and cytokinins, respectively. 
Consequently, a treatment that binds and removes auxin, by adding activated charcoal to 
the maturation medium (Ebert & Taylor, 1990), for instance, may improve embryo 
development and enhance germination (Buchheim et al., 1989). Differently from auxins and 
cytokinins, abscisic acid (ABA) may be necessary during embryogenesis to initiate the 
synthesis of storage proteins and proteins involved in desiccation tolerance (Galau et al., 
1990). 

2.4 Embryo germination and conversion into plants 

Embryos removed from maturation conditions for further development often display poor 
or aberrant subsequent germination, growth and vigor (Parrott et al., 1988). These 
observations suggest that further post-maturation treatments are required. One of the 
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fundamental aspects of zygotic embryo development not normally encountered during 
somatic embryo development is desiccation (Fig. 1 B4), which leads to embryo quiescence. It 
has been proposed that desiccation is required for the correct transition from an embryo 
maturation program to a germination program (Kermode, 1990). The desiccation period has 
been linked with the synthesis of proteins associated with the ability to germinate 
(Rosenberg & Rinne, 1986, 1988). Partial desiccation has been shown to enhance conversion 
of soybean somatic embryos (Hammatt & Davey, 1987; Parrott et al., 1988; Buchheim et al., 
1989).  

While most studies report the development of roots and the germination of somatic 
embryos, little distinction is made between germination and conversion. According to 
Ranch et al. (1985), soybean germination refers to both root and shoot development in an 
embryo with intact hypocotyl (Fig. 1 B5). Walker & Parrott (2001) described soybean 
apparent conversion as the development of expanded trifoliolates and branched roots under 
in vitro conditions (Fig. 1 B6). However, according to the authors, the definition of actual 
conversion refers to survival following transfer to soil.  

While germination capacity may be affected by several culture medium components or 
environmental manipulations, one aspect that cannot be manipulated so readily is the 
genetic background of the embryo (Merkle et al., 1995). Studies with soybean plants 
indicated that germination/conversion capacity is also greatly influenced by genotype 
(Komatsuda & Ohyama, 1988; Bailey et al., 1993; Santos et al., 1997; Droste et al., 2001, 2010). 

3. Genotype-dependent response and screening of highly responsive 
cultivars 

The more closely the pattern of somatic embryo gene expression matches that of zygotic 
embryos, the greater the chance of obtaining highly efficient regeneration systems. Such 
normalization of gene expression patterns will be achieved through the optimization of 
media and culture protocols for each individual stage of embryo development. According to 
Meurer et al. (2001), there are two ways to optimize soybean regeneration via embryogenic 
cultures. The first is screening a large number of new cultivars in order to identify those 
with embryogenic potential. Since SE is a heritable trait (Parrott et al., 1989), the potential for 
embryogenesis can be also improved through conventional crossing between non-
responsive cultivars and highly competent cultivars (Kita et al., 2007). An alternative and 
additive approach is to optimize embryogenesis protocols for improve results of an 
interesting cultivar.  

Several studies have revealed the differences among soybean genotypes in their capacity to 
respond to the different steps of somatic embryogenesis (Bailey et al., 1993; Santos et al., 
1997; Simmonds & Donaldson, 2000; Droste et al., 2001; Meurer et al., 2001; Tomlin et al., 
2002; Hiraga et al., 2007; Yang et al., 2009; Droste et al., 2010). The efficiencies were shown to 
be different among cultivars at each SE phase: induction, proliferation, 
histodifferentiation/maturation, germination and conversion (Bailey et al., 1993; Santos et 
al., 1997). As each phase must be under independent genetic control, the best cultivar 
performance in one stage not necessarily is the best in another one. In this context, Bailey et 
al. (1993a) reported that PI 417138 was among the least inducible genotypes studied, though 
it did have the highest germination and conversion capacity. In the same way, IAS-5 cultivar 
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had the lowest embryo yield but the highest conversion capacity (Santos et al., 1997). Tomlin 
et al. (2002) and Hiraga et al. (2007) suggested that differences in somatic embryo induction 
efficiency among soybean cultivars are likely to be attributed to differences in endogenous 
auxin levels or in the auxin sensitivity. 

One of the major challenges in soybean is to identify genotypes highly responsive to SE 
induction, embryo proliferation and conversion into plants. A direct comparison among 
previous reports is difficult because each research group has adopted different protocols for 
SE and evaluation methods. In some studies only the first phases such as induction and/or 
proliferation were analyzed, while in other studies genotypes were screened upon plant 
regeneration. 

Simmonds & Donaldson (2002) screened 18 of 20 short-season soybean genotypes in Canada 
for proliferative embryogenic capacity. Only five genotypes produced embryogenic cultures 
which were proliferative for at least six months. Nine soybean cultivars representing 
different US growing regions were evaluated at each of three locations using uniform 
embryogenic induction and proliferation protocols. Several cultivars were identified as 
uniformly embryogenic at the primary induction phase at all locations, among which Jack 
was the best (Meurer et al., 2001).  

Twenty-six genotypes including soybean wild relatives and Japanese cultivars were 
screened for differences of competence in both somatic embryogenesis and subsequent 
shoot formation. All genotypes were able to induce somatic embryos but with wide 
variation. Glycine gracilis, G. gracilis T34, Masshokutou (kou 502) and Masshokutou (kou 503) 
varieties presented high competence of germination from somatic embryos (Komatsuda & 
Ohyama, 1988). Hiraga et al. (2007) examined the capacity for plant regeneration through 
somatic embryogenesis in Japanese soybean cultivars. Induction of somatic embryos from 
immature cotyledons, embryo proliferation in liquid medium and differentiation into 
cotyledon-stage embryos were evaluated. Yuuzuru and Yumeyutaka cultivars were found 
to have high potentials of plant regeneration through SE, being superior or comparable to 
North American cultivar Jack.  

From a preliminary experiment using 98 Chinese soybean genotypes, 12 varieties were 
selected for further study in order to enhance the efficiency of somatic embryogenesis and 
plant regeneration. Significant differences in somatic embryogenesis were found among 
genotypes. N25281, N25263, and N06499 varieties were shown to have the highest somatic 
embryogenic capacities. The greatest average number of plantlets regenerated per explant 
was observed in N25281 (Yang et al., 2009).   

Regarding Brazilian genotypes, Bonacin et al. (2000) demonstrated the influence of genotype 
influence in somatic embryogenic capability of five cultivars, of which BR-16, FT-Cometa 
and IAS-5 were the most embryogenic ones. That study only assessed somatic embryo 
induction stage. Other studies also reported the high capacity of IAS-5 to produce somatic 
embryos (Santos et al., 1997; Di Mauro et al., 2000; Droste et al., 2001). More recently, Droste 
et al. (2010) identified Brazilian soybean genotypes with potential to respond to in vitro 
culture stimuli for somatic embryo induction, embryo proliferation and plant regeneration. 
Somatic embryos were induced in all eight tested genotypes, but differences were observed 
at each stage. IAS-5 and BRSMG 68 Vencedora had high embryo induction frequencies, 
repetitive embryogenic proliferation, low precocious embryo germination, better embryo 
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differentiation and plant regeneration. Thus, this work identified BRSMG 68 Vencedora and 
confirmed IAS-5 as genotypes with high potential for somatic embryogenesis and plant 
regeneration.  

4. Optimization of soybean somatic embryogenesis protocol 

Although somatic embryogenesis was described long ago and may be considered a routine 
procedure for other plant species, the first record of the event in soybean was made by 
Beversdorf & Bingham (1977), when no more than a few embryos were produced. It was 
only in 1983 that Christianson et al. (1983) regenerated, for the first time, soybean plants via 
SE. Subsequently, several papers have reported the development of somatic embryos from 
cotyledons of immature embryos. But until today the measured frequencies at which these 
embryos convert into plants are significantly lower than that expected (Parrott et al., 1988; 
Meurer et al., 2001; Walker & Parrott, 2001; Droste et al., 2001, 2010). Therefore, efforts have 
been directed towards developing and refining protocols for initiation, proliferation, and 
histodifferentiation/maturation of soybean somatic embryogenesis.  

4.1 Induction and proliferation of somatic embryos  

Most protocols described in the early studies failed to promote the satisfactory induction of 
somatic embryos. This limitation was overcome when embryos were induced from 
immature soybean cotyledons by placing the explant on high levels of 2,4-D (40 mg/l) 
(Finer, 1988). Comparing the capacity to induce soybean SE, the mean number of embryos 
produced on 2,4-D was significantly higher than that produced in the presence of NAA 
(Hoffmann et al., 2004). It is noteworthy to mention that the type of auxin used in the 
medium also influences culture morphology. Somatic embryos induced on 2,4-D are friable, 
translucent, yellowish-green in color, and globular to torpedo in shape. Somatic embryos 
induced on NAA are compact, opaque, pale-green in color, with an advanced morphology, 
forming cotyledon-like structures (Lazzeri et al., 1987; Hoffmann et al., 2004). Furthermore, 
Lazzeri et al. (1987) described that somatic embryos initiated on NAA had more normal 
embryo morphology.  

The synergistic effect of pH, solidifying agent, 2,4-D concentration, explants orientation and 
wounding have also been reported to improve efficiency of somatic embryo induction 
(Santarém et al., 1997). Embryo initiation was higher when explants were cultured with the 
abaxial side facing the induction medium containing high concentration of 2,4-D, pH 
adjusted to 7.0 and solidified with GelriteTM. Effect of pH was not observed or was slighter 
when somatic embryos were induced in the presence of other growth regulators (Lazzeri et 
al., 1987; Komatsuda & Ko, 1990; Hoffman et al., 2004; Bonacin et al., 2000). It has been 
suggested that the effect of pH on somatic embryo initiation may be related to auxin uptake 
into cultured explants, and that a pH of 7.0 may facilitate slower and more gradual uptake 
of 2,4-D at relatively high level. Wounding treatment did not increase the number of 
embryos, although in wounded explants somatic embryos were induced earlier than in non- 
wounded counterparts (Santarém et al., 1997). In addition, efficiency on SE induction was 
highest when in a medium containing 2-3% sucrose. Cultures initiated on lower sucrose 
concentrations tended to produce higher amount of friable embryos, while increased 
concentrations of this sugar impaired embryo induction (Lippmann & Lippmann, 1984; 
Lazzeri et al., 1987, 1988; Hoffmann et al., 2004).  
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After induced, the early-staged somatic embryos can be maintained and proliferated by 
subculturing the tissue on either semi-solid medium (Finer, 1988) or liquid suspension 
culture medium (Finer & Nagasawa, 1988). As liquid medium allows greater contact of 
plant tissue with medium components, proliferation in liquid is usually more efficient than 
on a semi-solid medium (Samoylov et al., 1998a). On the other hand, soybean embryogenic 
suspension cultures can be very difficult to establish and maintain (Santarém et al., 1999). 
Although maintenance of soybean embryogenic cultures in liquid medium was facilitated 
by the development of FN medium (Finer & Nagasawa, 1988), its efficiency remains low. 
Changes in individual medium components, such as carbohydrate type and concentration, 
total nitrogen, ammonium, nitrate, and other macronutrients, improved proliferation of 
soybean suspension cultures in liquid medium and resulted in the development of an 
optimized medium, referred to as FN Lite (Samoylov et al., 1998a). 

Somatic embryos incubated in a medium containing NAA do not proliferate so well as those 
produced on a medium containing 2,4-D (Liu et al., 1992). As discussed above, somatic 
embryos initiated on NAA are more advanced in embryo morphology than those induced 
on 2,4-D. As a consequence, they are also not suitable for use in establishing repetitive 
cultures (Lazzeri et al., 1987; Hoffmann et al., 2004). Embryogenic cultures induced from 
immature cotyledons on a medium containing 40 mg/l required lower levels of 2,4-D for 
efficient proliferation (Bailey et al., 1993; Santarém & Finer, 1999). Twenty mg/l 2,4-D are 
necessary to efficiently maintain repetitive embryogenesis on semi-solid medium (Santarém 
& Finer, 1999), while 5 mg/l 2,4-D are sufficient on liquid suspension culture medium 
(Samoylov et al., 1998a). Furthermore, in contrast to the effect of pH on embryo initiation, 
cultures maintained on semisolid medium at pH 5.8 or 7.0 showed no difference in 
proliferation rates, suggesting that once embryogenesis has been induced, the tissue does 
not necessary have to be maintained under the same conditions (Santarém et al., 1997). 

4.2 Histodifferentiation/maturation of somatic embryos and recovery of plants 

Even after three decades of intense research, soybean regeneration via somatic 
embryogenesis remains low if compared to other crops. Developmental limitations in 
somatic embryos are usually related to inadequate culture media composition (Merkle et al., 
1994). So, efforts to better mimic the developmental environment of zygotic embryos were 
made to further improve SE. Deficiency in maturation stage has been identified as the main 
obstacle to somatic embryo conversion into plant. Somatic and zygotic embryos have been 
shown to diverge in sugars, protein, and total lipid accumulation, indicating that the 
somatic embryos did not develop properly and, as consequence, bring about difficulties for 
plant regeneration (Chanprame et al., 1998). In addition to embryo nutrition, appropriate 
sugar accumulation has been shown to be involved in soybean seed desiccation tolerance 
(Blackman et al., 1992).  

Histodifferentiation and maturation of soybean somatic embryos has been basically 
achieved through the use of two protocols. The first one is a two-step process, whereby 
embryos are first histodifferentiated on MSM6AC medium (Bailey et al., 1993), which 
consists of solidified MS basal salts supplemented with 6% maltose and 0.5% activated 
charcoal. After 30 days, embryos are transferred to the same medium, but without charcoal, 
in order to allow growth and maturation to proceed. The second protocol is based on a 
liquid medium termed FNLS3, which consists of basal Finer & Nagasawa “Lite” (FNL) salts 
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supplemented with 3% sucrose (Samoylov et al., 1998b). The main advantage of the liquid 
FNLS3 medium over the semi-solid MSM6AC/MSM6 medium is its ability to produce 
larger numbers of mature somatic embryos in a short period of time. On the other hand, 
liquid based protocols require greater care during handling.  

Successful plant recovery has been reported using both protocols, though numerous studies 
suggested modifications to these basic media in order to optimize histodifferentiation and 
maturation of soybean somatic embryos, with the final goal of obtaining higher conversion 
rates. The main adaptations were: the type and concentration of carbon source, addition of 
osmotic agents, growth regulator agents and/or amino acids, type of basal salts, as well as 
the medium supplementation with activated charcoal (Tables 1 and 2). Modifications in 
other culture media are not considered in the present review.  

4.2.1 Carbon source and osmotic agents 

Carbon source is critical for embryo nutritional health and improves somatic embryo 
maturation. Carbohydrates are commonly used as carbon sources for in vitro development 
of tissues, and maltose and sucrose have been usually added to soybean tissue culture 
media in an optimal concentration range of 3% to 6% (Samoylov et al., 1998b; Körbes & 
Droste, 2005; Schmidt et al., 2005). Carbon source type and concentration required for 
histodifferentiation/maturation appear to differ between solid and liquid media.  

The effect of carbohydrates on embryo histodifferentiation and maturation on liquid 
medium was analyzed by Samoylov et al. (1998b). FNL medium supplemented with 3% 
sucrose (FNL0S3) or 3% maltose (FNL0M3) were compared. Data indicated that sucrose 
promotes embryo growth and significantly increases the number of cotyledon-stage 
embryos recovered during histodifferentiation and maturation. However, the percentages of 
plants recovered from embryos differentiated and matured in FNL0S3 was lower than those 
grown in FNL0M3 (Samoylov et al., 1998b). This limitation was partially solved by adding 
3% sorbitol to the medium, which resulted in an increment in germination and conversion 
frequencies (Walker & Parrott, 2001). The modified medium was named FNLS3S3 medium. 
It was suggested that sorbitol acts as an osmotic agent and/or promotes accumulation of 
triglycerides in somatic embryos. After addition of sorbitol, the effects of using 3% sucrose 
(FNL0S3S3) or 3% maltose (FNL0M3S3) were compared again (Schmidt et al., 2005). 
Conversion rate of embryos differentiated on maltose was higher when compared to those 
obtained in sucrose. However, sucrose was considered the most appropriate carbon source, 
since its use in liquid maturation media resulted in a higher number of larger embryos, 
which required less time to reach physiological maturity.  

The media that have been used in the two-step histodifferentiation/maturation process 
(MSM6AC/MSM6) contain 6% maltose (Bailey et al., 1993). Körbes & Droste (2005) 
compared conversion frequencies when 6% maltose was replaced by 3% maltose (MSM3) or 
6% sucrose (MSS6). Results showed that maturation in MSS6 medium leads to an increment 
in rates of histodifferentiated embryos with normal morphology, as well as in plant 
recovery.  

The quality of somatic embryos can be positively influenced by a low osmotic potential in 
maturation medium (Walker & Parrott, 2001; Körbes & Droste, 2005). Carbohydrates can act 
as an osmotic agent (Li et al., 1998). Since molecular weights of maltose and sucrose are very  
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similar, no significant effect on the osmotic potential of the medium could be expected 
(Schmidt et al., 2005). Nevertheless, differences observed in embryos matured in media 
supplemented with maltose or sucrose have been related to these compounds’ osmotic 
potentials (Samoylov et al., 1998b; Körbes & Droste, 2005). Influence of other osmotic agents 
(sorbitol, mannitol and polyethylene glycol) has also been tested in soybean somatic 
embryogenesis (Walker & Parrott, 2001; Körbes & Droste, 2005; Schmidt et al., 2005), but 
positive effects were only reported for sorbitol (Walker & Parrott, 2001), as described above. 

4.2.2 Amino acids  

The nitrogen source is also a critical component for proper embryo maturation. With a view 
to soybean embryo proliferation, 1 g/l asparagine was included in the formulation of the 
original FN liquid medium (Finer & Nagasawa, 1988), and it was also used in the FN Lite 
proliferation medium (Samoylov et al., 1998a) and FNL histodifferentiation/maturation 
medium (Samoylov et al., 1998b). On the other hand, culture media supplemented with 
glutamine were shown to be beneficial to zygotic soybean embryos (Thompson et al., 1977), 
by increasing embryo size (Lippmann & Lippmann, 1993; Dyer et al., 1987), and inducing 
storage oil and protein synthesis (Saravitz & Raper, 1995). Schmidt et al. (2005) compared 
the effect of FNLS3S3 supplemented with asparagine or glutamine on embryo 
histodifferentiation/maturation. The results showed that cotyledonary-stage embryos 
obtained on 30 mM filter-sterilized glutamine were larger and exhibited an overall higher 
quality. The modified medium was named FNLS3S3G30 medium. 

Methionine supplementation has also been reported to be helpful for growth stimulation 
(Coker et al., 1987). Thus, addition of 1 mM methionine to FNL0S3S3 medium was tested 
and a clear positive effect on soybean somatic embryo histodifferentiation and maturation, 
manifested mainly by conversion percentages, was demonstrated (Schmidt et al., 2005). 
Again, this medium was renamed FNLS3S3G30M1 medium.  

Improvements in the efficiency of solid MSM6 histodifferentiation/maturation medium 
were also obtained by using the ingredients from the optimized FNLS3S3G30M1 liquid 
medium recipe, specifically glutamine and methionine (Schmidt et al., 2005). 

4.2.3 Basal salts 

A comparison of embryo development showed that embryos differentiated into yellow-
green cotyledon-stage faster when cultured on FNLS3 than when maintained on MSM3 
liquid media (Samoylov et al., 1998b). On the other hand, the number of histodifferentiated 
embryos and the frequency of germinated embryos recovered from MSM3 were higher than 
those obtained on FNLS3. Further studies showed that germination rates were increased 
when embryos histodifferentiated on FNLS3 supplemented with sorbitol, glutamine and 
methionine (Walker & Parrott, 2001; Schmidt et al., 2005). 

4.2.4 Abscisic acid  

Abscisic acid (ABA) is a growth regulator involved in plant development, especially during 
embryo development and maturation and in response to abiotic stresses. In seeds, ABA 
induces storage protein synthesis and affects dormancy induction and maintenance (Rock & 
Quatrano, 1995). ABA prevents precocious seed germination and is thought to play a major  

www.intechopen.com



 
Genetic Engineering – Basics, New Applications and Responsibilities 

 

156 

Culture tissue stage 

Reference 
Main 

modification
Proliferation

Histodiffe-
rentiation

Maturation
Regeneration
/ conversion

Beneficial effects 

Tian & 
Brown, 

2000 

Abscisic 
acid (ABA) 

addition 

FN + 
50 µM ABA

MSM6AC MSM6AC MSO • promote embryo 
growth 

• increase 
histodifferentiation of 
embryo with normal 
morphology 

• improve embryo 
viability 

• enhance embryo 
germination 

Weber et. 
al., 2007 

ABA 
addition 

D20 + 50 
µM ABA 

MSM6 + 
50 µM 
ABA 

MSM6 MSO • increase embryo 
conversion into plants 

Körbes & 
Droste, 

2005 

Maltose 
replacement 
with sucrose

D20 MSS6 MSS6 MSO • increase 
histodifferentiation of 
embryo with normal 
morphology 

• increase embryo 
conversion into plants 

Schmidt 
et al., 
2005 

Glutamine 
and 

methionine 
addition 

 MSM6 + 
30 mM 

glutamine 
+ 1 mM 

Methionine

  • increase the  
number of 
histodifferentiated 
embryos 

• increase embryo 
conversion into plants 

Droste et 
al., 2010 

Activated 
charcoal 

(AC) 
addition 

D20 MSS6 + 
0.5 % AC

MSS6 MSO • increase the  
number of 
histodifferentiated 
embryos 

Table 1. Optimization of MSM6AC medium. D20 - MS salts (Murashige & Skoog, 1962), B5 
vitamins (Gamborg et al., 1968), 3% sucrose, 20 mg/l 2,4-D, and 0.2% Gelrite or 0.3% 
Phytagel (pH 5.8) (Wright et al., 1991). MSM6AC - MS salts, B5 vitamins, 6% maltose, 0.5% 
activated charcoal and 0.25% Gelrite or 0.3% Phytagel (pH 5.8) (Bailey et al., 1993). MSM6 - 
MS salts, B5 vitamins, 6% maltose and 0.25% Gelrite or 0.3% Phytagel (pH 5.8) (Finer & 
McMullen, 1991). MSS6 - MS salts, B5 vitamins, 6% sucrose, 0.3% Phytagel (pH 5.8) (Körbes 
& Droste, 2005). MSO - MS basal salts, B5 vitamins, 3% sucrose, and 0.2% Gelrite, at pH 5.8 

role in the sequence of events leading to desiccation tolerance (Hoekstra et al., 2001). ABA 
supplementation in culture media was shown to affect somatic embryogenesis of a variety 
of plants. Having this in mind, it was suggested that medium containing low ABA 
concentrations (0.38 or 1 µM) helps soybean immature somatic embryos to achieve maturity 
and further develop apical meristems (Ranch et al., 1885; Lazzeri et al., 1987). However, 
independently of the protocol used, no significant effect was observed when ABA was 
added to histodifferentiation or maturation medium (Tian & Brown, 2000; Schmidt et al., 
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2005; Weber et al., 2007). Tian & Brown (2000) investigated the effect of ABA addition to 
culture media in different embryogenic stages: proliferation, histodifferentiation and 
maturation. The positive effects of ABA were observed only when embryos at a globular 
stage (proliferation) were treated prior to histodifferentiation induction. Addition of 50 µM 
ABA promoted growth of histodifferentiated embryos, increased proportion of 
morphological normal histodifferentiated embryos, improved embryo viability after 
desiccation and increased germination frequency. In agreement, Weber et al. (2007) 
demonstrated that presence of ABA during proliferation or during both proliferation and 
maturation stages increased percentage of converted plants. 

 

Culture tissue stage 

Reference 
Main 

modification Proliferation
Histodifferen-

tiation/ 
maturation 

Regeneration
/ conversion

Beneficial effects 

Walker & 
Parrott, 2001 

Sorbitol 
addition 

D20/ FN 
Lite 

FNL0S3 + 1.5-3% 
sorbitol 

MSO • reduce fresh weight of 
mature embryos 

• increase embryo 
regeneration and 
conversion into plants 

Standard 
medium 

FN Lite FNL0S3S3 MSO • increase number of 
matured embryos 

• give rise to larger 
embryos 

• need shorter time to 
reach physiological 
maturity 

• reduce embryo 
conversion into plants 

Sucrose 
replacement by

maltose 

FN Lite FNL0M3S3 MSO • reduce number of 
matured embryos, 

• give rise to smaller 
embryos 

• need longer time to 
reach physiological 
maturity 

• increase embryo 
conversion into plants 

Glutamine 
addition 

FN Lite FNL0S3S3 +  
30 mM glutamine

MSO • give rise to larger 
embryos 

Schmidt et 
al., 2005 

Methionine 
addition 

FN Lite FNL0S3S3G30 + 
1 mM 

Methionine 

MSO • increase embryo 
conversion into plants 

Table 2. Optimization of FNLS3 medium. FN Lite - FN Lite macro salts (Samoylov et al., 
1998a), MS micro salts (Murashige & Skoog, 1962), B5 vitamins (Gamborg et al., 1968), 6.7 
mM L-asparagine, 1% sucrose , 146.1 mM mannitol and 0.5 mg/l 2,4-D, at pH 5.8 (Samoylov 
et al., 1998a). FNL0S3 – FN Lite macro salts, MS micro salts, B5 vitamins, 6.7 mM L-
asparagine and 3% sucrose, at pH 5.8 (Samoylov et al., 1998b). MSO - MS basal salts, B5 
vitamins, 1.5% sucrose, and 0.2% Gelrite, at pH 5.8. 
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4.2.5 Activated charcoal  

Activated charcoal (AC) is a porous material composed of carbon. AC has a unique 
adsorption capacity and is often used in plant tissue culture to improve cell growth and 
development. Applicability of AC is credited mainly to its capacity as adsorbent of 
inhibitory substances in the culture medium (Thomas, 2008). As previously discussed 
(Induction and proliferation of somatic embryos section), high concentrations of 2,4-D are 
necessary to stimulate soybean somatic embryo induction and proliferation (Finer, 1988; 
Samoylov et al., 1998a; Santarém & Finer, 1999). On the other hand, this growth regulator 
can lead to abnormal embryo histodifferentiation or development of apical meristem, 
especially in long-term cultures under exposure to 2,4-D. AC is presumably able to adsorb 
2,4-D or other auxins released from developing tissues, promoting a more normal embryo 
morphology and increasing germination ability (Merkle et al., 1995).  

AC was present in a medium originally described by Bailey et al. (1993) for embryo 
histodifferentiation/maturation, but it has not been applied in further studies (Samoylov et 
al., 1998b; Walker & Parrott, 2001; Körbes & Droste, 2005; Schmidt et al., 2005; Weber et. al., 
2007). Recently, it has been observed that addition of activated charcoal and ABA to the first 
step histodifferentiation/maturation medium increased the number of histodifferentiated 
embryos (Droste et al., 2010). Since positive effects were not identified when ABA was 
added in histodifferentiation/maturation medium (Schmidt et al., 2005; Weber et. al., 2007) 
(discussed in the section about abscisic acid), the benefits described by Droste et al. (2010) 
must be related to AC supplementation.  

It is important to stress that studies were carried out with different genotypes and that 
soybean response to in vitro culture conditions is genotype-dependent. Further studies, 
specially focusing on embryo histodifferentiation and maturation, are important and 
necessary to improve soybean embryogenesis of highly responsive cultivars. 

After appropriate maturation, a desiccation stage is required. Conversion of partial-
desiccated soybean somatic embryos was shown to proceed more vigorously than non-
desiccated ones (Buchheim et al., 1989). The partial desiccation has been adopted by most 
research teams (Bailey et al., 1993; Samoylov et al., 1998b; Tian & Brown, 2000; Walker & 
Parrott, 2001; Droste et al., 2002, 2010; Körbes & Droste, 2005; Schmidt et al., 2005; Yang et 
al., 2009; Wiebke-Strohm et al., 2011). Although there is a broad number of media available 
for histodifferentiation/maturation, MSO (MS basal salts, B5 vitamins, 3% sucrose, and 0.2% 
Gelrite™, at pH 5.8) medium has been almost exclusively used for soybean somatic embryos 
germination/conversion stage (Finer & McMullen, 1991; Bailey et al., 1993; Samoylov et al., 
1998b; Tian & Brown, 2000; Walker & Parrott, 2001; Droste et al., 2002, 2010; Körbes & 
Droste, 2005; Schmidt et al., 2005; Wiebke-Strohm et al., 2011). 

5. Genetic transformation of soybean somatic embryos via particle 
bombardment and bombardment/Agrobacterium integrated system 

Plant genetic transformation is described as the introduction of recombinant DNA in plant 
cells using genetic engineering methods. Transgenic plants represent a priceless tool for 
molecular, genetic, biochemical and physiological studies. Plant genetic transformation also 
offers a significant advancement for soybean breeding programs, in terms of allowing the 
production of novel and genetically diverse plant materials. 
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Advancements in the use of plant transgenesis have been reported for a large number of 
species. Such progress entails the adoption of different protocols, which include the genetic 
transformation mediated by polyethyleneglycol (PEG) and liposomes (known under the 
heading of chemical methods), microinjection, electroporation and particle bombardment 
(called physical methods), as well as the use of viral and/or bacterial vectors, as in 
agroinfection and the Agrobacterium system (named biological methods).  

Soybean transformation was first reported in 1988 by two independent groups using 
different methods (Hinchee et al., 1988; Christou et al., 1988). Even after more than two 
decades, the stable transformation of soybean cannot yet be considered as routine because it 
depends on the ability to bring together efficient transformation and regeneration 
techniques. Two methods have been successfuly used: particle bombardment (McCabe et 
al., 1988; Christou et al., 1989; Finer & McMullen, 1991; Christou & McCabe, 1992; Finer et 
al., 1992; Stewart et al., 1996; Aragão et al., 2000; Droste et al., 2002; Homrich et al., 2008; Wu 
et al., 2008; Li et al., 2009; Hernandez-Garcia et al., 2009; Xing et al., 2010; Viana et al., 2011) 
and Agrobacterium tumefaciens system (Parrott et al., 1989; Trick et al., 1997; Trick & Finer, 
1998; Aragão et al., 2000; Yan et al., 2000; Ko et al., 2003, 2004; Paz et al., 2006; Hong et al., 
2007; Miklos et al., 2007; Liu et al., 2008; Wang & Xu, 2008; Wiebke-Strohm et al., 2011). 

Regardless of the method used, the unicellular origin of soybean secondary somatic 
embryos makes them a useful target tissue for transformation, allowing the production of 
fully transformed plants. The first target used for transformation was primary somatic 
embryos, but chimerical plants were obtained (Parrott et al., 1989) due to the multicellular 
nature of primary embryos (Sato et al., 1993). Finer (1988) showed that the secondary 
somatic embryos proliferated directly from the apical or terminal portions of the older 
primary somatic embryos. Sato et al. (1993) proved that somatic embryo proliferation 
occurred from single epidermal cells of existing somatic embryos. Using proliferative 
embryos as target tissue many studies succeed in regenerating completely transformed 
plants (Finer & McMullen, 1991; Finer et al., 1992; Stewart et al., 1996; Trick et al., 1997; Trick 
& Finer, 1998; Droste et al., 2002; Homrich et al., 2008; Schmidt et al., 2008; Wu et al., 2008; Li 
et al., 2009; Hernandez-Garcia et al., 2009; Xing et al., 2010; Wiebke-Strohm et al., 2011).  

5.1 Agrobacterium system 

Agrobacterium tumefaciens is a soil-borne Gram-negative phytopatogenic bacterium that 
naturally infects different plants causing the crown gall disease (DeCleene & DeLay, 1976). 
The origin of these sicknesses is interkingdom horizontal gene transfer. When virulent 
strains of Agrobacterium infect plant cells, they transfer one or more segments of DNA 
(transferred DNA or T-DNA) from Ti (Tumor inducing) plasmids into host plant cells 
(recently reviewed by Gelvin, 2010 a,b; Pitzschke & Hirt, 2010). In recent decades, disarmed 
(non-tumorigenic) A. tumefaciens strains have also provided a means to produce genetically 
modified plants. In order to obtain engineered binary vectors derived from Ti plasmids, 
oncogenes present in T-DNA region are replaced by any foreign DNA of interest (Gelvin, 
2010b). 

The advantages of Agrobacterium-mediated gene transfer include the possibility of 
transferring relatively large segments of DNA, lower number of transgene copies 
integration into plant genomes, rare transgene rearrangement, lower frequency of genomic 
DNA interspersion and reduced abnormal transgene expression (Gelvin, 2003; Kohli et al., 
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2003). Moreover, this system involves low operating cost and simplicity of transformation 
protocols. On the other hand, plants differ greatly in their susceptibility to Agrobacterium-
mediated transformation. These differences occur among species, cultivars or tissues (Droste 
et al., 1994; Gelvin, 2010b). In addition, in our laboratory this transformation system usually 
results in lower transformation rates, if compared to particle bombardment.  

Agrobacterium-mediated transformation system is a growing trend in crop transformation 
programs (Somers et al., 2003). Soybean has long been considered recalcitrant to Agrobacterium 
(DeCleene & DeLey, 1976), especially due to the low success rate in recovering transgenic 
plants. Studies with tumorigenic Agrobacterium strains (Pedersen et al., 1983; Droste et al., 
1994; Mauro et al., 1995) and transient assays (Meurer et al., 1998; Droste et al., 2000) showed 
that soybean can be readily transformed by this bacterium. Currently, it is known that 
addition of acetosyringone during bacterial infection, combination of appropriate 
Agrobacterium strain and soybean cultivar, as well as development of super virulent 
bacterium strain and suitable plasmids increase efficiency of soybean transformation 
(Somers et al., 2003; Ko et al., 2003, 2004; Wiebke-Strohm et al., 2011).  

Transgenic plants regenerated via somatic embryogenesis were obtained using two different 
target tissues: immature zygotic cotyledons and secondary somatic embryos. In the first 
case, wounded immature zygotic cotyledons are co-cultivated with Agrobacterium 
suspension, after which embryogenic tissue formation is induced from the surface of these 
cotyledons. In the second case, proliferative secondary somatic embryos are first obtained 
and then submitted to transformation experiments.  

Transformation of zygotic cotyledons by A. tumefaciens and subsequent regeneration of 
transformed soybean plants was first reported by Parrott et al. (1989). Plants were 
regenerated from primary somatic embryos and, due to embryo multi-cellular origin, plants 
were chimeric. As a consequence, transgenes were not present in the germ line and 
transmitted to the progeny. Still using zygotic cotyledons as target, a new approach was 
developed in which formation of secondary somatic embryos was allowed under continued 
selection system. The unicellular origin of secondary somatic embryos permitted recovery of 
complete, stable and fertile transgenic plants, whose progeny also displayed these 
characteristics (Yan et al., 2000; Ko et al., 2003).  

Transformation of proliferative secondary somatic embryos via A. tumefaciens has proven to 
be challenging and only succeeded when combined to physical methods that generate an 
entry point to bacteria penetration. Instead of the conventional transformation system, two 
alternative methods have been proposed for this target tissue: the Sonication-Assisted 
Agrobacterium-mediated Transformation (SAAT) (Trick et al., 1997; Trick & Finer, 1998), and 
the combined DNA-free particle bombardment and Agrobacterium system 
(bombardment/Agrobacterium integrated system) (Droste et al., 2000; Wiebke et al., 2006, 
Wiebke-Strohm et al., 2011). The difference between these methods lies in the technique 
used to induce tissue wounding: while the first one used sonication, the second relied upon 
bombardment. Although these methods proved to be feasible, both systems are time-
consuming, laborious, and depend on the availability of specific equipments for routine 
application. 

It is important to stress that the success in soybean Agrobacterium-mediated transformation 
and regeneration via somatic embryogenesis depends on the availability of cultivars with 
superior response to in vitro culture stimuli and high susceptibility to this bacterium. So far, 
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regeneration of transgenic plants was achieved using immature zygotic cotyledons of Jack, 
Williams and Dwight cultivars (Yan et al., 2000; Ko et al., 2003) or proliferative secondary 
somatic embryos of Chapman, Bragg, IAS5 & BRMG 68 Vencedora cultivars (Trick et al., 
1997; Trick & Finer, 1998; Droste et al., 2000; Wiebke-Strohm et al., 2011).  

5.2 Particle bombardment 

Genetic transformation by particle bombardment (Sanford, 1988), also called particle or 
projectile acceleration, biolistics or biobalistics, consists of the introduction of DNA in intact 
cells and tissues by accelerated microprojectiles driven at high speeds. These projectiles are 
able to cross the wall and the membranes of the cell and of the nucleus, where DNA 
fragments are liberated (Trick & Finer, 1997). In this organelle, exogenous DNA may then be 
integrated to chromosomal DNA through processes of illegitimate or homologous 
recombination that depends exclusively on cell components (Sanford, 1990; Kohli et al., 
2003). Particle bombardment affords the introduction of DNA in plant cells by means of 
plasmids (Hadi et al., 1996; Homrich et al., 2008) or gene cassettes (Fu et al., 2000; Breitler et 
al., 2002). In this method, DNA is adhered to metal particles called microcarriers. The metals 
used in the process have to be inert, like gold or tungsten, so as to prevent particles from 
reacting with DNA or cell components (Christou et al., 1990). The DNA-particle complex is 
accelerated towards the target cells using different apparatuses based on diverse 
acceleration mechanisms.  

Particle bombardment can be achieved through high or low helium pressure gene guns. So, 
penetration in the target tissue can be controlled very accurately, directing the majority of 
the particles carrying the DNA to a specific cell layer. This is an extremely important 
feature, because different explants may require different acceleration conditions for 
optimum particle penetration (Christou et al., 1990). As single epidermal cells are 
responsible for the initiation of secondary somatic embryos (Sato et al., 1993), a shallow 
penetration resulting from bombardment of low helium pressure ensures efficient 
transformation (Sato et al., 1993). Finer et al. (1992) developed a low helium pressure particle 
accelerator called Particle Inflow Gun (PIG).  

The main advantage of particle bombardment lies in the possibility to transfer genes to any 
cell or tissue type independently of genotype and without having to consider the 
compatibility between host and bacterium, as required by the Agrobacterium system. On the 
other hand, using this technique, multiple DNA copies are introduced which may 
recombine or be fragmented (Hadi et al., 1996; Kohli et al., 2003).  

Several studies about soybean transformation via particle bombardment using embryogenic 
tissues have been published (Finer & McMullen, 1991; Finer et al., 1992; Stewart et al., 1996; 
Droste et al., 2002; Homrich et al., 2008; Schmidt et al., 2008; Wu et al., 2008; Li et al., 2009; 
Hernandez-Garcia et al., 2009; Xing et al., 2010).  

6. Conclusion 

Proliferative somatic embryos are one of the most suitable and convenient targets for 
soybean genetic transformation. However, after two decades, the stable transformation of 
somatic embryos cannot yet be considered as routine. The absence of a highly efficient 
regeneration procedure is the main limiting factor. Advances have been made in the  
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identification of cultivars with high potential for embryogenesis, as well as in the 

optimization of media and culture protocols. Large efforts are being made to render more 

efficient soybean plant regeneration via somatic embryogenesis. By recognizing the critical 

factors, the protocols of each individual stage of the somatic embryogenic process can be 

improved to more closely simulate zygotic embryo development in planta.  

7. Acknowledgment 

Authors are grateful to Conselho Nacional de Desenvolvimento Científico e Tecnológico – 

CNPq, Brazil for the Postdoctoral Fellowships. 

8. References 

Aragão, F.J.L.; Sarokin, L.; Vianna, G.R. & Rech, E.L. (2000). Selection of transgenic 

meristematic cells utilizing a herbicidal molecule results in the recovery of fertile 

transgenic soybean [Glycine max (L) Merrill] plants at a high frequency. Tag 

Theoretical and Applied Genetics, Vol.101, No.1-2, (2000), pp. 1-6, ISSN 0040-5752 

Aung, L.H.; Buss, G.R.; Crosby, K.E. & Brown, S.S. (1982). Changes in the hormonal levels of 

soybean fruit during ontogeny. Phyton, Vol.45, (1982), pp. 182-185, ISSN 0031-9457 

Bailey, M.A.; Boerma, H.R. & Parrott, W.A. (1993). Genotype effects on proliferative 

embryogenesis and plant regeneration of soybean. In Vitro Cellular and 

Developmental Biology–Plant, Vol.29, No.3, (July 1993) pp. 102–108, ISSN 1054-5476 

Barwale, U.B.; Kerns, H.R. & Widholm, J.M. (1986). Plant regeneration from callus cultures 

of several soybean genotypes via embryogenesis and organogenesis. Planta, 

Vol.167, No.4, (1986), pp. 473-481, ISSN 0032-0935 

Beversdorf, W.D. & Bingham, E.T. (1977). Degrees of differentiation obtained in tissue 

cultures of Glycine species. Crop Science, Vol.17, No.2, (1977), pp. 307-311, ISSN 

0011-183X 

Bingham, E.T; McCoy T.J. & Walker K.A. (1988). Alfalfa tissue culture. In: Alfalfa and alfalfa 

improvement , A.A. Hanson, D.K. Barnes, R.R. Hill Jr, (Eds), 903-929, American 

Society of Agronomy, ASA-CSSA-SSSA, ISBN 0-89118-094-X, Madison WI 

Blackman, S.A.; Obendorf, R.L. & Leopold, A.C. (1992). Maturation proteins and sugars in 

desiccation tolerance of developing soybean seeds. Plant Physiology, Vol.100, No.1, 

(September 1992), pp. 225–230, ISSN 0032-0889  

Bonacin, G.A.; DiMauro, A.O.; Oliveira, R.C. & Perecin, D. (2000). Induction of somatic 

embryogenesis in soybean: physicochemical factors influencing the development of 

somatic embryos. Genetics and Molecular Biology, Vol.23, No.4, (December 2000), pp. 

865-868, ISSN 1415-4757 

Breitler, J.C.; Labeyrie, A.; Meynard, D.; Levavre, T. & Guiderdoni, E. (2002). Efficient 

microprojectile bombardment-mediated transformation of rice using gene cassettes. 

Tag Theoretical and Applied Genetics, Vol.104, No.4, (2002), pp. 709-719, ISSN 0040-

5752 

Buchheim, J.A.; Colburn, S.M. & Ranch, J.P. (1989). Maturation of soybean somatic embryos 

and the transition to plantlet grown. Plant Physiology, Vol.89, (1989), pp. 768-77, 

ISSN 0032-0889 

www.intechopen.com



Strategies for Improvement of Soybean Regeneration  
via Somatic Embryogenesis and Genetic Transformation 

 

163 

Carman, J.G. (1990). Embryogenic cells in plant tissue cultures: occurrence and behavior. In 

Vitro Cellular and Developmental Biology-Plant, Vol.26, (August 1990), pp. 743–756, 

ISSN 0883-8364 

Chanprame, S.; Kuo, T.M. & Widholm, A.M. (1998). Soluble carbohydrate content of 

soybean [Glycine max (L.) Merr.] somatic and zygotic embryos during development. 

In Vitro Cellular and Developmental Biology–Plant, Vol.34, (January-March 1998), pp. 

64-68, ISSN 1054-5476 

Christianson, M.L.; Warnick, D.A. & Carlson, P.S. (1983). A morphogenetically competent 

soybean suspension culture. Science, Vol.222, No.4624 (November 1983), pp.632-

634, ISSN 0036-8075 

Christou, P. & McCabe, D.E. (1992). Prediction of germ-line transformation events in 

chimeric R0 transgenic soybean plantlets using tissue-specific expression patterns. 

The Plant Journal, Vol.2, No.3, (May 1992), pp. 283–290, ISSN 0960-7412. 

Christou, P. & Yang, N.S. (1989). Developmental aspects of soybean (Glycine max) somatic 

embryogenesis. Annals of Botany, Vol.64, No.2, (1989), pp. 225-234, ISSN 0305-

7364 

Christou, P.; McCabe, D.E. & Swain, W.F. (1988). Stable transformation of soybean callus by 

DNA-coated gold particles. Plant Physiology, Vol.87, (1988), pp. 671–674, ISSN 0032-

0889 

Christou, P.; McCabe, D.E.; Martinell, B.J. & Swain, W.F. (1990). Soybean genetic 

engeneering-commercial products of transgenic plants. Trends Biotechnology, Vol.18, 

(1990), pp. 145-151, ISSN 0167-7799 

Christou, P.; Swain, W.F.; Yang, N.S. & McCabe, D.E. (1989). Inheritance and expression of 

foreign genes in transgenic soybean plants. Proceedings of the National Academy of 

Sciences of the United States of America, Vol.88, (October 1989), pp. 7500-7504, ISSN 

0027-8424 

Coker, G.T.I.; Garbow, J.R. & Schaefer, J. (1987). 15N and 13C NMR determination of 

methionine metabolism in developing soybean cotyledons. Plant Physiology, Vol.83, 

(1987), pp. 698–702, ISSN 0032-0889 

DeCleene, M. & DeLey, J. (1976). The host range of crown gall. Botanical Gazette, Vol.42, 

(1976), pp.389-466, ISSN 0006-8071 

Dhanalakshmi, S. & Lakshmanan, K.K. (1992). In vitro somatic embryogenesis and plant 

regeneration in Clitoria ternatea. Journal of Experimental Botany, Vol.43, No.2, (1992), 

pp. 213–219, ISSN 0022-0957 

Di Mauro, A.O.; de Oliveira, R.C. & de Oliveira, J.A. (2001). Capacidade embriogênica da 

cultivar IAS-5 de soja. Pesquisa Agropecuária Brasileira, Vol.36, No.11, (November 

2001), pp. 1381-1385, ISSN 0100-204X 

Dodeman, V.L.; Ducreux, G. & Kreis, M. (1997). Zygotic embryogenesis versus somatic 

embryogenesis. Journal of Experimental Botany, Vol. 48, No.313, (August 1997), pp. 

1493-1509, ISSN 0022-0957 

Droste, A.; Bodanese-Zanettini, M.H.; Mundstock, E. & Hu, C.Y. (1994). Susceptibility of 

Brazilian soybean cultivars to Agrobacterium tumefaciens. Brazilian Journal of Genetics, 

Vol.17, (1994), pp. 83–88, ISSN 0100-8455 

Droste, A.; Pasquali, G. & Bodanese-Zanettini, M.H. (2000). Integrated bombardment and 

Agrobacterium transformation system: an alternative method for soybean 

www.intechopen.com



 
Genetic Engineering – Basics, New Applications and Responsibilities 

 

164 

transformation. Plant Molecular Biology Reports, Vol.18, No.1, (2000), pp. 51-59, ISSN 

0735-9640 

Droste, A.; Pasquali, G. & Bodanese-Zanettini, M.H. (2002). Transgenic fertile plants of 

soybean [Glycine max (L) Merrill] obtained from bombarded embryogenic tissue. 

Euphytica, Vol. 127, No.3, (2002), pp. 367-376, ISSN 0014-2336 

Droste, A.; Silva, A.M.; Souza, I.F.; Wiebke-Strohm, B.; Bücker-Neto, L.; Bencke, M.; Sauner, 

M.V. & Bodanese-Zanettini, M.H. (2010). Screening of Brazilian soybean genotypes 

with high potential for somatic embryogenesis and plant regeneration. Pesquisa 

Agropecuária Brasileira, Vol.45, No.7, (July 2010), pp.715-720, ISSN 0100-204X 

Droste, A.; Leite, P.C.P.; Pasquali, G.; Mundstock, E.C. & Bodanese-Zanettini, M.H. (2001). 

Regeneration of soybean via embryogenic suspension culture. Scientia Agricola, 

Vol.58, No.4, (October-Deyember 2001), pp.753-758, ISSN 0103-9016 

Dyer, D.J.; Cotterman, C.D. & Cotterman, J.C. (1987). Comparison of in situ and in vitro 

regulation of soybean seed growth and development. Plant Physiololgy, Vol.84, 

No.2, (Juny 1987), pp. 298–303, ISSN 0032-0889 

Ebert, A. & Taylor, H.F. (1990). Assessment of the changes of 2,4-dichlorophenoxyacetic acid 

concentrations in plant tissue culture media in the presence of activated charcoal. 

Plant Cell, Tissue and Organ Culture, Vol.20, No.3, (1990), pp. 165-172, ISSN 0167-

6857 

Fernando, J.A.; Vieira, M.L.C.; Geraldi, I.O. & Appezzato-da-Gloria, B. (2002). Anatomical 

study of somatic embryogenesis in Glycine max (L.) Merrill. Brazilian Archives  

of Biology and Technology, Vol.45, No.3, (September 2002), pp. 277-286, ISSN 1516-

8913 

Finer, J. J. & Nagasawa, A. (1988). Development of an embryogenic suspension culture of 

soybean (Glycine max Merrill). Plant Cell, Tissue and Organ Culture, Vol.15, (1988), 

pp. 125—136, ISSN 0167-6857 

Finer, J.J. & McMullen, M.D. (1991). Transformation of soybean via particle bombardment of 

embryogenic suspension culture tissue. In vitro Cellular and Developmental Biology-

Plant, Vol.27, No.4, (October 1991), pp. 175-182, ISSN 1054-5476 

Finer, J.J. (1988). Apical proliferation of embryogenic tissue of soybean (Glycine max (L.) 

Merrill). Plant Cell Reports, Vol.7, No.4, (1988), pp. 238-241, ISSN 0721-7714 

Finer, J.J.; Vain, P.; Jones, M.W. & McMullen, M.D. (1992). Development of the particle 

inflow gun for DNA delivery to plant cells. Plant Cell Reports, Vol.11, No.7, (1992), 

pp.323–328, ISSN 0721-7714 

Fu, X.; Due, L.T.; Fontana, S.; Bong, B.B.; Tinjuangjun, P.; Sudhakar, D.; Twyamn, R. M.; 

Christou, P. & Kohli, A. (2000). Linear transgene constructs lacking vector 

backbone sequences generate low-copy-number transgenic plants with simple 

integration patterns. Transgenic Research, Vol.9, (2000), pp. 11-19, ISSN 0962-

8819 

Galau, G.A.; Jakobsen, K.S. & Hughes, D.W. (1991). The controls of late dicot embryogenesis 

and early germination. Physiologia Plantarum, vol.81, No.2, (February 1991), pp. 280-

288, ISSN 0031-9317 

Gamborg, O.L.; Miller, R.A. & Ojima, K. (1968). Nutrient requirements of suspension 

cultures of soybean root cells. Experimental Cell Research, Vol.50, No.1, (April 1968), 

pp.151-158, ISSN 0014-4827 

www.intechopen.com



Strategies for Improvement of Soybean Regeneration  
via Somatic Embryogenesis and Genetic Transformation 

 

165 

Gelvin, S.B. (2003). Agrobacterium and plant transformation: the biology behind the ‘‘gene-

jockeying’’ tool. Microbiology and Molecular Biology Reviews, Vol.67, No.1, (March 

2003), pp. 16-37, ISSN 1092-2172 

Gelvin, S.B. (2010a). Finding a way to the nucleus. Current Opinion in Microbiology, Vol.13, 

No.1, (February 2010), pp. 53–58, ISSN 1369-5274 

Gelvin, S.B. (2010b). Plant proteins involved in Agrobacterium-mediated genetic 

transformation. Annual Review Phytopathology, Vol.48, (March 2010), pp. 45-68, ISSN 

0066-4286  

Gharyal, P.K. & Maheswari, S.C. (1983). In vitro differentiation of somatic embryos in a 

leguminous tree, Albizia lebbeck L. Naturwissenschaften, Vol.68, (1983), pp. 379–380, 

ISSN 0028-1042 

Ghazi T.D.; Cheema H.V. & Nabors M.W. (1986). Somatic embryogenesis and plant 

regeneration from embryonic callus of soybean [Glycine max (L.) Merr.]. Plant 

Physiology, Vol.77, (1986), p. 863-868, ISSN 0032-0889 

Hadi, M.Z.; McMullen, M.D. & Finer, J.J. (1996). Transformation of 12 different plasmids 

into soybean via particle bombardment. Plant Cell Reports, Vol.15, No., (1996), pp. 

500-505, ISSN 0721-7714 

Hammatt, N. & Davey, M.R. (1987). Somatic embryogenesis and plant regeneration from 

cultured zygotic embryos of soybean (Glycine max L. Merr.). Journal of Plant 

Physiology, Vol.128, No.3, (1987), pp. 219-226, ISSN 0176-1617 

Hartweck, L.M.; Lazzeri, P.A.; Cui, D.; Collins, G.B. & Williams, E.G. (1988). Auxin-

orientation effects on somatic embryogenesis from immature soybean cotyledons. 

In Vitro Cellular and Developmental Biology-Plant, vol.24, No.8, (August 1988), pp. 

821-828, ISSN 1054-5476 

Hernandez-Garcia, C.M.; Martinelli, A.P.; Bouchard, R.A. & Finer, J.J. (2009). A soybean 

(Glycine max) polyubiquitin promoter gives strong constitutive expression in 

transgenic soybean. Plant Cell Reports, Vol.28, No.5, (2009), pp. 837–849, ISSN 0721-

7714 

Hinchee, M.A.; Connor-Ward, D.V.; Newell, C.A.; McDonell, R.E.; Sato, S.J.; Gasser, C.S.; 

Fishhoff, D.A.; Re, D.B.; Fraley, R.T. & Horsch, R.B. (1988). Production of transgenic 

soybean plants using Agrobacterium-mediated DNA transfer. Nature Biotechnology, 

Vol.6, (1988), pp. 915-922, ISSN 1087-0156 

Hiraga, S.; Minakawa, H.; Takahashi, K.; Takahashi, R.; Hajika, M.; Harada, K. & Ohtsubo, 

N. (2007). Evaluation of somatic embryogenesis from immature cotyledons of 

Japanese soybean cultivars. Plant Biotechnology, v.24, No. 4, (September, 2007), 

p.435-440, ISSN 1342-4580 

Hoffmann, N.; Nelson, R.L. & Korban S.S. (2004). Influence of media components and pH on 

somatic embryo induction in three genotypes of soybean. Plant Cell, Tissue and 

Organ Culture, Vol.77, No.2, (2004), pp. 157–163, ISSN 0167-6857 

Homrich, M.S.; Passaglia, L.M.P.; Pereira, J.F.; Bertagnolli, P.F.; Pasquali, G.; Zaidi, M.A.; 

Altosaar, I. & Bodanese-Zanettini, M.H. (2008). Resistance to Anticarsia 

gemmatalis Hübner (Lepidoptera, Noctuidae) in transgenic soybean (Glycine max 

(L) Merrill Fabales, Fabaceae) cultivar IAS5 expressing a modified Cry1Ac 

endotoxin. Genetics and Molecular Biology, Vol.31, No.2, (2008), pp. 522–531, ISSN 

1415-4757 

www.intechopen.com



 
Genetic Engineering – Basics, New Applications and Responsibilities 

 

166 

Hong, H.P.; Zhang, H.; Olhoft, P.; Hill, S.; Wiley, H.; Toren, E.; Hillebrand, H.; Jones, T. & 

Cheng, M. (2007). Organogenic callus as the target for plant regeneration and 

transformation via Agrobacterium in soybean (Glycine max (L) Merr). In Vitro 

Cellular and Developmental Biology–Plant, Vol.43, No.6, (2007), pp. 558-568, ISSN 

1054-5476 

Hsu, F.C. & Obendorf, R.L. (1982). Compositional analysis of in vitro matured soybean 

seeds. Plant Science Letters, Vol.27, No.2, (October 1982), pp. 129-135, ISSN 0168-

9452 

Kermode, A.R. (1990). Regulatory mechanism involved in the transition from seed 

development to maturation Critical Reviews in Plant Sciences, Vol.9, (1990), pp. 155-

195, ISSN 0735-2689 

Kerns, H.R.; Barwale, V.B. & Meyer, M.M. (1986). Correlation of cotyledonary node shoot 

proliferation and somatic embryoid development in suspension cultures of soybean 

[Glycine max (L.) Merr.]. Plant Cell Reports, Vol.5, No.2, (1986), p. 140-143, ISSN 

0721-7714 

Kiss, E.; Heszky, L.E.; Gyulai, G.; Horváth, H.S. & Csillag, A. (1991). Neomorph and leaf 

differentiation as alternative morphogenetic pathways in soybean tissue culture. 

Acta Biologica Hungarica, Vol. 42, No.4, (1991), pp. 313-321, ISSN 0236-5383 

Kita Y.; Nishizawa K,; Takahashi M.; Kitayama M. & Ishimoto M. (2007). Genetic 

improvement of the somatic embryogenesis and regeneration in soybean and 

transformation of the improved breeding lines. Plant Cell Reports, vol.26, No. 4, 

(April, 2007), pp. 439-447, ISSN 1432-203X 

Ko, T.S.; Lee, S.; Farrand, S.K. & Korban, S.S. (2004). A partially disarmed vir helper 

plasmid, pKYRT1, in conjunction with 2,4-dichlorophenoxyacetic acid promotes 

emergence of regenerable transgenic somatic embryos from immature cotyledons 

of soybean. Planta, Vol.218, No.4, (February), pp. 536-541, ISSN 0032-0935 

Ko, T.S.; Lee, S.; Krasnyanski, S. & Korban, S.S. (2003). Two critical factors are required for 

efficient transformation of multiple soybean cultivars: Agrobacterium strain and 

orientation of immature cotyledonary explant. Tag Theoretical and Applied Genetics, 

Vol.107, No.3, (2003), pp. 439-447, ISSN 0040-5752 

Kohli, A.; Twyman, R.M.; Abranches, R.; Weget, E.; Stoger, E. & Christou, P. (2003). 

Transgene integration, organization and interaction in plants. Plant Molecular 

Biology, Vol.52, No.2, (2003), pp. 247-258, ISSN 0167-4412 

Komatsuda, T. & Ko, S.W. (1990). Screening of soybean (Glycine max (L.) Merrill) genotypes 

for somatic embryo production from immature embryo. Japanese Journal of Breeding, 

Vol.40, (1990), pp. 249-251, ISSN 0536-3683 

Komatsuda, T. & Ohyama, K. (1988). Genotype of high competence for somatic 

embryogenesis and plant regeneration in soybean Glycine max. Theoretical and 

Applied Genetics, Vol. 75, No. 5, (1998), pp. 695-700, ISSN 0040-5752 

Komatsuda, T., Kanebo, K., & Oka, S. (1991). Genotype × sucrose interactions for somatic 

embryogenesis in soybean. Crop Science. Vol.31, No.2, (1991), pp. 333–337, ISSN 

0011-183X 

Körbes, A.P. & Droste, A. (2005). Carbon sources and polyethylene glycol on soybean 

somatic embryo conversion. Pesquisa Agropecuária Brasileira, Vol.40, No.3, (March 

2005), pp. 211-216, ISSN 0100-204X 

www.intechopen.com



Strategies for Improvement of Soybean Regeneration  
via Somatic Embryogenesis and Genetic Transformation 

 

167 

Kumari, B.D.R.; Settu, A. & Sujatha, G. (2006). Somatic embryogenesis and plant 

regeneration in soybean. Indian Journal of Biotechnology, Vol.5, (April 2006), p. 243-

245, ISSN 0972-5849 

Lakshmanan P. & Taji A. (2000). Somatic Embryogenesis in Leguminous Plants. Plant 

Biology, Vol.2, No.2, (March 2000), pp. 136–148, ISSN 1435-8603 

Lazzeri, P.A., Hildebrand, D.F., Sunega, J., Williams, E.G. & Collins, G.B. (1988). Soybean 

somatic embryogenesis: interactions between sucrose and auxin. Plant Cell Reports, 

Vol.7, (1988), pp. 517–520, ISSN 0721-7714 

Lazzeri, P.A.; Hildebrand, D.F. & Collins, G.B. (1987). Soybean somatic embryogenesis: 

effects of hormones and culture manipulations. Plant Cell, Tissue and Organ Culture, 

Vol.10, (1987), pp. 197–208, ISSN 0167-6857 

Lazzeri, P.A.; Hilderbrand, D.F. & Collins, G.B. (1985). A procedure for plant regeneration 

from immature cotyledon tissue of soybean. Plant Molecular Biology Reporter, Vol.3, 

No.4, (Winter 1985), pp. 160-167, ISSN 0735-9640 

Li, X.Y.; Huang, F.H.; Murphy, B. & Gbur Junior, E.E. (1998). Polyethylene glycol and 

maltose enhance somatic embryo maturation in loblolly pine (Pinus taeda L.).  

In Vitro Cellular and Developmental Biology-Plant, Vol.34, (1998), pp. 22-26, ISSN 

1071-2690 

Li, Z.; Xing, A.; Moon, B.P.; McCardell, R.P.; Mills, K. & Falco, S.C. (2009). Site-Specific 

Integration of Transgenes in Soybean via Recombinase-Mediated DNA Cassette 

Exchange. Plant Physiology, Vol.151, No.3, (2009), pp. 1087–1095, ISSN 0032-

0889 

Lippmann, B. & Lippmann, G. (1984). Induction of somatic embryos in cotyledonary tissue 

of soybean, Glycine max L. Merr. Plant Cell Reports, Vol.185, No.3, (September 1984), 

pp. 215–218, ISSN 0721-7714 

Lippmann, B. & Lippmann, G. (1993). Soybean embryo culture: factors influencing plant 

recovery from isolated embryos. Plant Cell, Tissue and Organ Culture, Vol.32, No.1, 

(1993), pp. 83–90, ISSN 0167-6857 

Liu, S.J.; Wei, Z.M. & Huang, J.Q. (2008). The effect of co-cultivation and selection 

parameters on Agrobacterium-mediated transformation of Chinese soybean 

varieties. Plant Cell Reports, Vol.27, No.3, (2008), pp. 489-498, ISSN 0721-7714 

Liu, W.; Moore, P.J. & Collins, G.B. (1992). Somatic embryogenesis in soybean via somatic 

embryo cycling. In Vitro Cellular and Developmental Biology–Plant, Vol.28, No.3, (July 

1992), pp. 153-160, ISSN 1054-5476 

Maheswaran, G. & Williams, E.G. (1984). Direct somatic embryoid formation on immature 

embryos of Trifolium repens, T. pretense and Medicago sativa, and rapid clonal 

propagation of T. repens. Annals of Botany, Vol.54, (1984), pp. 201-211, ISSN 0305-

7364 

Mauro, A.O.O.; Pfeiffer, T.W. & Collins, G.B. (1995). Inheritance of soybean susceptibility to 

Agrobacterium tumefaciens and its relationship to transformation. Crop Science, 

Vol.35, No.4, (1995), pp. 1152-1156, ISSN 0011-183X 

McCabe, D.E.; Swain, W.F.; Martinell, B.J. & Christou, P. (1988). Stable transformation of 

soybean (Glycine max) by particle acceleration. Nature Biotechnology, Vol.6, (1988), 

pp. 923–926, ISSN 1087-0156 

www.intechopen.com



 
Genetic Engineering – Basics, New Applications and Responsibilities 

 

168 

Merkle, S.A.; Parrott, W.A. & Flinn, B.S. (1995). Morphogenic aspects of somatic 

embryogenesis. In: In vitro embryogenesis in plants, T.A. Thorpe, (Ed.), 155–203, 

Kluwer Academic, ISBN 0-7923-3149-4, Dordrecht, Netherlands 

Meurer, C.A.; Dinkins, R.D.; Redmond, C.T.; Mcallister, K.P.; Tucker, D.T.; Walker, D.R.; 

Parrott, W.A.; Trick, H.N.; Essig, J.S.; Frantz, H.M.; Finer, J.J. & Collins, G.B. (2001). 

Embryogenic response of multiple soybean [Glycine max (L.) Merr.] cultivars across 

three locations. In Vitro Cellular and Developmental Biology–Plant, Vol.37, No.67, 

(January-February 2001), pp. 62-67, ISSN 1054-5476 

Miklos, J.A.; Alibhai, M.F.; Bledig, S.A.; Connor-Ward, D.C.; Gao, A.G.; Holmes, B.A.; 

Kolacz, K.H.; Kabuye, V.T.; MacRae, T.C.; Paradise, M.S.; Toedebusch, A.S. & 

Harrison, L.A. (2007). Characterization of soybean exhibiting high expression of a 

synthetic Bacillus thuringiensis cry1A transgene that confers a high degree of 

resistance to Lepidopteran pests. Crop Science, Vol.47, (2007), pp. 148-157, ISSN 

0011-183X 

Murashige, T. & Skoog, F. (1962). A revised medium for rapid growth and bio assays with 

tobacco tissue cultures. Physiologia Plantarum, Vol. 15, (1962), pp. 473–497, ISSN 

0031-9317 

Parrott, W.A.; Dryden, G.; Vogt, S.; Hildebrand, D.F.; Collins, G.B. & Williams, E.G. (1988). 

Optimization of somatic embryogenesis and embryo germination in soybean.  

In Vitro Cellular and Development Biology-Plant, Vol.24, (1988), pp. 817-820, ISSN 

1071-2690 

Parrott, W.A.; Durham, R.E. & Bailey, M.A. (1995). Somatic embryogenesis in legumes. In: 
Biotechnology in Agriculture and Forestry, Somatic Embryogenesis and Synthetic Seed II, 

Y. P. S. Bajaj, (Ed.), 199–227, Springer-Verlag, ISBN 0-387-57449-2-X, Berlin 

Parrott, W.A.; Hoffman, L.M.; Hildebrand, D.F.; Williams, E.G. & Collins, G.B. (1989). 

Recovery of primary transformants of soybean. Plant Cell Reports, Vol.7, No.8, 

(1989), pp. 615-617, ISSN 0721-7714 

Parrott, W.A.; Williams E.G.; Hildebrand, D.F. & Collins, G.B. (1989). Effect of genotype on 

somatic embryogenesis from immature cotyledons of soybean. Plant Cell, Tissue and 

Organ Culture, Vol. 16, No. 1, (1989) pp. 15-21, ISSN 0167-6857 

Paz, M.M.; Martinez, J.C.; Kalvig, A.B.; Fonger, T.M. & Wang, K. (2006). Improved 

cotyledonary node method using an alternative explant derived from mature seed 

for efficient Agrobacterium-mediated soybean transformation. Plant Cell Reports, 

Vol.25, No.3, (2006), pp. 206-213, ISSN 0721-7714 

Pitzschke, A. & Hirt, H. (2010). New insights into an old story: Agrobacterium-induced 

tumour formation in plants by plant transformation. The EMBO Journal, Vol.29, 

No.6, (February 2010), pp. 1021-1032, ISSN 0261-4189 

Raghavan, V. (1986). Embryogenesis in Angiosperms. A Developmental and Experimental 

Study. Raghavan, V.  ISBN 0-521-26771-4, Cambridge, U.K., Cambridge 

University Press 

Ranch, J.P.; Oglesby, L. & Zielinski, A.C. (1985). Plant regeneration from embryo-derived 

tissue culture of soybeans. In Vitro Cellular and Developmental Biology-Plant, Vol.21, 

No.11, (1985), pp. 653-658, ISSN 1071-2690 

Reinert, J. (1958). Morphogenese und ihre Kontrolle an Gewebekulturen aus Karotten. 

Naturwissenschaften, Vol.45, (1958), pp. 344–349, ISSN 0028-1042 

www.intechopen.com



Strategies for Improvement of Soybean Regeneration  
via Somatic Embryogenesis and Genetic Transformation 

 

169 

Rock, C.D. & Quatrano, R.S. (1995). The role of hormones during seed development.  

In: Plant hormones: physiology, biochemistry and molecular biology, P.J. DAVIES, (Ed.), 

pp. 671-697, Kluwer Academic, ISBN 0-7923-2985-6, Dordrecht, Netherlands  

Rodrigues, L.R.; Oliveira, J.M.S.; Mariath, J.E.A. & Bodanese-Zanettini, M.H. (2005). 

Histology of embryogenic responses in soybean anther culture. Plant Cell, Tissue 

and Organ Culture, Vol.80, No.2, (February 2005), pp. 129-137, ISSN 0167-6857 

Rosenberg, L.A. & Rinne, R.W. (1986). Moisture loss as a prerequisite for seedling growth in 

soybean seeds (Glycine max L. Merr.). Journal of Experimental Botany, Vol.37, No.11, 

(1986), pp. 1663-1674, ISSN 0022-0957 

Rosenberg, L.A. & Rinne, R.W. (1988). Protein synthesis during natural and precocious 

soybean seed (Glycine max L. Merr.) maturation. Plant Physiology, Vol.87, No.2, 

(June 1988), pp. 474-478, ISSN 0032-0889 

Samoylov, V.M.; Tucker, D.M. & Parrott, W.A. (1998b). A liquid medium-based protocol for 

rapid regeneration from embryogenic soybean cultures. Plant Cell Reports, Vol.18, 

(1998), pp. 49–54, ISSN 0721-7714 

Samoylov, V.M; Tucker, D.M. & Parrott, W.A. (1998a). Soybean [Glycine max (L.) Merrill] 

embryogenic cultures: the role of sucrose and total nitrogen content on 

proliferation. In Vitro Cellular and Developmental Biology-Plant, Vol.34, (January-

March 1998), pp. 8–13, ISSN 1071-2690 

Sanford, J.C. (1988). The biolistic process. Trends Biotechnology, Vol.6, No.12, (December 

1988), pp. 299-302, ISSN 0167-7799 

Sanford, J.C. (1990). Biolistic plant transformation. Physiologia Plantarum, Vol.79, No.1, (May 

1990), pp. 206-209, ISSN 0031-9317 

Santarém, E.R. & Finer, J.J. (1998). Transformation of soybean [Glycine max (L.) Merrill] using 

proliferative embryogenic tissue maintained on semi-solid medium. In Vitro 

Cellular and Developmental Biology-Plant, Vol.35, (November-December 1998), pp. 

451–455, ISSN 1071-2690 

Santarém, E.R.; Pelissier, B. & Finer, J.J. (1997). Effect of explant orientation, pH, 

solidifying agent and wounding on initiation of soybean somatic embryos. In 

Vitro Cellular and Developmental Biology-Plant, Vol.33, No.1, (January 1997), pp. 

13–19, ISSN 1071-2690 

Santos, K.G.B.; Mariath, J.E.A.; Moço, M.C.C. & Bodanese-Zanettini, M.H. (2006). Somatic 

Embryogenesis from Immature Cotyledons of Soybean (Glycine max (L.) Merr.): 

Ontogeny of Somatic Embryos. Brazilian Archives of Biology and Technology, Vol. 49, 

No.1, (January 2006), pp. 49-55, ISSN 1516-8913 

Santos, K.G.B.; Mundstock, E.; Bodanese-Zanettini, M.H. (1997). Genotype-specific 

normalization of soybean somatic embryogenesis through the use of an ethylene 

inhibitor. Plant Cell Reports, Vol. 16, No. 12, (June, 1997), pp. 859-864, ISSN 0721-

7714 

Saravitz, C.H. & Raper, C.D.Jr. (1995). Responses to sucrose and glutamine by soybean 

embryos grown in vitro. Physiologia Plantarum, Vol.93, (1995), pp. 799–805, ISSN 

0031-9317 

Sato, S.; Newell, C.; Kolacz, K.; Tredo, L.; Finer, J. & Hinchee, M. (1993). Stable 

transformation via particle bombardment in two different soybean regeneration 

systems. Plant Cell Reports, Vol.12, No.7-8, (1993), pp. 408- 413, ISSN 0721-7714 

www.intechopen.com



 
Genetic Engineering – Basics, New Applications and Responsibilities 

 

170 

Schmidt, M.A.; LaFayette, P.R.; Artelt, B.A. & Parrott, W.A. (2008). A comparison of 

strategies for transformation with multiple genes via microprojectile-mediated 

bombardment. In Vitro Cellular and Developmental Biology–Plant, Vol. 44, No.3, 

(2008), pp. 162-168, ISSN 1071-2690 

Schmidt, M.A.; Tucker, D.M.; Cahoon, E.B. & Parrott, W.A. (2005). Towards normalization 

of soybean somatic embryo maturation. Plant Cell Reports, Vol.24, (2005), pp. 383-

391, ISSN 1432-203X 

Sharma, K. K. & Thorpe, T. A. (1995). Asexual Embryogenesis in Vascular Plants in Nature, 

In: In Vitro Embryogenesis in Plants, T.A.Thorpe, (Ed.), 17–72, Kluwer Academic, 

ISBN 0-7923-3149-4, Dordrecht, Netherlands 

Sharp, W.R., Evans D.A. & Sondahl, MR. (1982). Application of somatic embryogenesis to 

crop improvement. In: Plant tissue culture 1982. Proceedings of the Fifth 

International Congress of Plant Tissue Culture, A. Fujiwara, (Ed), 759-762, Japanese 

Association for Plant Tissue Culture, Maruzen, Tokyo 

Simmonds, D.H. & Donaldson, P.A. (2000). Genotype screening for proliferative 

embryogenesis and biolistic transformation of short-season soybean genotypes. 

Plant Cell Reports, Vol. 19, No. 5, (2000), pp. 485-490, ISSN 0721-7714 

Smith, D.L. & Krikorian, A.D. (1989). Release of somatic embryogenic potential from excised 

zygotic embryos of carrot and maintenance of proembryonic cultures in hormone-

free medium. American Journal of Botany, Vol.76, No.12, (1989), pp. 1832–1840, ISSN 

0002-9122 

Somers, D.A.; Samac, D.A. & Olhoft, P.M. (2003). Recent Advances in Legume 

Transformation. Plant Physiology, Vol. 131, No.3, (March 2003), pp. 892–899, ISSN 

0032-0889 

Stewart Jr, C.N.; Adang, M.J.; All, J.N.; Boerma, H.R.; Cardineau, G.; Tucker, D. & Parrott, 

W.A. (1996). Genetic transformation, recovery, and characterization of soybean 

(Glycine max [L.] Merrill) transgenic for a synthetic Bacillus thuringiensis CRY1A(c) 

gene. Plant Physiology, Vol.112, No.1, (September 1996), pp. 121-129, ISSN 0032-

0889 

Thomas, T.D. (2008). The role of activated charcoal in plant tissue culture. Biotechnology 

Advances, Vol.26, (August 2008), pp. 618–631, ISSN 0734-9750 

Thompson, J.F.; Madison, J.T. & Muenster, A.-M.E. (1977). In vitro culture of immature 

cotyledons of soya bean (Glycine max L. Merr.). Annals of Botany, Vol.41, No.1, 

(1977), pp. 29–39, ISSN 0305-7364 

Tian, L.N. & Brown, D.C.W. (2000). Improvement of soybean somatic embryo development 

and maturation by abscisic acid treatment. Canadian Journal of Plant Science, Vol.80, 

(2000), pp. 721-276, ISSN 0008-4220 

Tomlin, E.S.; Branch, S.R.; Chamberlain, D.; Gabe, H., Wright, M.S. & Stewart, C.N. (2002). 

Screening of soybean, Glycine max (L.) Merrill, lines for somatic embryo induction 

and maturation capability from immature cotyledons. In Vitro Cellular and 

Developmental Biology-Plant, Vol.38, (November-December 2002), pp. 543–548, ISSN 

1071-2690 

Trick, H.N. & Finer, J.J. (1997). SAAT: sonication-assisted Agrobacterium-mediated 

transformation. Transgenic Research, Vol.6, (1997), pp. 329-336, ISSN 0962-8819 

www.intechopen.com



Strategies for Improvement of Soybean Regeneration  
via Somatic Embryogenesis and Genetic Transformation 

 

171 

Trick, H.N. & Finer, J.J. (1998). Sonication-assisted Agrobacterium-mediated transformation of 

soybean (Glycine max) embryogenic suspension culture tissue. Plant Cell Reports, 

Vol.17, (1998), pp. 482-488, ISSN 0721-7714 

Trick, H.N.; Dinkins, R.D.; Santarém, E.R.; Di, R.; Samoylov, V.; Meurer, C.A.; Walker, D.R.; 

Parrott, W.A.; Finer, J.J. & Collins, G.B. (1997). Recent advances in soybean 

transformation. Plant Tissue Culture and Biotechnology, Vol.3, No.1, (March 1997), pp. 

9–24, ISSN 1817-3721 

Vergara, R.; Verde, F.; Pitto, L.; LoSchiavo, F. & Terzi, M. (1990). Reversible variations in the 

methylation pattern of carrot DNA during somatic embryogenesis. Plant Cell 

Reports, Vol.8, No.12, (1990), pp. 697–701, ISSN 0721-7714 

Vianna, G.R.; Aragão; F.J.L. & Rech, E.L. (2011). A minimal DNA cassette as a vector for 

genetic transformation of soybean (Glycine max). Genetics and Molecular Research, 

Vol.10, No.1, (March 2011), pp. 382-390, ISSN 1676-5680 

Walker, D.R. & Parrott, W.A. (2001). Effect of polyethylene glycol and sugar alcohols on 

soybean somatic embryo germination and conversion. Plant Cell, Tissue and Organ 

Culture, Vol.64, No.1, (January 2001), pp. 55–62, ISSN 0167-6857 

Wang, G. & Xu, Y. (2008). Hypocotyl-based Agrobacterium-mediated transformation of 

soybean (Glycine max) and application for RNA interference. Plant Cell Reports, 

Vol.27, No.7, (2008), pp. 1177-1184, ISSN 0721-7714  

Weber, R.L.M.; Körber, A.P.; Baldasso, D.A.; Callegari-Jacques, S.M.; Bodanese-Zanettini, 

M.H. & Droste, A. (2007). Beneficial effect of abscisic acid on soybean somatic 

embryo maturation and conversion into plants. Plant Cell Culture and 

Micropropagation, Vol. 3, No. 1, (2007), pp. 1-9, ISSN 1808-9909 

Wiebke, B.; Ferreira, F.; Pasquali, G.; Bodanese-Zanettini, M.H. & Droste, A. (2006). 

Influence of antibiotics on embryogenic tissue and Agrobacterium tumefaciens 

suppression in soybean genetic transformation. Bragantia, Vol.65, No.4, (2006), pp. 

543-551, ISSN 0006-8705 

Wiebke-Strohm, B.; Droste, A.; Pasquali, G.; Osorio, M.B.; Bücker-Neto, L.; Passaglia, L.M.P.; 

Bencke, M.; Homrich, M.S.; Margis-Pinheiro, M. & Bodanese-Zanettini, M.H. 

(2011). Transgenic fertile soybean plants derived from somatic embryos 

transformed via the combined DNA-free particle bombardment and 

Agrobacterium system. Euphytica, Vol.177, No.3, (2011), pp. 343-354, ISSN 0014-

2336 

Williams, E. G. & Maheswaran, G. (1986). Somatic embryogenesis: factors influencing 

coordinated behavior of cells as an embryogenic group. Annals of Botany, Vol.57, 

No.4, (April 1986), pp. 443-462, ISSN 0305-7364 

Wright, M.S.; Launis, K.L.; Novitzky, R.; Duesiing, J.H. & Harms, C.T. (1991). A simple 

method for the recovery of multiple fertile plants from individual somatic embryos 

of soybean [Glycine max (L.) Merrill]. In Vitro Cellular and Developmental Biology-

Plant, Vol.27, (1991), pp. 153-157, ISSN 1071-2690 

Wu, C.; Chiera, J.M.; Ling, P.P. & Finer, J.J. (2008). Isoxaflutole treatment leads to reversible 

tissue bleaching and allows for more effective detection of GFP in transgenic 

soybean tissues. In Vitro Cellular and Developmental Biology–Plant, Vol.44, No.6, 

(2008), pp. 540–547, ISSN 1054-5476 

www.intechopen.com



 
Genetic Engineering – Basics, New Applications and Responsibilities 

 

172 

Xing, A.; Moon, B.P.; Mills, K.M.; Falco, S.C. & Li, Z. (2010). Revealing frequent alternative 

polyadenylation and widespread low-level transcription read-through of novel 

plant transcription terminators. Plant Biotechnology Journal, Vol.8, No.7, (September 

2010), pp. 772–782, ISSN 1467-7644 

Yan, B.; Reddy, M.S.S.; Collins, G.B. & Dinkins, R.D. (2000). Agrobacterium tumefaciens 

mediated transformation of soybean [Glycine max (L) Merrill] using immature 

zygotic cotyledon explants. Plant Cell Reports, Vol.19, No.11, (2000), pp. 1090-1097, 

ISSN 0721-7714 

Yang, C.; Zhao, T.; Yu, D. & Gai J. (2009). Somatic embryogenesis and plant regeneration in 

Chinese soybean (Glycine max (L.) Merr.)-impacts of mannitol, abscisic acid, and 

explants age. In Vitro Cellular and Developmental Biology-Plant, Vol. 45, No. 2, (April 

2009), pp. 180-181, ISSN 1054-5476 

www.intechopen.com



Genetic Engineering - Basics, New Applications and

Responsibilities

Edited by Prof. Hugo A. Barrera-Saldaña

ISBN 978-953-307-790-1

Hard cover, 256 pages

Publisher InTech

Published online 18, January, 2012

Published in print edition January, 2012

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

Leading scientists from different countries around the world contributed valuable essays on the basic

applications and safety, as well as the ethical and moral considerations, of the powerful genetic engineering

tools now available for modifying the molecules, pathways, and phenotypes of species of agricultural, industrial

and even medical importance. After three decades of perfecting such tools, we now see a refined technology,

surprisingly unexpected applications, and matured guidelines to avoid unintentional damage to our and other

species, as well as the environment, while trying to contribute to solve the biological, medical and technical

challenges of society and industry. Chapters on thermo-stabilization of luciferase, engineering of the

phenylpropanoid pathway in a species of high demand for the paper industry, more efficient regeneration of

transgenic soybean, viral resistant plants, and a novel approach for rapidly screening properties of newly

discovered animal growth hormones, illustrate the state-of-the-art science and technology of genetic

engineering, but also serve to raise public awareness of the pros and cons that this young scientific discipline

has to offer to mankind.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Beatriz Wiebke-Strohm, Milena Shenkel Homrich, Ricardo Luís Mayer Weber, Annette Droste and Maria

Helena Bodanese-Zanettini (2012). Strategies for Improvement of Soybean Regeneration via Somatic

Embryogenesis and Genetic Transformation, Genetic Engineering - Basics, New Applications and

Responsibilities, Prof. Hugo A. Barrera-Saldaña (Ed.), ISBN: 978-953-307-790-1, InTech, Available from:

http://www.intechopen.com/books/genetic-engineering-basics-new-applications-and-responsibilities/strategies-

for-improvement-of-soybean-regeneration-via-somatic-embryogenesis-and-genetic-transformat



© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.


