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MicroCT: An Essential Tool in Bone  
Metastasis Research 

Bethany A. Kerr and Tatiana V. Byzova 
Lerner Research Institute, The Cleveland Clinic 

United States of America 

1. Introduction 

Microcomputed tomography (microCT) is an essential tool for the study of small animal 
osseous and soft tissue structures.  While several other technologies can be used to image 
bone, vasculature, and other soft tissues, microCT alone provides high spatial resolution of 
both hard and soft tissues.  Prior to the development of microCT imagers, small animal 
research was conducted in clinical CT scanners; however, a consequence was poor 
resolution of the smaller tissues.  The development of microCT permitted enhanced small 
animal imaging resolution and increased use of microCT in preclinical studies.  Recent 
improvements to X-ray detector sensitivity have resulted in the ability of microCT, in 
combination with contrast agents, to be used in soft tissue studies.  In clinical scanning, 
barium or iodine are typically used for soft tissue assessment; while in small animals, 
intraperitoneal injections of non-ionic water-soluble contrast medium or intravenous 
injections of a barium/gelatin mixture can be used for the visualization of soft tissues and 
vasculature (Paulus et al., 2000).   This chapter will focus on the use of microCT to scan 
osseous tissues.  The use of microCT has been well characterized in the study of bone 
development, fracture repair, biomaterial integration, osteoporosis, and, more recently, 
cancer bone metastasis. 
MicroCT allows for the creation of three-dimensional images of the bone which can be 
processed both qualitatively and quantitatively.  MicroCT analysis quantifies several bone 
structural indices: bone mineral density (BMD), bone volume to total volume ratio (BV/TV), 
bone surface area (BSA), trabecular number (Tb.N), trabecular thickness (Tb.Th), and 
trabecular spacing (Tb.Sp).  In addition, since microCT is non-destructive, the same 
specimens can then be used for mechanical testing, histological analysis, or further 
experiments.  MicroCT scanning is the ideal method for assessing bone structure compared 
with magnetic resonance imaging (MRI), positron emission tomography (PET), X-rays, or 
bone histomorphometry (Table 1). 
Magnetic resonance imaging (MRI) is non-ionizing and ideal for soft tissue scanning, but not 
for osseous tissue. Although overall changes in the bone architecture can be seen, MRI 
cannot provide a structural analysis of bone tissue (Jiang et al., 2000).  In addition, small 
animal MRI devices have micrometer spatial resolution, similar to microCT, but low 
sensitivity compared with highly sensitive microCT (Mayer-Kuckuk & Boskey, 2006).   
Overall, MRI has been used extensively for bone research and can provide some information 
on the bone structure and its level of mineralization, but is not as quantitative as microCT 
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scanning. Finally, microCT scanners for small animals are considerably smaller and less 
expensive than MRI machines. 
 

Parameter MicroCT MRI PET X-ray Histomorphometry 

Small animal Yes Yes Yes Yes Yes 

Sensitivity High Low High Low N/A 

Spatial 
Resolution 

Micrometer Micrometer Millimeter Millimeter Micrometer 

Structural 
Quantification 

Yes Minimal No Minimal Yes 

Mineralization 
Levels 

Yes Yes No Minimal Yes 

Non-
destructive 

Yes Yes Yes Yes No 

Table 1. Comparison of imaging technologies for assessing bone structure.  MicroCT: 
microcomputed tomography, MRI: magnetic resonance imaging, PET: positron emission 
tomography. 

Positron emission tomography (PET) is useful for functional imaging and gene expression 

studies; however, it requires the use of radiolabeling.  Single photon emission computed 

tomography (SPECT) also requires the use of isotopes, but has improved resolution 

compared with PET.  Small animal PET and SPECT have high sensitivity and easy signal 

quantification, but cannot provide anatomical information and thus are not as effective in 

assessing the bone structure and mineralization as microCT.  In addition, the spatial 

resolution of PET is at the millimeter level, which is very low for imaging small animals and 

thus does not provide as detailed a picture of the bone structure in small animals compared 

with microCT (Mayer-Kuckuk & Boskey, 2006; Paulus et al., 2001).  Thus, while PET and 

SPECT are sensitive imaging methods, their use of isotopes and low spatial resolution 

prevent these imaging methods from being ideal choices for studying the bone architecture. 

x-ray technology provides a two-dimensional image of the bone structure. While bone 

mineralization is often measured by X-ray, the accuracy of measurements is much greater 

using microCT.  For example, a larger change in BMD must occur to be measured by x-ray, 

compared with microCT.  In fact, microCT scanning can measure a change in cortical 

thickness of 10-20% which would be undetectable using x-ray imaging.  In addition, 

microCT can distinguish between fractured and non-fractured vertebrae better than x-rays 

(Genant et al., 2008).  Further, while radiography can indicate a loss of mineral, only 

microCT can differentiate between a thin layer of highly mineralized tissue and a thick layer 

of less mineralized tissue (Gielkens et al., 2008).  Additionally, microCT analysis allows for 

the cortical and trabecular bone to be analyzed separately, which cannot be done with x-rays 

(Ravoori et al., 2010).  Thus, microCT analysis presents a complete picture of the bone 

structure, which cannot be accomplished using x-rays. 

Quantitative bone morphometry originally was determined from two-dimensional bone 
biopsies and used to measure structural indices of the bone.  MicroCT allows for three-
dimensional measurements of a majority of the same structural indices.  Bone volume 
density and bone surface density can be measured equally well by histomorphometry and 
microCT.  However, only microCT can accurately measure Tb.Th, Tb.Sp, and Tb.N, which 
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must be assumed using “ideal” plates and rods in histomorphometry (Muller, 2009).  
Further, microCT detects bone loss earlier than histomorphometry (Laib et al., 2000).  An 
advantage of histomorphometry is the evaluation on a cellular level (Gielkens et al., 2008); 
however advances in microCT are improving resolution to the cellular level and negating 
this advantage.   

2. A history of microCT in bone research 

The advantages of microCT scanning over other methods have resulted in improved 

qualitative and quantitative analysis of small animal bone structure leading to the increased 

prevalence and utilization of microCT to study the bone structure over the past decade.  

Quantitative microCT measurements are highly reproducible in both rats and mice 

(Nishiyama et al., 2010).  This reproducibility, in combination with the availability of 

transgenic animals, has led to important studies elucidating the mechanisms of various 

proteins and genes controlling bone development, bone healing, osseointegration, 

osteoporosis, and the progression of primary and metastatic bone cancers.   

2.1 MicroCT bone research applications 

Most orthopaedic research examines the development, maintenance, and repair of skeletal 

tissues and utilizes microCT scanning for structural analysis during these processes.  

MicroCT scanning relies on the mineralization of bone to detect the bone architecture and 

thus cannot be used to study cartilage or other soft materials.  However, changes in the bone 

architecture or bone mineralization can be used to describe alterations in bone development, 

bone healing, biomaterial integration, or osteoporosis.  The measurement of these changes 

by microCT allows for the development of therapeutics and an understanding of the 

molecular mechanisms governing these processes. 

2.1.1 Bone development 

Bone development occurs through one of two processes: intramembranous or endochondral 

ossification.  Endochondral ossification is the development method of the long bones, 

during which a cartilaginous anlagen is remodelled and replaced by bone, while 

intramembranous ossification is used predominantly by the skull.  The process of bone 

development and the genes and proteins involved have been extensively studied using 

knock-out mice.  Using these transgenic mice, the importance of genes and proteins in 

controlling the structure and mineralization of the skeleton produced by intramembranous 

or endochondral ossification can be studied using microCT analysis.  MicroCT analysis 

permits quantification of developmental delays in the formation of bones throughout the 

body in response to changes in developmental cues.  In addition, the progression and 

genetic etiology of osteogenesis imperfecta, a genetic disorder of fragile bones, can be 

studied by microCT scanning.  Using various genetically altered mice, the developmental 

changes resulting in osteogenesis imperfecta have been elucidated.  In addition, possible 

interventions and treatments for the disease can be tested using microCT to measure 

changes in mineralization.  Thus using microCT scanning and genetically altered mice, 

factors controlling bone mineralization, skull and vertebral development, and 

developmental bone architecture have been elucidated.   
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2.1.2 Bone healing and fracture repair 

After a bone fracture, a non-union space is often left, which must be healed through a 

proliferative process, part of which can be visualized by microCT imaging.  The distance 

between the bones and the angle of fracture govern the speed of healing and both of these 

parameters can be measured shortly after fracture by microCT.  During the healing process, 

the first, reactive phase is marked by increased inflammation and granulation tissue 

formation.  In the second, reparative phase, chondrocytes and osteoblasts migrate into the 

gap.  Chondrocytes begin to lay down a cartilaginous callus, which is then mineralized by 

osteoblasts producing woven bone through endochondral ossification, which recapitulates 

bone development.  In the final, remodelling phase, osteoblasts and osteoclasts remodel the 

woven bone into cortical and trabecular bone with a similar shape and mechanical strength 

to the original bone.  MicroCT imaging can be used during the reparative and remodelling 

phases to assess the healing process.  MicroCT analysis provides information on the 

temporal and topographical changes which occur as the callus is reorganized into bone and 

during the final remodelling phase (Freeman et al., 2009).  Further, microCT scanning can be 

used to determine the effectiveness of different treatments and interventions in accelerating 

or improving the bone healing process. In particular, the use of low-intensity  

pulsed ultrasound to accelerate fracture healing has been studied extensively using  

microCT analysis (Freeman et al., 2009).  Thus, microCT scanning can be used to assess the 

fracture healing process and to measure the effectiveness of therapeutics aimed at 

accelerating the process. 

2.1.3 Biomaterial research 

The osseointegration of bone tissue with implants and scaffolds is integral to bone 
regeneration and to prevent loosening, rejection, and microdamage to the bone surrounding 
the implant which could result in fatigue fractures and catastrophic failures.   Scaffolds and 
implants need to encourage bone growth into the porous portions without the formation of 
fibrous capsules around the implant, which prevent osseointegration.  MicroCT analysis has 
several functions in the design of scaffolds and implants (Rolf et al., 2010).   MicroCT 
scanning can be used to produce 3D images of the scaffold or implant pores to properly 
measure the porosity which affects permeability, cell migration and bone ingrowth.  In 
addition, the pore interconnect diameter and number of connections per pore can also be 
measured.  An ideal scaffolding material will have porosity and interconnection size and 
number similar to that of trabecular bone, which can be compared directly using microCT 
(Jones et al., 2009).  After implantation of an implant or scaffold, the levels of mineralized 
tissues within the pores over time can be measured using microCT; although this 
measurement can be difficult if the implant material is similar to the ingrowing bone.  
Nonetheless, changes in pore size can still be measured and any changes would correlate 
with bone ingrowth (Jones et al., 2009; Reynolds et al., 2009).  In a recent study using 
titanium foam to coat implants, microCT scanning was used to first measure the differences 
in porosity of dense titanium and foam covered implants and was then used to measure the 
amount of bone ingrown into the implant after 2 weeks (Wazen et al., 2010).  Further, 
microCT analysis can be used to diagnose osteomyelitis, which is caused by peri-prostethic 
infection and is a leading cause of implant rejection.  The coating of implants with 
antibiotics to prevent infection is currently being studied.  This implant coating prevents the 
growth of bacteria after implantation and inhibits the associated bone destruction, which 
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can be measured non-invasively by microCT (Adams et al., 2009).  Thus, microCT analysis 
can also be used to study the osseointegration of various biomaterials. 

2.1.4 Osteoporosis 

MicroCT imaging is especially important for the study of osteoporosis, particularly disease 
progression and treatment efficacy, as it is one of the few imaging techniques which can 
provide information on the bone mineral content and density.  In addition, scanning is non-
invasive and images can be registered to assess changes over time (Ruegsegger et al., 1996).  
For example, microCT has been used to measure changes in BV/TV, Tb.Th, and Tb.N in the 
iliac crest of human bone biopsy specimens to determine the extent of osteoporosis and the 
effects of various drug interventions.  Additionally, microCT is used to study osteoporosis 
in small animals.  To study the effects of hormones and preclinical treatments, mice and rats 
undergo ovariectomies and are monitored for changes in the bone structure including 
decreased trabecular connectivity and decreased BV/TV which can result from decreased 
hormones (Genant et al., 2008).  In addition, the use of estrogen replacement therapy to 
rescue ovariectomized mice has been measured using microCT and has shown that BV/TV 
is restored, but that the connectivity of the trabeculae remains decreased (Jiang et al., 2000).  
To further study osteoporosis prevention, the role of mechanical stress was assessed by 
subjecting mice to hindlimb unloading by tail suspension for 2 weeks and bone architecture 
was monitored using microCT scanning.  Using this method, mechanical stress was shown 
to be integral to maintaining the bone structure and density (Martin-Badosa et al., 2003).  
Using ovariectomies and hindlimb unloading, several therapies and the importance of 
mechanical stress, representing exercise, have been validated in mouse models leading to 
improved treatment and prevention of osteoporosis. 

2.1.5 Primary bone cancers 

Primary bone cancers can be either benign (osteochondromas) or malignant.  Malignant 
bone tumors include chondrosarcomas, Ewing’s sarcoma, and osteosarcomas.  Although 
uncommon, these primary bone cancers have a high incidence of recurrence and can be 
difficult to diagnose.  MicroCT density measurements can be used to differentiate between 
chondrosarcomas and osteosarcomas in patient samples, as chondrosarcomas were found to 
have a lower density within the tumors compared with osteosarcomas, although the 
trabecular densities were similar (Langheinrich et al., 2008).  Further, since osteosarcomas 
occur in the bone osteoid, they are most often studied using microCT.  In these tumors, 
microCT scanning is often performed to monitor tumor growth and lesion characteristics.  
In addition, the presence of further disease progression and the development of metastases 
can also be determined using repeated microCT scanning (Yang et al., 2007).  Thus, microCT 
imaging can be used to assist in the diagnosis and monitoring of primary bone cancers. 

2.1.6 Bone metastasis 

Several cancers metastasize to the bone, specifically: breast, kidney, lung, prostate, thyroid, 
and multiple myelomas.  The process of bone metastasis has been primarily studied in 
breast, myelomas, and prostate cancers, which display preferences for the bone environment 
in human metastasis.  In small animal models, bone metastasis is often studied via the 
injection of cancer cells intravenously, intracardiacally, orthotopically or intratibially.  These 
injected cells can then colonize the bone and these metastatic tumors are either osteoblastic, 

www.intechopen.com



 
Computed Tomography – Clinical Applications 

 

216 

osteolytic, or a combination of both.  MicroCT has been used primarily to study changes in 
the bone microenvironment in response to a metastatic tumor, as discussed in detail in the 
following section.  In some cases, human bone has been implanted subcutaneously in 
immunodeficient mice and acts as a preferential metastatic site for intracardiacally injected 
human cancer cells.  In these studies, microCT can still be used to analyze changes in the 
implant structure during bone metastasis progression (Rosol et al., 2003).   Thus, microCT 
scanning can be used to study the interaction between metastatic cancer and bone during 
the development and progression of metastases. 

2.2 MicroCT in metastatic cancer-bone interactions 

As cancer progresses, metastasis occurs.  Many cancers can metastasize to bone; however, 

metastatic multiple myelomas, breast carcinomas and prostate carcinomas, show a 

particular preference for the bone microenvironment.  MicroCT has been used extensively to 

examine the interaction between metastatic tumors and the bone in both patient biopsies 

and animal models.  Patient biopsies from bone bearing metastatic breast carcinomas, 

prostate carcinomas, or myelomas were analyzed by microCT to determine changes in the 

bone architecture, which could be used to diagnose malignancy.  MicroCT scanning of 

metastatic biopsies was demonstrated to be quick and accurate in assessing excess bone 

turnover due to either increased resorption or formation due to malignant growth (Chappard 

et al., 2010).   While the use of microCT to diagnose patient metastases is significant, a majority 

of published studies focus on the use of microCT to determine the factors responsible for the 

metastasis of primary cancers to bone using animal models (Table 2). 

 

Model Types Injection Sites 
Bone 

Phenotypes 

Spontaneous 
Syngeneic 
Xenograft 
Chemical 

Transgenic 
Reconstitution

Subcutaneous
Intracardiac 
Intratibial 
Tail vein 

Orthotopic 

Osteoblastic 
Osteoclastic 

Combination 

Table 2. Animal models used in bone metastasis research.  The different models, injection 
sites, and possible resulting bone phenotypes are listed.  These diverse methods to trigger 
bone metastasis have had various rates of success and resulted in distinct bone phenotypes. 

2.2.1 Multiple myelomas 

Multiple myelomas are associated with osteolysis of the bone, which can be measured using 

microCT. In patients, microCT is used to measure changes in trabecular BV, as well as to 

visualize cortical lesions in three dimensions.  In addition, microCT can be used to scan for 

metastatic myeloma lesions, which cause a derangement in the bone architecture.  Mouse 

models of multiple myelomas have been established and are used to determine the 

consequences of malignant growth on the bone microenvironment.  Using microCT, 

metastatic tumor lesion locations and the subsequent changes in the bone structure were 

accurately measured (Fowler et al., 2009; Postnov et al., 2009).  Using these models, multiple 

myeloma lesions in the bone have been characterized as osteolytic, with a high number of 
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lesions in the cortical bone, leading to decreased trabecular BV/TV (Fowler et al., 2009).  

This model may be used for further studies of multiple myeloma metastases.   

2.2.2 Breast cancer 

Breast cancer bone metastases occur in 80% of patients with advanced disease and are 
predominantly osteolytic.  MicroCT has been used successfully on patient biopsies to study 

treatment efficacies and to measure metastatic progression resulting in osteolysis.  
Correspondingly, microCT has been used to measure osteolysis during metastatic tumor 

growth in several breast cancer small animal models.  When malignant breast carcinoma 
cells were injected into the femur of rats, decreases in trabecular and cortical bone mineral 

content were measured by microCT.  Further, BV/TV, Tb.N, and Tb.Th were lower in limbs 
of mice with metastatic breast cancer (Kurth & Muller, 2001).  In addition, several chemical 

agents can induce breast cancer in mice and rats.  After rats were injected with N-methyl-N-
nitrosourea to induce breast cancer, microCT was used to measure changes in the bone 

structure in a model of spontaneous cancer formation.  Bone health was decreased in 
animals that developed tumors and both Tb.N and Tb.Th were decreased compared with 

control rats (Thorpe et al., 2010).  These studies demonstrate that microCT imaging can be 
used to examine alterations in the bone architecture in response to metastatic breast cancer 

and to test the effectiveness of treatments to prevent tumor-induced osteolysis. 

2.2.3 Prostate cancer 

Prostate cancer metastasizing to the bone often results in osteoblastic lesions or a 
combination of osteoclastic and osteoblastic lesions.  By comparing normal human bone 
tissue, osteosclerotic tissue, and osteoblastic metastatic lesions using microCT ex vivo, 
prostate cancer metastasis was shown to increase Tb.N and connectivity compared with 
benign osteosclerosis, but these lesions were found to have decreased BMD compared 
with normal and benign tissues (Sone et al., 2004).  Prostate cancer metastasis is studied in 
vivo using rat, mouse, and dog models.  While some instances of spontaneous prostate 
cancer exist in these models, a majority of prostate cancers are injected.  Murine models of 
prostate cancer can be syngeneic in immunocompetent mice or xenograft models in 
immunocompromised mice, as well as a few spontaneous tumor models.  Metastatic 
tumors in mice are largely osteolytic or a combination of osteoblastic and osteolytic (Singh 
& Figg, 2005).  Using microCT, intratibial injections of prostate cancer cells was shown to 
result in extensive osteolysis of the trabeculae, followed by periosteal bone deposition 
(McCabe et al., 2008). By scanning the same region of bone over time, the rate of osteolysis 
can be measured and used to approximate the kinetics of tumor growth. The use of 
transgenic mice has also led to the identification of various proteins and genes involved in 
metastatic progression and initiation.  Using transgenic mice, several bone proteins, 
including SPARC, were demonstrated to play important roles in the progression of 
metastatic prostate cancer lesions. A loss of SPARC protein resulted in enhanced 
osteolysis upon tumor challenge, as demonstrated by decreased BV/TV, Tb.Th, Tb.N, and 
BSA measured using microCT (McCabe et al., 2011).  Also using microCT, this osteolysis 
was shown to be specific for prostate cancer, as intratibial injection of melanoma cells did 
not produce the same effect (McCabe et al., 2011). These studies underscore the 
importance of microCT scanning as a tool to measure bone structural indices during bone 
metastasis. 
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3. Primary tumor growth stimulates bone turnover 

While prostate cancer metastases are osteoblastic, patients without visible metastases 

experience abnormal bone formation and resorption (Kingsley et al., 2007).  Interestingly, 

prostate cancer cells are more likely to colonize bone during the remodelling period (Gomes 

et al., 2009); thus, it would benefit the tumor to stimulate bone turnover prior to metastasis.  

Although alterations in bone remodelling in patients with distant, primary cancers have 

been described, the mechanisms behind this pre-metastatic bone turnover have not been 

elucidated.  Having previously established that intratibial injection of prostate cancer cells 

stimulates osteolysis (McCabe et al., 2008; McCabe et al., 2011), we wanted to determine the 

effects of primary tumor growth on the bone microenvironment.  We used subcutaneous 

injections of prostate cancer cells to simulate a primary tumor and performed microCT 

scanning to assess changes in the bone structure. 

3.1 Basic methods and considerations 

The design of microCT experiments to study bone metastasis in small animals requires the 

consideration of various factors.  The species, the age, the anesthetization of animals, the 

number of cells injected, and the time of tumor growth must be optimized prior to 

beginning experimentation.  Further, several parameters of the microCT scanning procedure 

must be considered when planning experiments.  Once these parameters have been 

optimized, as described below, microCT scanning of animals bearing tumors can be 

performed with both consistency and precision.  Guidelines for microCT image acquisition 

and reporting of results were recently published (Bouxsein et al., 2010) and should be 

considered when designing experiments. 

3.1.1 Animals 

When planning microCT experiments, the choice of small animal must first be made.  Most 

commonly, mice or rats are used in microCT experiments.  The availability of a variety of 

transgenic mice results in their being highly used as experimental subjects.  In mice, 

significant age-related trabecular bone loss begins by 24 weeks of age, and this must be 

accounted for when choosing animals.  In addition, some variations in bone structure occur 

seasonally (Delahunty et al., 2009).  Performing microCT scanning prior to tumor 

implantation or other intervention diminishes the seasonal and age-related alterations in 

bone architecture. 

In our study, the mice used were six- to twelve-week-old and sex- and age-matched 

immunocompetent C57BL/6 (WT) or immunodeficient NOD/SCID mice (Jackson 

Laboratories, Bar Harbor, ME).  All animal procedures were performed in accordance with 

an approved institutional protocol according to the guidelines of the Institutional Animal 

Care and Use Committee of the Cleveland Clinic. 

3.1.2 Tumor injections 

When preparing for tumor injections, the number of cells to be implanted and the time of 
growth vary by tumor type.  The aggressiveness of the tumor cells or the cancer type can 
affect the rates of cell growth.  In a previous study, we demonstrated the efficacy of different 
injections and injected cell numbers on the development of bone metastases (McCabe et al., 
2008).  In addition, we have found that murine melanoma cells must be injected in higher 
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numbers than murine prostate cancers to grow equally (Feng et al., 2011).  Further, the use 
of xenograft models in immunodeficient animals results in diminished cell growth and 
longer incubation times necessary to obtain similarly sized tumors as those from syngeneic 
models.  We have found that while human prostate cancers and murine prostate cancers can 
be injected at the same cell density, human prostate cancers require at least an extra week of 
growth to form palpable tumors (Feng et al., 2011).  The main factor regulating cancer cell 
growth in mice is the health of the cells prior to implantation.  Healthy cells below 
confluence will grow more readily than highly confluent cells.  Thus, optimization must be 
performed to determine the best conditions for tumor cell growth and implantation. 
In this study, cells are implanted subcutaneously with microCT scanning performed a day 
before injection.  WT mice were injected subcutaneously (s.c.) with 4x105 RM1 murine 
prostate cancer cells and sacrificed 12 days post implantation (5 mice/group).  Separately, 
NOD/SCID mice were injected s.c. with 4x105 LNCaP-C4-2 (C4-2) human prostate cancer 
cells and sacrificed 20 days post implantation (5 mice/group). 

3.1.3 MicroCT scanning 

The microCT scanning process requires several parameters to be optimized before scanning: 

the amount and type of anesthesia and restraint, the effects of ionizing radiation dosing, and 

the variables affecting repeated image acquisition.  To obtain clear scans, mice must be 

restrained and/or anesthetized.  Insufficient anesthesia can result in the subject moving 

during scanning, while excessive anesthesia can result in death (Paulus et al., 2001).  When 

planning repeated scans, the effect of ionizing radiation dosing should be considered. 

Ionizing radiation doses can affect bone growth and may also affect tumors.  A single scan 

produces radiation doses approximately 5% of the LD50 for mature mice (Paulus et al., 2001).  

However, repeated scans could result in changes in the tumor growth or bone resorption 

kinetics.  To minimize the dosing effects, microCT scanning should be done at a specific 

interval.  When performing repeated microCT scanning, several factors must be optimized 

to minimize differences between scans.  Repeated image acquisition requires special 

considerations including positioning, scanning medium (for ex vivo), image resolution, and 

uniform regions of interest (Stock, 2009).  During processing, samples are filtered, 

segmented, registered, and uniform regions of interest are applied to create masks for 

differentiating between cortical and trabecular bone.  Phantom calibration must be 

performed regularly to calibrate the scanner values for the measurement of morphometric 

parameters.  Phantom values are calculated for materials whose dimensions and geometries 

are known (Stoico et al., 2010).  For bone research, values are measured using phantoms for 

air, water, and bone.  The registering of bones results in increased reproducibility between 

scans and is necessary to measure changes in the bone structure across different time points 

(Nishiyama et al., 2010).  By optimizing all of these scanning parameters, changes in the 

bone structure can be measured and registered over time. 

In our study, mice are anesthetized by i.p. injection of 100 mg/kg ketamine and 10 mg/kg 

xylazine prior to cell implantation and microCT scanning.  MicroCT analysis of the proximal 

tibiae was performed one day prior to cell implantation, 3 days later, and then every 7 days 

until experimental termination to minimize the effects of multiple radiation doses.  Scans 

were conducted in the Cleveland Clinic Biomedical Imaging and Analysis Core Center on a 

GE eXplore Locus microCT (GE Healthcare, Piscataway, NJ) and 360 X-ray projections were 

collected in 1o increments (80 kVp; 500 mA; 26 min total scan time).  Projection images were 
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preprocessed and reconstructed into 3-dimensional volumes (10243 voxels, 20 µm 

resolution) on a 4PC reconstruction cluster using a modified tent-FDK cone-beam algorithm 

(GE reconstruction software).  Three-dimensional data was processed and rendered 

(isosurface/maximum intensity projections) using MicroView (GE Healthcare).  For each 

volume, a plane perpendicular to the z-axis/tibial shaft was generated and placed at the 

base of the growth plate.  A second, parallel plane was defined 1.0 mm below and the entire 

volume was cropped to this volume of interest for quantitative analysis.  Image stacks from 

each volume of interest were exported for quantitative analysis.  Cancellous bone masks 

were generated in MicroView and 3D trabecular structural indices were extracted using 

custom MatLab (The MathWorks, Inc, Natick, MA) algorithms.  Tb.Th and Tb.Sp were 

determined by previously reported methods (Hildebrand et al., 1999).  Tb.N was calculated 

by taking the inverse of the average distance between the medial axes of trabecular bone 

segments.  BV/TV (total bone voxels divided by total cancellous bone mask voxels) and BSA 

(sum of pixels along edges of trabecular bone) were also calculated for each VOI.  Phantom 

calibrations are perfomed regularly using air, water, and bone phantoms. 

3.2 Representative results and discussion 

Using subcutaneous tumor implantation and microCT scanning, we assessed the 
consequences of primary tumor growth on bone metabolism.  We found that injection of 
murine prostate cancer cells (RM1) in immunocompetent mice results in enhanced bone 
formation compared with sham injected mice after 12 days of tumor growth.  
Reconstructions of the microCT scanned bones demonstrate increased trabecular bone in 
RM1 injected mice (Figure 1).  When changes in the bone structural indices were quantified,  
 

 

Fig. 1. Reconstructions of microCT scanned bones.  Immunocompetent mice were injected 
with 4x105 murine prostate cancer cells (RM1) or mock injected (Control).  Both frontal (top) 
and transverse planes (bottom) are shown of the proximal tibia. 

www.intechopen.com



 
MicroCT: An Essential Tool in Bone Metastasis Research 

 

221 

we found that BV/TV was increased 1.79 fold in mice bearing tumors (Figure 2A).  In 
addition, BSA increased 1.58 fold, demonstrating an overall stimulation of bone formation 
(Figure 2A).  Tb.Th was found to be 1.37 fold higher in mice bearing tumors, with a 
corresponding 0.72 fold decrease in Tb.Sp.  Tb.N did not change significantly during tumor 
growth (Figure 2B).  Thus, bone formation occurred through remodelling of the existing 
trabeculae and not de novo bone formation.   
 

 

Fig. 2. Bone formation is enhanced in mice bearing prostate cancer tumors.  
Immunocompetent mice were injected with 4x105 murine prostate cancer cells (RM1; black 
bars) or mock injected (Control; white bars).   (A) MicroCT scanning was performed after 12 
days of tumor growth and bone volume to total volume ratio (BV/TV) and bone surface 
area (BSA) were measured to assess overall volume changes.   (B) Trabecular indices were 
analyzed by microCT and trabecular thickness (Tb.Th), trabecular spacing (Tb.Sp), and 
trabecular number (Tb.N) were quantified.  Measurements are represented as mean ± S.E.M.  
** represents p<0.01 and *** represents p<0.001 by Student’s t test vs. control. 

We next used a xenograft model to determine whether these findings were specific to 
RM1 cells.  Injection of human prostate cancer cells subcutaneously in immunodeficient 
mice demonstrated similarly increased bone formation.  MicroCT scanning was 
performed 4, 11, and 18 days after tumor implantation to assess changes in the bone 
architecture over time. Reconstructions exhibit the changes in trabecular structure 
between days 11 and 18 (Figure 3).   
Quantification of changes in bone structural indices demonstrated that significant bone 
formation occurs between 4 and 11 days of tumor growth, followed by a compensatory 
decrease around day 18.  BV/TV was 0.94 fold of control on day 4, 1.27 fold higher on day 
11, and 0.46 fold lower on day 18 compared with mice without tumors (Figure 4A).  Further, 
BSA values of injected mice compared with control were 1.05 fold on day 4, 1.11 fold on day 
11, and 0.55 fold on day 18 (Figure 4B).   Thus, the overall amount of bone increases between 
days 4 and 11, then begins to decrease by day 18. 
To determine if the trabecular bone remodelling was responsible for these changes in BV 
and BSA, the structural indices of the trabecular bone were quantified.  Tb.Th was increased 
1.16 fold on day 11 and decreased 0.70 fold on day 18, while Tb.Sp demonstrated 
corresponding changes of 0.82 fold on day 11 and 2.87 fold on day 18 compared with control 
(Figure 5 A and B).  Tb.N remained unchanged over the time course (Figure 5C).  Thus, 
subcutaneous tumor growth stimulates bone formation initially, with later compensatory 
bone destruction as the enhanced osteoblast proliferation and function stimulates osteoclast 
activity. 
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Fig. 3. Reconstructions of the microCT scanned bones.  Immunodeficient mice were injected 
with 4x105 human prostate cancer cells subcutaneously (C4-2) or mock injected (Control).  
Both frontal and transverse planes are shown of the proximal tibia from scans completed on 
days (d) 11 and 18. 

 
 

 

Fig. 4. Implantation of human prostate cancer in immunodeficient mice results in initial 
bone formation followed by bone resorption.  Human prostate cancer cells (4x105 cells/side) 
(C4-2; black columns) were injected or a mock injection was performed (Control; white 
columns).  MicroCT scanning was used to quantify bone volume to total volume ratio 
(BV/TV; A) or bone surface area (BSA; B).  Measurements are represented as mean ± S.E.M.  
* represents p<0.05 and ** represents p<0.01 by one-way ANOVA (between time points) or 
Student’s t test (vs. Control). 
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Fig. 5. Subcutaneous human tumor implantation stimulates changes in trabecular bone 
architecture.  Human prostate cancer cells (4x105 cells/side) (C4-2; black columns) were 
injected or a mock injection was performed (Control; white columns).  MicroCT scanning 
was used to quantify trabecular thickness (Tb.Th; A), trabecular spacing (Tb.Sp; B), and 
trabecular number (Tb.N; C).  Measurements are represented as mean ± S.E.M.  * represents 
p<0.05 by one-way ANOVA (between time points) or Student’s t test (vs. Control). 

Our data demonstrate that primary tumor growth stimulates bone formation, possibly 

followed later by compensatory bone resorption.  This increase in bone formation is similar 

to that seen in prostate cancer patients (Kingsley et al., 2007).  Stimulation of bone 

remodelling may result in the release of growth factors and cytokines capable of promoting 

tumor growth.  Several cytokines known to be sequestered within the bone matrix or 

produced by osteoblasts, including transforming growth factor ┚1, receptor activator of NF-

κB ligand, and osteopontin, are capable of promoting tumor growth.  In addition, bone 

turnover may induce the release of bone marrow-progenitor cells into the circulation 

(Lymperi et al., 2011).  We have shown that these progenitors are recruited into tumors 

supporting angiogenesis and continued tumor growth (Feng et al., 2011).  The enhanced 

bone remodelling may also function to prepare the microenvironment for the future 

invasion of the metastatic tumor.  We have previously shown that tumors secrete into the 

circulation several cytokines which may be promoting bone remodelling (Kerr et al., 2010), 

demonstrating a possible direct link between the tumor and the induced bone turnover.  

Thus, our studies demonstrate the importance of microCT as a tool to examine the bone 

structure in bone metastasis research.  

4. Future of microCT in cancer bone metastasis research 

The dominant microCT systems currently used are desktop microCT machines which focus 
mainly on the microstructural level.  Newer machines using synchrotron radiation microCT 
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and nanoCT provide higher resolution images and may provide more precise 
measurements of bone structure indices.  Further, combining microCT with PET or 
bioluminescence will result in the improved imaging of tumors within the bone 
microenvironment.  Improved imaging of both the bone and tumor at the cellular level 
promotes the use of these technologies in metastatic signaling and micrometastasis, as well 
as the testing of various therapeutic target efficacies. 

4.1 NanoCT 

While the dominant desktop microCT systems available provide resolutions between  

5-100 µm, third-generation synchrotron radiation systems have resolutions below 1 µm.  

These resolutions down to 100 nm are called nanoCT and may allow for imaging on the 

cellular level including the canal network, osteocyte lacunae, and even single cells.  In 

addition, these machines can be used in the visualization of microfractures (Muller, 2009; 

Stock, 2009).  A recent study used nanoCT to examine osteocyte lacunae and the canalicular 

network (Dierolf et al., 2010). Analysis of scans from nanoCT machines will provide 

increased precision of measurements and improved quantification of early changes in the 

bone structure due to osteoporosis or therapeutic treatments.  Until the development of 

nanoCT systems is completed and the systems become widely available, desktop microCT 

systems alone or in combination with other imaging systems will remain the main tool for 

analysis of the bone structure. 

4.2 Combined imaging techniques 

A recent trend in microCT imaging has been the development of PET-CTs, which allow 

simultaneous PET and CT scanning. Using this machine, overlays of low resolution 

tumors with high resolution microCT scans can be produced (Schambach et al., 2010).  

Further, fusion of bioluminescent imaging with microCT would allow for improved 

visualization of tumor cells along the bone and of local changes in bone cells and 

architecture. Bioluminescent imaging requires the use of luciferase reporters to be 

expressed by the tumor cells and results in a strong signal without any requirement for 

external illumination. In addition, fluorescent proteins or dots can be introduced to cells 

prior to implantation (de Boer et al., 2006; Henriquez et al., 2007). The use of 

bioluminescent imaging with microCT was recently used to measure the kinetics of 

intraosseous tumor growth, resultant bone destruction, and correlations between the two 

over time (Fritz et al., 2007).  In addition, luciferase can be introduced to osteoblasts or 

osteoclasts to monitor their activity, proliferation, and migration along the bone during 

metastatic tumor growth or in response to pre-metastatic signals from a primary tumor.  

Finally, luciferase activity can be used to monitor inflammation, angiogenesis, apoptosis, 

or signal transduction in metastatic tumors within the bone microenvironment and their 

association with altered bone architecture (de Boer et al., 2006). PET-CT or bioluminescent 

imaging, when combined with microCT, will permit visualization of micrometastases and 

metastatic soft tumors in the bone microenvironment. 

4.3 Metastatic signaling 

MicroCT scanning can also be used to study the proteins and signaling cascades involved 
in inducing bone changes during the metastatic process.  The mechanisms of primary 
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cancer metastasis to bone are still being elucidated, although several proteins and 
signaling cascades have been shown to play important roles in bone metastasis.  For 
example, the ┙v┚3 integrin on prostate cancer cells is necessary for the progression of 
metastatic growth in bone.  Further, this integrin is responsible for increases in bone 
formation caused by metastatic prostate cancer visualized by microCT scanning (McCabe 
et al., 2007).  Building upon this study, the importance of extracellular proteins recognized 
by the ┙v┚3 integrin in prostate cancer progression has been studied using microCT and 
transgenic mice (McCabe et al., 2011).  Using transgenic mice or cancer cells with proteins 
over-expressed or knocked-down, the signals regulating the metastasis of prostate cancer 
to bone can be examined using microCT to repeatedly and non-invasively study the bone 
structure. 

4.4 Treatment efficacies 

The efficacy of therapeutics can be measured using ex vivo microCT scanning of human 
biopsies or in vivo scanning of small animals.  MicroCT imaging alone can be used on 
biopsies or animals to determine the effectiveness of drugs in altering the bone 
microenvironment.  Therapies aimed at improving bone density or trabecular thickness can 
easily be measured and may be used in studies of osteoporosis and osteogenesis imperfecta.  
MicroCT scanning of biopsies can also be used to assess changes in primary osteosarcoma 
tumor structure and size.  For metastatic soft tumors, a combination of microCT and optical 
imaging techniques are most useful in analyzing therapeutic effectiveness on shrinking 
tumors and maintaining the bone architecture.  This non-invasive testing allows for the 
continuous monitoring of tumors during their growth or remission (Henriquez et al., 2007).  
MicroCT scanning has been used to study the effectiveness of treatments designed to slow 
down the progression of osteolysis during bone metastasis progression.  In a small animal 
model, zolendronic acid treatment decreased bone resorption as shown by microCT 
scanning (Johnson et al., 2011).  In another study, an osteoprotegrin-producing adenovirus 
was demonstrated to result in increased BV/TV and connectivity and thus, was shown to 
protect against metastatic bone loss (Chanda et al., 2008).  Further, the main symptom 
resulting from bone metastases is pain, which is the major factor responsible for decreased 
quality of life.  Intraosseous tumor implantation and microCT scanning were used to study 
the correlation of bone pain with bone destruction in a rat model (Dore-Savard et al., 2010).  
This model can be used in the future to examine the effectiveness of therapeutics targeting 
bone pain.  In summary, microCT imaging can be used to determine the efficacy of 
treatments in altering the bone architecture in a variety of diseases. 

5. Conclusion  

The development of microCT scanners provided a means for analyzing the bone structure 
and mineralization level non-destructively.  MicroCT alone provides quantitative and 
qualitative scanning at a high sensitivity and micrometer resolution, with newer imaging 
systems providing even nanometer resolutions.  These machines have allowed for extensive 
research on bone and bone metastasis to be completed.  Current studies are using microCT 
scanning to elucidate the mechanisms behind cancer metastasis and to determine the 
effectiveness of treatments.  Using the basic procedures and considerations when planning 
microCT scanning experiments discussed, consistency and precision can be achieved in 
repeated scans of small animals.  The data presented here establish the usefulness of 
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microCT scanning to measure pre-metastatic bone changes.  Our data demonstrate that 
primary tumors communicate with the bone microenvironment prior to metastasis 
stimulating bone formation in two tumor models.  Using microCT imaging alone or in 
combination with other methodologies will permit continued examination of the metastatic 
process.  Combined imaging techniques and advances in microCT systems will allow for 
continued research on metastatic signaling, metastatic tumor development and progression, 
and therapeutic efficacies.  Thus, microCT has been come an essential tool in bone 
metastasis research. 
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