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1. Introduction 

Dynamic responses of dam-reservoir systems subjected to ground motions are often a major 

concern in the design. To ensure that dams are adequately designed for, the hydrodynamic 

pressure distribution along the dam-reservoir interface must be determined for assessment 

of safety.  
Due to the fact that analytical methods are not readily available for dam-reservoir systems 
with arbitrary geometry shape, numerical methods are often used to analyze responses of 
dam-reservoir systems. In numerical methods, dams are often discretized into solid finite 
elements through Finite Element Method (FEM), while the reservoir is either directly 
modeled by Boundary Element Method (BEM) or is divided into two parts: a near field with 
arbitrary geometry shape and a far field with a uniform cross section. The near field is 
discretized into acoustic fluid finite elements by using FEM or boundary elements by BEM, 
while the far field is modeled by BEM or a Transmitting Boundary Condition (TBC). Based 
on these numerical methods, several coupling procedures were developed. 
A FEM-BEM coupling procedure was used to implement the linear and non-linear analysis 
of dam-reservoir interaction problems (Tsai & Lee, 1987; Czygan & Von Estorff, 2002), 
respectively, in which the dam was modeled by FEM, while the reservoir was modeled by 
BEM. A BEM-TBC coupling method was adopted to solve dam-water-foundation 
interaction problems and dam-reservoir-sediment-foundation interaction problems 
(Dominguez & Maeso, 1993; Dominguez et al., 1997). The dam and the near field of the 
reservoir were discretized by using BEM, while the far field of the reservoir was represented 
by a TBC. As a traditional numerical method, BEM has been popular in simulating 
unbounded medium, but it needs a fundamental solution and includes a singular integral, 
which affect its application. In order to avoid deriving a fundamental solution required in 
BEM, the TBC attracted some researchers’ interests. A Sommerfeld-type TBC was used to 
represent the far field (Kucukarslan et al., 2005), while a Sharan-type TBC was proposed for 
infinite fluid (Sharan, 1987). The Sommerfeld-type and Sharan-type TBCs are readily 
implemented in FEM due to their conciseness, but a sufficiently large near field is required 
to model accurately the damping effect of semi-infinite reservoir. Except for the 
aforementioned TBCs, an exact TBC (Tsai & Lee, 1991), a novel TBC (Maity & 
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Bhattacharyya, 1999) and a non-reflecting TBC (Gogoi & Maity, 2006) were proposed, 
respectively. These complicated TBCs gave better results even when a small near field was 
chosen, but their implementations in a finite element code became complex and tedious. 
In this chapter, the scaled boundary finite element method (SBFEM) was chosen to model 
the far field. The SBFEM does not require fundamental solutions and is able to model 
accurately the damping effect of semi-infinite reservoir and incorporate with FEM readily, 
but the SBFEM requires the geometry of far field is layered (or tapered). Although BEM and 
some of TBCs can handle far fields with arbitrary geometry, far fields in most dam-reservoir 
systems are always chosen to be layered with a uniform cross section, which ensures the 
SBFEM can be used in dam-reservoir interaction problems. 
Based on a mechanically-based derivation, the SBFEM was proposed for infinite medium 
(Wolf & Song, 1996a; Song & Wolf, 1996) which was governed by a three-dimensional 
scalar wave equation and a three-dimensional vector wave equation, respectively. A 
dynamic stiffness matrix and a dynamic mass matrix were introduced to represent infinite 
medium in the frequency domain and the time domain, respectively. The dynamic 
stiffness matrix satisfies a non-linear ordinary differential equation of first order, while 
the dynamic mass matrix is governed by an integral convolution equation. The SBFEM 
reduces spatial dimensions by one. Only boundaries need discretization and its solutions 
in the radial direction are analytical. Therefore, it can handle well bounded domain 
problems with cracks and stress singularities and unbounded domain problems including 
infinite soil or unbounded acoustic fluid medium. In analyzing crack and stress 
singularities problems, the SBFEM placed the scaling center on the crack tip and only 
discretized the boundary of bounded domain using supper elements except the straight 
traction free crack faces, which permitted a rigorous representation of the stress 
singularities around the crack tip (Song, 2004; Song & Wolf, 2002; Yang & Deeks, 2007). 
The response of unbounded domain problems was obtained by using the SBFEM alone or 
coupling FEM and the SBFEM. A FEM-SBFEM coupling procedure was used to analyze 
unbounded soil-structure interaction problems in the time domain (Ekevid & Wiberg, 
2002; Bazyar & Song, 2008). For unbounded acoustic fluid medium problems, a FEM-
SBFEM coupling procedure combined with acoustic approximations was proposed to 
evaluate the responses of submerged structures subjected to underwater shock waves in 
the time domain (Fan et al., 2005; Li & Fan, 2007). Results showed that the SBFEM was 
able to model accurately the damping behavior of the unbounded soil and infinite 
acoustic fluid medium, but it was computationally expensive because the evaluations of 
the dynamic mass matrix and dynamic responses need solving integral convolution 
equations. In the frequency domain, dynamic condensation and substructure deletion 
methods were used to evaluate the dynamic stiffness matrix, which avoid evaluating 
integral convolution equations, but evaluation errors increased with frequency increasing 
so that results at high frequencies were not acceptable (Wolf & Song, 1996b). To evaluate 
accurately high frequencies behaviors of the dynamic stiffness matrix, a Pade series was 
presented to analyze out-of-plane motion of circular cavity embedded in full-plane 
through using the SBFEM alone (Song & Bazyar, 2007). Good results were obtained at 
high frequencies, but results at low frequencies were inferior even if a high order Pade 
series was used. The high order Pade series was not only complex, and also increased 
computational cost. A simplified SBFEM formulation was presented through discovering 
a zero matrix and a FEM-SBFEM coupling procedure was used to analyze dam-reservoir 
interaction problems subjected to ground motions (Fan & Li, 2008). The simplified SBFEM 
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was well suitable for all frequencies and no additional computational costs were increased 
for low frequency analysis in comparison with for high frequency analysis. Its advantages 
were exhibited by analyzing the harmonic responses of dam-reservoir systems in the 
frequency domain. However in the time domain, its advantages are not as obvious as 
those in the frequency domain because integral convolutions still need evaluating. 
Although a Riccati equation and Lyapunov equations were presented to solve the integral 
convolutions (Wolf & Song, 1996b), solving them needed great computational costs, 
especially for large-scale systems, which limited the SBFEM applications in the time 
domain. To simplify the integral convolutions and save computational costs, some 
recursive formulations were proposed (Paronesso & Wolf, 1998; Yan et al., 2004), based on 
a diagonalization procedure and the linear system theory (Paronesso & Wolf, 1995). The 
integral convolution was transformed into an equivalent system of linear equations, 
named state-variable description which was represented by finite-difference equations. 
However, the coefficient matrix quaternion of finite-difference equations was calculated 
by using Hankel matrix realization algorithms, which complicated the analysis. 
Furthermore, the diagonalization procedure increased the order of the dynamic mass 
matrix, and some global lumped parameters, such as springs, dashpots and masses, used 
in the diagonalization procedure must be introduced at additional internal nodes 
corresponding to inner variables in the state-variable description, besides the nodes on the 
structure-medium interface. The number of global lumped parameters would become 
very large for large-scale systems. This weakened the feasibility of the diagonalization 
procedure. A new diagonalization procedure of the SBFEM for semi-infinite reservoir was 
proposed (Li, 2009), whose calculation efficiency was proven to be high, although it still 
included convolution integrals. With the improvement of the SBFEM evaluation efficiency 
in the time domain analysis, the SBFEM will show gradually its advantages and potential 
to solve problems including unbounded soil or unbounded acoustic fluid medium, such 
as the dam-reservoir interaction problems.  

2. Problem statement 

Consider dam-reservoir interaction problems subjected to horizontal ground accelerations. 
The dam-reservoir system and its Cartesian coordinate system were shown in Fig.1. The  
 
 

 

Fig. 1. Dam-reservoir system 
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dam was subjected to a horizontal ground acceleration xa  and the semi-infinite reservoir 
was filled with an inviscid isentropic fluid. To evaluate the response of the dam-reservoir 
system under a horizontal ground acceleration xa  excitation, the semi-infinite reservoir was 
divided into two parts: a near field and a far field. The near field was located between the 
dam-reservoir interface and the radiation boundary (the near-far-field interface at x L ), 
while the far field was from x L  to  . Note that the geometry of the reservoir was chosen 
to be arbitrary for x 0  and flat for x 0 . 
For an inviscid isentropic fluid (acoustic fluid) with the fluid particles undergoing only 
small displacements and not including body force effects, the governing equations is 
expressed as 

 
c

2
2

1   
 (1) 

where   denotes velocity potential and c  denotes the sound speed in fluid. Reservoir 
pressure p , the velocity vector v  and the velocity potential   have a relationship as follows: 

  v  (2a) 

 p     (2b) 

where   denotes fluid density. Boundary conditions of the near field for Eq.(1) are following. 
Along the dam-reservoir interface, one has 

 nv
n


  


v n  (3) 

where the unit vector n  is perpendicular to the dam-reservoir interface and points outward 

of fluid; nv  is the normal velocity of the dam-reservoir interface. The boundary condition 

along the reservoir bottom is 

 nq v
n

 
 




 (4) 

where q  is defined as 

 r

r

q
c

11

1




 
  

 
 (5) 

in which r  denotes a reflection coefficient of pressure striking the bottom of the reservoir. 

By ignoring effects of surface waves of fluid, the boundary condition of the free surface is 
taken as 

 0   (6) 

The boundary condition on the radiation boundary (near-far-filed interface) should include 
effects of the radiation damping of infinite reservoir and those of energy dissipation in the 
reservoir due to the absorptive reservoir bottom. To model these effects accurately, the 
SBFEM was adopted in this chapter.  
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3. SBFEM formulation 

Fig.2 showed the SBFEM discretization model of the far field shown in Fig.1, which was a 

layered semi-infinite fluid medium whose scaling center was located at minus infinity. The 

whole semi-infinite layered far field was divided into some layered sub-fields. Each layered 

sub-field was represented by one element on the near-far-field interface, so the whole far 

field was discretized into some elements on the near-far-field interface. Based on the 

discretization, a dynamic stiffness or mass matrix was introduced to describe the 

characteristics of the far field in the SBFEM. The interaction between the near field and the 

far field was expressed as the following SBFEM formulation. 

 
 
 

 

 

Fig. 2. SBFEM discretization model of layered far field 

3.1 SBFEM formulation in the frequency domain 

On the discretized near-far-field interface, the SBFEM formulation in the frequency domain 
(Fan & Li, 2008; Li et al., 2008) for the far field filled with unbounded acoustic fluid medium 
is written as 

      n   V S Φ  (7) 

where  Φ  denotes the column vector composed of nodal velocity potentials  ;  S  is 

the dynamic stiffness matrix of the far field and  n V  satisfies 

    
e
w

T e
n f n w

e

v d 


  V N  (8) 

in which nv  is the normal velocity; w  denotes the near-far-field interface; fN  is the shape 

function for a typical discretized acoustic fluid finite element; and e  denotes an 

assemblage of all fluid elements on the near-far-field interface. The dynamic stiffness matrix 

 S  (Li, et al., 2008) satisfies 

        T i i
21 0 1 1 2 0 0          S E E S E E C M 0  (9) 
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where global coefficient matrices 0E , 1E , 2E , 0C  and 0M  only depend on the geometry of 
the near-far-field interface and the reflection coefficient r . They are obtained through 
assembling all elements’ e

0E , e
1E , e

2E , e
0C and e

0M  on the near-far-field interface. The 
matrices e

0E , e
1E , e

2E , e
0C and e

0M  corresponding to each element can be evaluated 
numerically or analytically using the following equations. 

 T
e d d

1 10 1 1

1 1
 

 
  E B B J  (10a) 

 T
e d d

1 11 2 1

1 1
 

 
  E B B J  (10b) 

 T
e d d

1 12 2 2

1 1
 

 
  E B B J  (10c) 

 T
e f f d d

c

1 10
21 1

1  
 

  M N N J  (10d) 

where the fN  is defined in Eq.(8) and the others J , 1B , 2B  are defined below. The matrix 
J  is defined as 

 

0 0

f f f

f f f

H

d d d

d d d

d d d

d d d

  

  

 
 
 
 
 
 
 
 
 
 

N N N
J x y z

N N N
x y z

 (11a) 

where the symbol H  denotes the water depth in the far field and x , y  and z  are element 
nodal coordinates column vectors. Due to the fact that x  coordinates of all nodes inside the 
near-far-field interface (vertical surface) are same, the matrix J  becomes 

 

0 0

0

0

f f

f f

H

d d

d d

d d

d d

 

 

 
 
 
 
 
 
 
 
 
 

N N
J y z

N N
y z

 (11b) 

Write the inverse of J  in the following form 

 

j j j

j j j

j j j

11 12 13
1

21 22 23

31 32 33


 
   
  

J  (12) 

The components mnj   m n, 1,2,3  can be evaluated by using Eq.(11b). Therefore, the 
matrix 1B  is defined as 
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 f

j

j

j

11
1

21

31

 
   
  

B N  (13) 

and the matrix 2B  is 

 
f f

j j
d d

j j
d d

j j

12 13
2

22 23

32 33

 

   
       
      

N N
B  (14) 

Note that Eqs.(10-14) are only the functions of nodal coordinates of elements inside the near-

far-field interface. The matrix e
0C  is a zero matrix for elements not adjacent to reservoir bottom 

inside the near-far-field interface, while for those adjacent to reservoir bottom, e
0C  satisfies 

 
b

Tr
e f f b

r

H d
c

0 11

1


 

 
  

 
C N N  (15) 

where the symbol b  denotes the reservoir bottom of the near-far-field interface, i.e. the line 

y 0  as shown in the Fig.2. Assembling all elements’ e
0E , e

1E , e
2E , e

0C  and e
0M  can yield 

the global coefficient matrices 0E , 1E , 2E , 0C  and 0M  in Eq.(9). Details about them can be 

found in the literatures (Wolf & Song, 1996b; Li et al., 2008). 

For a vertical near-far-field interface as shown in Fig.2, as the matrix 1E  was a zero matrix, 

the dynamic stiffness matrix  S  in Eq.(9) can be re-written readily as 

    i2 0 2 0 0 1 0     S E C M E E  (16) 

where   is an excitation frequency. The  S  can be obtained by the Schur factorization. 

3.2 SBFEM formulation in the time domain 

The corresponding SBFEM formulation of Eq.(7) in the time domain is written as (Wolf & 
Song, 1996b) 

      
t

n t t d
0

   V M Φ  (17) 

in which  tM  is the dynamic mass matrix of the far field;  tΦ  and  n tV  are the 
corresponding variables of  Φ  and  n V  in the time domain, respectively.  tM  and 

   i
2 S forms a Fourier transform pair. Upon discretization of Eq.(17) with respect to 

time and assuming all initial conditions equal to zero, one can get the following equation 

  
n

jn n
n n j n j

j

1

1 1
1


  

  


   V M Φ M M Φ 
 (18) 

in which   n j n j t1 1 
     M M ,  j j t Φ Φ  and  n

n n n t V V  where t  denotes 

an increment in time step.  

Applying the inverse Fourier transformation to Eq. (9) with 1 0E  yields 
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    
t t t

t d t
3 2

2 0 0

0
0

6 2
        m m e c m  (19) 

where t  is time and 

    Tt t1 1   m U M U  (20) 

 
T2 1 2 1 e U E U  (21) 

 T0 1 0 1 m U M U  (22) 

 T0 1 0 1 c U C U  (23) 

in which U  satisfies 

 T0 E U U  (24) 

A procedure (Wolf & Song, 1996b) was presented to evaluate the dynamic mass matrix 

 tM  at different time t  governed by the convolution integral Eq.(19). In that procedure, 

discretization of Eq.(19) with respect to time was implemented, and an algebraic Riccati 

equation for evaluating  t t  M  at first time step and a Lyapunov equation for 

evaluating  t j t  M  at other jth time steps were formed, respectively. The  t j t  M  

at any time was obtained by utilizing Schur factorization to solve these two types of 

equations. When the coefficient matrix 0 0c , a simple diagonal procedure (Li, 2009) can be 

adopted to evaluate the  tM , which can avoid Schur factorization and solving Riccati 

equation and Lyapunov equation.  

4. FEM-SBFEM coupling formulation of reservoir 

To obtain the response of dam-reservoir system, the near-field fluid domain is discretized 
into an assemblage of finite elements. The corresponding finite-element governing equation 
of Eq.(1) for the near-field domain can be expressed as 

 

n

n

n

11 12 13 1 11 12 13 1 1

21 22 23 2 21 22 23 2 2

31 32 33 3 31 32 33 3 3

        
                  
                

m m m Φ k k k Φ V

m m m Φ k k k Φ V

m m m Φ k k k Φ V





 (25) 

where the global mass matrix m , the global stiffness matrix k  and the global vector nV  are 
treated in the standard manner as in the traditional FE procedures; the subscripts 1 and 2 
refer to nodal variables at the dam-reservoir interface and the near-far-field interface, 
respectively, while the subscript 3 refers to other interior nodal variables in the near-field 
fluid. At the near-far-field interface, the near-field FEM-domain couples with the far-field 
SBFEM-domain. The kinematic continuity condition requires that both fields have the same 
normal velocity at the near-far-field interface. Hence, one has 

 
n n2 V V  (26) 
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In the frequency domain, using Eqs.(7, 16, 25, 26) yields 

 

 
n

n

i

11 12 13 1

21 22 23 2

31 32 33 3

11 12 13
1 1

2 0 2 0 0 1 0
21 22 23 2

3 3
31 32 33

  

  
     
     

                 
     

     

m m m Φ
m m m Φ
m m m Φ

k k k Φ V

k k E C M E E k Φ 0

Φ Vk k k





 (27) 

For a harmonic response with an exciting frequency  , 

 
i te Φ Φ  (28) 

Substituting Eq.(28) into Eq.(27) leads to the FEM-SBFEM coupling equation of a reservoir to 

solve the harmonic response of a reservoir, i.e. 

 

 

n
i t

n

e

i

11 12 13
2

21 22 23

1 131 32 33

211 12 13

3 32 0 2 0 0 1 0
21 22 23

31 32 33





  

  
     
               

            
  
    

m m m

m m m

Φ Vm m m

Φ 0k k k
Φ V

k k E C M E E k

k k k

 (29) 

Eq.(29) can be solved for any frequency  . 

In the time domain, using Eqs.(17, 18, 25, 26) yields the FEM-SBFEM coupling equation of a 

reservoir to solve the transient response of a reservoir, i.e. 

 

n n

n n

n n

n
n n

n
n

n j
j

n

11 12 13 1 1

21 22 23 2 1 2

31 32 33 3 3

1
11 12 13 1

1

21 22 23 2 1
1

31 32 33 3





 



      
               
      
           

   
           
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where the superscript n  denotes the instant at time t n t  . Note that a damping matrix 

appears on the left hand side of Eq.(30). It can be regarded as the damping effect derived 

from the far-field medium and imposed on the dam-reservoir system. As the near-field 

domain is modeled by FEM, Eqs.(29, 30) are suitable for a reservoir with any arbitrary 

geometry shape. 
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5. Numerical examples 

5.1 Harmonic response of reservoir 

Two-dimensional dam-reservoir systems subjected to horizontal harmonic ground 
accelerations i ta ae   in the upstream direction were studied. For simplicity, here the dam 
was assumed to be rigid. 

5.1.1 Vertical dam 

For a rigid dam-reservoir system with a vertical upstream face as shown in Fig.3, the whole 
reservoir was flat so that the whole reservoir was modeled by the far field alone. This 
example’s aim was only to test the correctness and efficiency of the SBFEM in Eqs.(7, 8, 16) 
of the far field. The whole reservoir was discretized by the SBFEM alone using 10 and 20 3-
noded SBFEM elements, respectively. The hydrodynamic pressure acting on the dam-
reservoir interface from a reflection coefficient r 0.95   and these two mesh densities was 
plotted in Fig.4. The coefficient pC  was defined as  p aH  and  c H1 2  , where p  
denoted the amplitude of hydrodynamic pressure acting on the dam-reservoir interface.  
 
 
 

Fig. 3. Vertical dam-reservoir system 

 
 

 

 

Fig. 4. Hydrodynamic pressure on vertical dam-reservoir interface from different meshes 
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Results from different mesh densities were the same. The hydrodynamic pressure obtained 
by using 10 3-noded SBFEM elements and the corresponding analytical solutions (Weber, 
1994) corresponding to different r  were plotted in Fig.5. The SBFEM solutions were the 
exact same to the analytical solutions. Furthermore, a pC   figure of a point located at 
y H0.6  corresponding to r 0.8   was shown in Fig.6. The SBFEM solution and the 
analytical solution (Weber, 1994) were the same. 
 
 
 
 

 

 
 

 

Fig. 5. Hydrodynamic pressures on vertical dam-reservoir interface caused by different r  
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Fig. 6.  pC y H0.6  for different   

5.1.2 Gravity dam 

A gravity dam shown in Fig.7 was considered to verify the correctness and efficiency of the 

FEM-SBFEM coupling formulation in Eq.(29). The near field was chosen as the domain with 

a very small distance L H0.001 away from the heel of dam and was discretized by 8-noded  

 

Fig. 7. Meshes of gravity dam with multi-sloping faces and 045   
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isoparametric acoustic fluid finite elements, while the far field was still modeled by 10 3-

noded SBFEM elements. Their meshes were shown in Fig.7. Solutions from Eq.(29) and the 

literature (Sharan, 1992) were plotted in Fig.8. Results obtained by Eq.(29) were in excellent 

agreement with Sharan’s results. 

 
 

 
 

Fig. 8. Hydrodynamic pressure acting on gravity dam 

5.2 Transient response of dam-reservoir system 

Consider transient responses of dam-reservoir systems where dams were subjected to 
horizontal ground acceleration excitations shown in Fig.9. In the transient analysis, only the 
linear behavior was considered, the free surface wave effects and the reservoir bottom 
absorption were ignored, and the damping of dams was excluded. Dams were discretized 
by the FEM, while the response of the reservoir was solved by Eq.(30). The FE equation of 
dam and Eq.(30) was solved by Newmark’s time-integration scheme with Newmark 

integration parameters 0.25  and 0.5  . An iteration scheme (Fan et al., 2005) was 

adopted to obtain the response of the dam-reservoir interaction problems. 
 

 

          

Fig. 9. Horizontal acceleration excitations 
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5.2.1 Vertical dam 

As the cross section of the vertical dam-system as shown in Fig.3 was uniform, a near-field 

fluid domain was not necessary and the whole reservoir was modeled by a far-field domain 

alone. Sound speed in the reservoir is 1438.656m/s and the fluid density   is 1000kg/m3. The 

weight per unit length of the cantilevered dam was 36000kg/m. The height of the 

cantilevered dam H was 180m. The dam was modeled by 20 numbers of simple 2-noded 

beam elements with rigidity EI (=9.646826×1013Nm2), while the whole fluid domain was 

modeled by 10 numbers of 3-noded SBFEM elements, whose nodes matched side by side 

with nodes of the dam. In this problem, the shear deformation effects were not included in 

the 2-noded beam elements. Time step increment was 0.005sec. The pressure at the heel of 

dam subjected to the ramped horizontal acceleration shown in Fig.9 was plotted in Fig.10 

and Fig.11. Analytical solutions of deformable and rigid dams were from the literature (Tsai 

et al., 1990) and the literature (Weber, 1994), respectively. In Fig.11, analytical solutions 

(Weber, 1994), solutions from the SBFEM in the full matrix form (Wolf & Song, 1996b) and 

solutions from the SBFEM in the diagonal matrix form (Li, 2009) were plotted with circles, 

rectangles and solid line, respectively. Solutions from the SBFEM and analytical solutions 

were the same. In the literature (Li, 2009), it was found that diagonal SBFEM formulations 

need much less computational costs than those in the full matrix. 
 
 
 
 
 

 
 
 

Fig. 10. Pressure at the heel of deformable dam subjected to ramped horizontal acceleration 
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Fig. 11. Pressure at the heel of rigid dam subjected to ramped horizontal acceleration 

5.2.2 Gravity dam 

This example was analyzed to verify the accuracy and efficiency of the FEM-SBFEM 

coupling formulation for a dam-reservoir system having arbitrary slopes at the dam-

reservoir interface. The density, Poisson’s ratio and Young’s modulus of the deformable 

dam are 2400kg/m3, 0.2 and 2.5×1010N/m2, respectively. The fluid density   is 1000kg/m3 and 

wave speed in the fluid is 1438.656m/s. The height of the dam H is 120m. A typical gravity-

dam-reservoir system and its FEM and SBFEM meshes were shown in Fig.12. The dam and 

the near-field fluid were discretized by FEM, while the far-field fluid was discretized by the 

SBFEM. 40 numbers and 20 numbers of 8-noded elements were used to model the dam and 

the near-field fluid domain, respectively, while 10 numbers of 3-noded SBFEM elements 

were employed to model the whole far-field fluid domain. Note that the size of the near-

field fluid domain can be very small compared to those used in other methods. In this 

example, the distance between the heel of the dam and the near-far-field interface was 6m  

 
 

    

Fig. 12. Gravity dam-reservoir system and its FEM-SBFEM mesh 
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(=0.05H). The pressure at the heel of the gravity dam caused by the horizontal ground 
acceleration shown in Fig.9 was plotted in Fig.13. The time increment was 0.002sec. Results 
from SBFEM were very close to solutions from the sub-structures method (Tsai & Li, 1991). 
The displacements at the top of vertical and gravity dams subjected to a ramped horizontal 
acceleration were plotted in Fig.14. The displacement solutions of vertical dam from the 
SBFEM were the same with analytical solutions (Tsai et al., 1990). Fig.15 showed the 
displacement at the top of gravity dam subjected to the El Centro horizontal acceleration. At 
early time, the displacements obtained by the present method agreed well with sub-
structure method’s results (Tsai et al., 1990), especially at early time.  
 

 
(a) Ramped acceleration 

 
(b) El Centro acceleration 

Fig. 13. Pressure at the heel of gravity dam subjected to horizontal acceleration 
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(a) Vertical deformable dam 

 
(b) Gravity dam 

 
 
 

 

Fig. 14. Displacement at top of dam subjected to ramped horizontal acceleration 
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Fig. 15. Displacement at top of gravity dam subjected to El Centro horizontal acceleration 

6. Conclusion 

Aiming for dam-reservoir system problems subjected to horizontal ground motions, this 

chapter presented the SBFEM formulations in the frequency and time domain and its 

corresponding FEM-SBFEM coupling formulations to evaluate the hydrodynamic pressure 

of the reservoir through dividing the reservoir into a near field and far field, where the dam 

and the near field were modeled by FEM and the far field was discretized by the SBFEM. 

The SBFEM uses the dynamic stiffness matrix and the dynamic mass matrix to describe the 

dynamic characteristics of the far field in the frequency and time domain, respectively. The 

merits of the SBFEM in representing the semi-infinite reservoir were illustrated through 

comparisons against benchmark solutions. Numerical results showed that its accuracy and 

efficiency of the FEM-SBFEM formulation to obtain the harmonic and transient analysis of a 

dam-reservoir system. Of note, the SBFEM is a semi-analytical method. Its solution in the 

radial direction is analytical so that only a near field with a small volume is required. 

Compared to the sub-structure method, its formulations are in a simpler mathematical form 

and can be coupled with FEM easily and seamlessly. 
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