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1. Introduction 

Malaria is a parasitic disease confined mostly to the tropical areas, caused by parasites of the 

genus Plasmodium and transmitted by mosquitoes of the genus Anopheles. Annually, nearly a 

million human deaths, mainly of children ≤5 years of age, are registered among 500 million 

cases of clinical malaria, whereas 2.37 billion people are estimated to be at risk of infection 

by P. falciparum, the most virulent among Plasmodia (Guerra et al., 2008). In 2007, the Bill and 

Melinda Gates Foundation, rapidly endorsed by the World Health Organization (WHO) and 

the Roll Back Malaria association, claimed for malaria eradication as the primary goal to be 

prosecuted (Roberts & Enserink, 2007). In order to achieve such an ambitious objective, 

several strategies are being adopted, involving multidisciplinary areas such as treatment, 

chemoprevention, vaccine research, health system assessment and of note vector control 

(Greenwood, 2008; Khadjavi et al., 2010). Indeed insecticides, which have already been 

essential components of previous malaria control programs, are supposed to play a key role 

in the new eradication program, where they will be employed either for indoor spraying or 

treated bednet approaches (Greenwood, 2008; Khadjavi et al., 2010).  

The present chapter will review the status of insecticides currently used for malaria vector 
control, along with present evidence on their benefits and risks in relation to the available 
alternatives. After a brief description of the Plasmodium life cycle, occurring either in 
mosquito vector (sexual reproduction) or in human host (asexual replication), the 
insecticides currently allowed by WHO for malaria vector control, including 
organophosphates (OP) for larval control and organochlorines (OCs), pyrethroids (PYs) and 
carbamates (Cs) for the control of adult mosquitoes, will be described; formulation, side 
effects and cost-effectiveness will be discussed. A special attention will be paid to 1,1,1-
trichloro-2,2-di(4-chlorophenyl)ethane (DDT), which is presently used by approximately 
fourteen countries, while several others are preparing to reintroduce it. Nevertheless, the 
concerns about the continued use of DDT and the recent reports of high levels of human 
exposure associated with indoor spraying amid accumulating evidence on chronic health 
effects will be taken in account. Furthermore, the big issue of growing resistances to the 
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toxic action of current insecticides, which are spreading almost worldwide, will be focused 
in a dedicated paragraph. Finally, the existing and future alternatives, either chemical or 
non-chemical, to the insecticides currently in use will be analyzed focusing on repellents 
and genetic control. Taken altogether, the data shown in the present chapter could be useful 
to the reader to better know the present and the future tools available for malaria vector 
control, in the context of the ongoing malaria eradication program. 
Informations on available insecticides, formulations, side effects, resistance, cost-

effectiveness, and alternatives have been obtained from literature searches, by using the 

search engines Scopus and Pubmed. Due to the complexity of the subject, only the most 

relevant studies were selected, and reviews were prioritized. Old literature was accessed 

electronically, or hard copies were obtained from libraries. Information on human exposure 

and health effects is based on reviews published over the past five years and supplemented 

with recent studies on exposure due to indoor spraying and treated bednets. 

2. Plasmodium life cycle 

Plasmodium species all share the same life cycle, which occurs either in human host (asexual 
cycle) or in mosquito vector (sexual cycle), as represented in Figure 1.  
 

 

Fig. 1. Plasmodium parasite life cycle. 
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Parasites are transmitted to humans by the females of the Anopheles mosquito species. There 
are about 460 species of Anopheles mosquitoes, but only 68 transmit malaria. Anopheles 
gambiae, found in Africa, is one of the major malaria vectors. It is long-living, prefers feeding 
on humans, and lives in areas near human habitation (Rogier & Hommel, 2011). The 
malarial infection begins when the sporozoite stage of the parasite, that resides within the 
salivary gland of the mosquito, halts in the host liver (Menard, 2005).  This happens when an 
infected female bites a healthy person and takes its blood meal, injecting a small amount of 
saliva into the skin wound. Male mosquito does not feed on blood, hence only female serves 
as a vector. The saliva contains anti-haemostatic and anti-inflammatory enzymes that 
disrupt the clotting process and inhibit the pain reaction. Typically, each infected bite 
contains 5-200 sporozoites which proceed to infect the human vector. Once in the human 
bloodstream, the sporozoites only circulate for a matter of minutes before infecting liver 
cells. 

2.1 Liver stage in man 

After circulating in the bloodstream, sporozoites migrate to the liver and finally infect a 
hepatocyte, after crossing several Kupffer cells and hepatocytes (Trieu et al., 2006). The 
sporozoites rapidly grow in size absorbing nourishment to form a large round schizont. The 
schizont divides by schizogony, a type of asexual reproduction, in which multiple fissions 
result in the formation of a number of small, spindle-shaped uninucleate cells called 
merozoites (Rogier & Hommel, 2011). Schizonts rupture and merozoites are released into 
the sinusoids or venous passages of the liver. This phase of asexual reproduction is called 
pre-erythrocytic schizogony. The merozoites are immune to medicines and host natural 
resistance. After a development stage in liver, during which there are no clinical symptoms 
of disease, merozoites are released into the blood and enter the erythrocytic portion of their 
life-cycle. A single schizont can produce thousands of merozoites by asexual reproduction. 

2.2 Erythrocytic stage in man 

The merozoites feed on erythrocytes, become rounded and modify into a trophozoite. 

During growth, a vacuole appears in the centre of merozoites and the nucleus is pushed to 

one side; this modification, that is known as “ring stage”, gives it a ring-like appearance. 

This food vacuole secretes some digestive enzymes, which break down haemoglobin into 

proteins and haematin. Proteins are used by the parasite as nourishment source, whereas 

haematin is converted into a waste product called haemozoin, a lipid-enriched 

ferriprotoporphyrin IX crystal avidly phagocytosed by host immune cells. As a result of 

phagocytosis, several monocyte functions are impaired, including oxidative burst, bacterial 

killing, antigen presentation, coordination of erythropoiesis. Moreover, the production of 

several pro-inflammatory molecules, including cytokines, chemokines and matrix 

metalloproteinases, as well as the production of anti-apoptotic molecules, such as heat shock 

protein-27, is enhanced. The overproduction of these host molecules as a response to a 

parasite product has been proposed to play a crucial role in clinical progress towards 

complicated malaria, including cerebral malaria, respiratory distress, and placental malaria 

(Prato et al., 2005, 2008, 2009, 2010a, 2010b, 2010c; Giribaldi et al., 2010; Khadjavi et al., 2010; 

Prato et al. 2011a, 2011b; Prato 2012; Giribaldi et al., 2011). During their growth, the 

trophozoites metamorphose into schizonts (Rogier & Hommel, 2011). Schizont appears after 

a period of about 36 to 40 hours of growth and represents the full-grown trophozoite. The 

www.intechopen.com



 
Insecticides – Advances in Integrated Pest Management 

 

94

nucleus of schizont divides in the next 6 to 8 hours to form 12 to 24 daughter nuclei of new 

merozoite cells in the erythrocyte. This phase of asexual multiplication is known as 

erythrocytic schizogony. One erythrocytic cycle is completed in 48 hours. Thereafter, the 

merozoites burst from the red blood cell, and proceed to infect other erythrocytes. The 

parasite remains in the bloodstream for roughly 60 seconds before entering into another 

erythrocyte, restarting the process (Cowman & Crabb, 2006).  This infection cycle occurs in a 

highly synchronous fashion, with roughly all of the parasites throughout the blood in the 

same stage of development. The toxins are liberated into the blood along with the liberation 

of merozoites. The toxins are then deposed in the liver, spleen and under the skin, so that 

the host gets a sallow colour. The accumulated toxins cause malaria fever: the patient suffers 

from chills, shivering, sweating and high temperature. The fever lasts for six to ten hours 

and then it comes again after every 48 hours with the liberation of a new generation of 

merozoites. During the erythrocytic stage, some merozoites increase in size to form two 

types of gametocytes, the macrogametocytes and microgametocytes. The macrogametocytes 

(female) are large, round with the food laden cytoplasm and a small eccentric nucleus. The 

microgametocytes (male) are small, with clear cytoplasm and a large central nucleus. This 

process is called gametocytogenesis. The specific factors and causes underlying this sexual 

differentiation are largely unknown. The gametocytes take roughly 8–10 days to reach full 

maturity and do not develop further until they get sucked by the appropriate species of 

mosquito. If this does not happen, they degenerate and die, because they require lower 

temperature for further development. 

2.3 Life cycle in mosquito 

When a female Anopheles sucks the blood of a malaria patient, the gametocytes  enter along 
with blood, reaching the stomach and leading to formation of gametes (Aly et al., 2009). 
Only the gametocytes survive inside the stomach, while the other stages of the parasite, as 
well as the erythrocytes, are digested. Two types of gametes are formed: the 
microgametocytes (male) become active and their nucleus divides to produce 6 to 8 haploid 
daughter nuclei. The nuclei arrange at the periphery. The cytoplasm gives out same number 
of flagella-like projections. A daughter nucleus enters in each projection. These projections 
separate from the cytoplasm. This process of formation of microgametes is called 
exflagellation. From each microgametocyte, 6 to 8 flagella-like active microgametes are 
formed. The megagametocyte (female) undergoes some reorganization and forms 
megagametes. Fertilization of the female gamete by the male gamete occurs rapidly after 
gametogenesis. The fertilization event produces a zygote that remains inactive for some time 
and then elongates into a worm-like ookinete or vermicule. The zygote and ookinete are the 
only diploid stages. The ookinete penetrates the wall of the stomach and comes to lie below 
its outer epithelial layer. It gets enclosed in a cyst formed partly by the zygote and partly by 
the stomach of mosquito. The encysted zygote is called oocyst. The oocysts absorb 
nourishment and grow to about five times in size. They protrude from the surface of the 
stomach as transparent rounded structures. Over a period of 1–3 weeks, the oocyst grows to 
a size of tens to hundreds of micrometes. During this time, multiple nuclear divisions occur. 
As a consequence of oocyst maturation, the oocyst divides to form multiple haploid 
sporozoites. Each oocyst may contain thousands of sporozoites and groups of sporozoites 
get arranged around the vacuoles. This phase of asexual multiplication is known as 
sporogony. In the mosquito, the whole sexual cycle is completed in 10 to 21 days. Finally the 
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oocyst bursts and sporozoites are liberated into the haemolymph of the mosquito. They 
spread throughout the haemolymph and eventually reach the salivary glands and enter the 
duct of the hypopharynx. The mosquito now becomes infective and sporozoites get 
inoculated or injected into the human blood when the mosquito bites, starting a new life 
cycle. It is estimated that a single infected mosquito may contain as many as 200,000 
sporozoites. 

3. Insecticides used for malaria vector control 

The most prominent classes of insecticides are organochlorines (OCs), organophosphates 
(OPs), carbamates (Cs), and pyrethroids (PYs). In general, they act by poisoning the nervous 
system of insects, which is fundamentally similar to that of mammals. A small amount of 
pesticide can be fatal for an insect, primarily because of its small size and high rate of 
metabolism. Such an amount is not fatal for humans, but it may still harm. Since the 
similarities between the nervous system structures make it nearly impossible to design 
insecticides affecting only insect pests, insecticides may affect non-pest insects, people, 
wildlife, and pets. Some insecticides harm water quality or affect organisms in other ways; 
for example, the insecticide carbaryl (a C insecticide, further discussed below) is listed as a 
carcinogen by the state of California. The newer insecticides are designed to be more specific 
and less persistent in the environment (Toxipedia, 2011). 

3.1 Organochlorines  

Chemical structure of OCs is various, but they all contain chlorine, which places them in a 
larger class of compounds called chlorinated hydrocarbons. These compounds, including 
DDT, represent a typical example of the potential risks and benefits of insecticide use. OCs 
have serious unintended consequences, despite the advantage of being cheap and effective 
against target species. OCs alter and disrupt the movement of ions such as calcium, chloride, 
sodium, and potassium into and out of nerve cells, but, depending on their specific 
structure, they may also affect the nervous system in other ways. OCs are very stable, slow 
to degrade in the environment, soluble in fats (and are therefore readily taken up by 
insects), and seemingly harmless to mammals; for this reason, at one time, OCs are thought 
to be ideal. Unfortunately, persistence and fat solubility are very undesirable: OCs can 
bioaccumulate in the fat of large animals and humans by passing up the food chain. The 
global use and transport of OCs result in the contamination of wildlife around the globe, 
including Arctic and Antarctic regions where these insecticides are not used. A decline in 
the number of birds that prey on animals exposed to DDT is one of the first signs of the 
unintended consequences. Unexpectedly, DDT causes a thinning of the bird eggshells and 
results in the death of newborns. OCs like DDT are now largely banned in industrialized 
countries but they are still manufactured and used in developing countries where they are 
exposed by the formers. 

3.1.1 1,1,1-trichloro-2,2-di(4-chlorophenyl)ethane 

DDT  is an OC insoluble in water but soluble in most organic solvents, fats, and oils. DDT is 
not present naturally, but is produced by the reaction of chloral (CCl3CHO) with 
chlorobenzene (C6H5Cl) in the presence of sulfuric acid, which acts as a catalyst. DDT is a 
persistent organic pollutant that is extremely hydrophobic and strongly absorbed by soil, 
where its half life can range from 22 days to 30 years depending on conditions. Routes of 
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loss and degradation include runoff, volatilization, photolysis and aerobic and anaerobic 
biodegradation. When applied to aquatic ecosystems DTT is quickly absorbed by organisms 
and by soil or it evaporates, leaving little amount of DDT dissolved in the water itself 
(Agency for Toxic Substances and Disease Registry, 2002) 
 

 

Fig. 2. DDT. 

In insects DTT  opens sodium ion channels in neurons, causing them to burn spontaneously. 

This effect leads to spasms and eventual death. For this reason, insects with certain mutations 

in their sodium channel gene are resistant to DDT and other similar insecticides. DDT 

resistance is also conferred by up-regulation of genes expressing cytochrome P450 in some 

insect species (Denholm et al., 2002). In 1955, the WHO commenced a program to eradicate 

malaria worldwide, relying largely on DDT. The program was initially very successful, 

eliminating the disease in Taiwan, much of the Caribbean, the Balkans, parts of northern 

Africa, the northern region of Australia, and a large swath of the South Pacific and 

dramatically reducing mortality in Sri Lanka and India (Harrison, 1978). However, 

widespread agricultural use led to resistant insect populations. In many areas, early victories 

partially or completely reversed, and in some cases rates of transmission even increased 

(Chapin & Wasserstrom,1981). The program was successful in eliminating malaria only in 

areas with "high socio-economic status, well-organized healthcare systems, and relatively less 

intensive or seasonal malaria transmission" (Sadasivaiah et al., 2007). In tropical regions, DDT 

was less effective due to the continuous life cycle of mosquitoes and poor infrastructure. It was 

not applied at all in sub-Saharan Africa due to these perceived difficulties.  

Through genotoxicity or endocrine disruption DDT may affect human health. DDT may be 
directly genotoxic, but may also induce enzymes to produce other genotoxic intermediates 
and DNA adducts [45].  
Moreover, based on the results of animal studies, DDT is suspected to cause cancer. By 
epidemiological studies it is worth demonstrated that DDT causes liver, pancreas  and 
breast cancers. Its contribution in the development of leukemia, lymphoma and testicular 
cancer is still unclear. Other epidemiological studies suggest that DDT does not cause 
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multiple myeloma or prostate, endometrium, rectum, lung, bladder, and stomach cancers 
(Rogan & Chen, 2005; Eskenazi, 2009; Spinelli et al., 2007; McGlynn et al., 2008).  

3.2 Organophosphates and Carbamates  

OP is the general name for esters of phosphoric acid. These compounds were developed in 
the 1940s as highly toxic biological warfare agents (nerve gases). Modern derivatives, 
including sarin and VX, were stockpiled by several countries and now present some difficult 
disposal problems. In their search for insecticides that would target selected species and 
would be less toxic to mammals many different OPs have been developed. When the OP 
Parathion was first used as a replacement for DDT, it was believed to be better and more 
specific. Unfortunately, Parathion short-term (acute) toxicity is greater than DDT, and this 
characteristic causes a significant number of human deaths. On the other hand, Cs feature 
the carbamate ester functional group. Although OPs and Cs have very different chemical 
structures, they share a similar mechanism of action and will be examined here as one class 
of insecticides. OPs and Cs affect an important neurotransmitter common to both insects 
and mammals, the acetylcholine, which is essential for communication of nerve cells. 
Acetylcholine, released by one nerve cell, initiates communication with another nerve cell, 
but this stimulation should eventually be stopped. The interruption of this communication 
is made by removing acetylcholine from the area around the nerve cells. Subsequently, 
acetylcholine is broken down by a specific enzyme, the acetylcholinesterase. OPs and Cs 
block the enzyme and disrupt the proper functioning of the nerve cells. Hence, these 
insecticides are called acetylcholinesterase inhibitors. Structural differences between the 
various OPs and Cs affect the efficiency and degree of acetylcholinesterase blockage. Nerve 
gases are highly efficient and permanently block acetylcholinesterase, while the commonly 
used pesticides block acetylcholinesterase only temporarily. The toxicity of these pesticides 
presents significant health hazards, and researchers continue to work to develop new 
insecticides that have fewer unintended consequences. 

3.3 Pyrethroids  

Synthetic PYs, that were first developed in the 1980s, are one of the newer classes of 
insecticides; they are loosely based upon the naturally pyrethrum found in Chrysanthemum 
flowers and first commercially used in the 1800s. Their use has increased significantly over the 
last 20 years. The chemical structure of PYs is quite different from that of OCs, OPs and Cs but 
the primary site of action is also the nervous system. PYs affect the movement of sodium ions 
(Na+) into and out of nerve cells that become hypersensitive to neurotransmitters. Structural 
differences between several PYs can change their toxic effects on specific insects and even 
mammals. PYs are more persistent in the environment compared to natural pyrethrum, which 
is unstable in light and breaks down very quickly in sunlight. 

3.4 Chemical agents in malaria vector control  

The historical successful elimination of malaria in various parts of the world has been 
achieved mainly by vector control (Harrison, 1978). In addition, the Global Malaria Control 
Strategy emphasized the need for selective and sustainable preventive measures for 
reducing malaria transmission (WHO, 1993). In order to control vector-borne diseases, 
control of mosquitoes is the most important aspect. It is accomplished by application of 
chemical pesticides against adult-stage mosquitoes. Application of insecticides remains the 
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primary control tool in the majority of vector control programs throughout the world since 
early nineteenth century (Breman, 2001). In the twentieth century, after the discovery of 
DDT, a new era of insect control began (Hassall, 1982). DDT was the first synthetic organic 
insecticide used for effective vector control with reasonable success. DDT was banned by 
Environmental Protection Agency in 1972, owing to ecological considerations and opening 
up a debate between groups for or against  the ban. However, the ban exempts its use in 
public health emergencies like outbreaks of malaria. The restriction permits indoor residual 
sprays (IRS) of DDT in malaria control until an effective, affordable, and safe alternative is 
available. In September 2006, based on the increasing scientific evidences, finally, WHO 
gave a clean bill to use of DDT to fight against malaria in Africa and other areas where the 
vectors are still susceptible to DDT (WHO, 2006a). However, the debate on the use of DDT is 
still continuing and will continue until a more effective, affordable, and safe alternative tool 
is made available.  

3.4.1 Indoor residual spraying 

Indoor residual spraying (IRS) with insecticides continues to be the mainstay for malaria 
control and represents an application of stable formulations of insecticides to the interior 
sprayable surfaces (walls and roofs) of houses to kill the mosquitoes. This affects the malaria 
transmission by reducing the life span of female mosquitoes thereby reducing density of 
mosquitoes (WHO, 2006b). Insecticide efficacy depends not only on the molecule intrinsic 
chemical nature and properties but also on certain technical factors, such as susceptibility of 
the target vector species to different insecticides, quality of indoor spraying (dose 
dispensation and coverage), and on residual efficacy. Insecticides recommended by WHO 
for IRS for control of malaria vectors are given in Table 1.  
 
 

Insecticide compounds and 
formulations 

Chemical 
type (2) 

Dosage 
(a.iag/m2)

Mode of action 
Duration of 

effective action 
(months) 

DDT WP OC 1–2 Contact >6 

Malathion WP OP 2 Contact 2–3 

Fenitrothion WP OP 2 Contact & airborne 3–6 

Pirimiphos-methyl WP, EC OP 1–2 Contact & airborne 2–3 

Bendiocarb WP C 0.1–0.4 Contact & airborne 2–6 

Propoxur WP C 1–2 Contact & airborne 3–6 

Alpha-cypermethrin WP, SC PY 0.02–0.03 Contact 4–6 

Bifenthrin PY 0.025–0.05 Contact 3–6 

Cyfluthrin WP PY 0.02–0.05 Contact 3–6 

Deltamethrin WP, WG PY 0.02–0.025 Contact 3–6 

Etofenprox WP PY 0.1–0.3 Contact 3–6 

Lambda-cyhalothrin WP, CS PY 0.02–0.03 Contact 3–6 

Formulations: CS capsule suspension; EC emulsifiable concentrate; WP wettable powder; OC 
Organochlorines; OP Organophosphates; C Carbamates; PY Pyrethroids; a a.i. active ingredient  

 

Table 1. Insecticides recommended for IRS against malaria vectors.  
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3.4.2 Space spraying 

Space spraying/fogging, which is produced by rapidly heating the liquid chemical to form 

very fine droplets that resemble smoke or fog, is the process of application of a pesticide . It 

is primarily reserved for application during emergency situations for halting epidemics or 

rapidly reducing adult mosquito populations resulting in decrease of transmission (CDC, 

2009). It is effective as a contact poison with no residual effect. Space spraying must coincide 

with the peak activity of adult mosquitoes, because resting mosquitoes are often found in 

areas that are out of reach to the applied insecticides (e.g., under leaves, in small crevices). 

The best moment to kill adult mosquitoes by fogging is at dusk, when they are most active 

in forming swarms. The most commonly used products are natural pyrethrum extract, 

synthetic PYs, and Malathion. WHO recommended insecticides for space sprays are listed in 

Table 2.  

 

Insecticide Chemical type
Dosage of a.ia (g/ha) 

Cold aerosol Thermal fog 

Boiresmethrin PY 5 10 

Cyfluthrin PY 1–2 1–2 

Cypermethrin PY 1–3 – 

Cyphenothrin PY 2–5 5–10 

Deltamethrin PY 0.5–1.0 – 

D-phenothrin PY 5–20 – 

Etofenprox PY 10–20 10–20 

Fentirothion OP 250–300 250–300 

Malathion OP 112–600 500–600 

Permethrin PY 5 10 

Pirimphos-methyl OP 230–330 180–200 

Resmethrin PY 2–4 4 

d,d-trans-cyphenothrin PY 1–2 2.5–5 

a a. i. active ingredient  

Table 2. Insecticides suitable for application as cold aerosol ULV sprays or thermal fogs for 
mosquito control.  

3.4.3 Insecticide-treated nets 

Mosquito nets effectively prevent malaria transmission by forming a physical barrier 
between  insects and man. Insecticide-treated nets (ITNs), impregnated with PYs, were 
introduced in the place of untreated nets, that are not a perfect barrier, not only in order to 
decrease the man–mosquito contact by deterrence or excito-irritability but also to kill the 
mosquito with its residual insecticidal activity. They are more effective than untreated nets 
with >70% protection and are proved to be a cost-effective prevention method against 
malaria (D'Alessandro et al., 1995). WHO-recommended insecticide products for the 
treatment of mosquito nets for malaria vector control are given in Table 3.  
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1. Conventional Treatment 

Insecticide Formulation Dosage (mg/m2 net)  

Alpha-
cypermethrin 

Suspension concentrate 10% 20–40 

Cyfluthrin Emulsion, oil in water 5% 50 

Deltamethrin 
Suspension concentrate 1%; Water dispersible 
tablet 25% and WT 25% + binder 3  

15–25 

Etofenprox Emulsion, oil in water 10% 200 

Lambda-
cyhalothrin 

Capsule suspension 2.5% 10–15 

Permethrin Emulsifiable concentrate 10% 200–500 

2. Long-lasting treatment 

Product name Product type 
Status of WHO 
recommendation 

ICON® 
MAXX 

Lambda-cyhalothrin 10% CS + binder Target 
dose of 50 mg/m2 

Interim 

Table 3. WHO-recommended insecticide products for the treatment of mosquito nets for 
malaria vector control. 

3.4.4 Long-lasting insecticidal materials 

The rapid loss of efficacy of ITNs due to washing and to the associated low-retreatment 
rates of the nets limits the operational effectiveness of an ITN program (Lines, 1996). Long-
lasting insecticidal nets (LLINs) reduce human–mosquito contact, which results in lower 
sporozoite and parasite rates. The biological activity generally lasts as long as the net itself 
(3–4 years for polyester nets and 4–5 years for polyethylene nets) (WHO, 2005). A list of 
WHO-recommended long-lasting insecticidal mosquito nets for use in public health is given 
in Table 4. Only five brands of LLINs are currently recommended by the WHO Pesticide 
Evaluation Scheme, and Olyset® net is the only one which currently granted full 
recommendation (N'Guessan et al., 2001; Teklehaimanot et al., 2007), while Perma-Net-2.0®, 
Duranet-®, Net Protect-®, and Interceptor-®, including long-lasting insecticide treatment 
kits K-OTab1-2-3® and ICON-MAXX® (Sinden, 2007), are approved as an interim 
recommendation.  
Also treatments of screens, curtains, canvas tents, plastic sheet, tarpaulin, etc., with 
insecticides may provide a cheap and practical solution for malaria vector control. 
Effectiveness of treated screen and curtains can be comparable to that of mosquito nets. 
Different types of long-lasting insecticide impregnated materials are under field trials in 
different countries. The residual insecticides in insecticide-treated wall lining (ITWL) are 
durable and maintain control of insects significantly longer than IRS and may provide an 
effective alternative or additional vector control tool to ITNs and IRS (Munga et al., 2009).  

4. Insecticide resistance 

A major concern on the use of currently available insecticides for malaria control is 
represented by increasing insecticide resistance  (Enayati & Hemingway, 2010). For example, 
DDT was first introduced for mosquito control in 1946; however, already in 1947 the first 
cases of DDT resistance occurred, and up to now DDT resistance at various levels  
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Product name Product type 
Status of WHO 
recommendation 

DawaPlus® 2.0 Deltamethrin coated on polyester Interim 

Duranet ® Alpha-cypermethrin incorporated into polyethylene Interim 

Interceptor ® Alpha-cypermethrin coated on polyester Interim 

Netprotect® Deltamethrin incororated into polyethylene Interim 

Olyset® Permethrin incorporated into polyethylene Full 

PermaNet ®2.0 Deltamethrin coated on polyester Full 

PermaNet® 2.5 
Deltamethrin coated on polyester with 
strengthened border 

Interim 

PermaNet® 3.0 

Combination of deltamethrin coated on polyester 
with strengthened border (side panels) and 
deltamethrin and PBO incorporated into 
polyethylene (roof)  

Interim 

Table 4. WHO-recommended long-lasting insecticidal mosquito nets for use in public 
health.  

has been reported for > 50 species of Anopheles mosquitoes, including many vectors of 
malaria (Hemingway & Ranson, 2000). Unfortunately, the introduction of new other 
insecticides for malaria control, including OPs, Cs, and PYs, improved malaria control 
strategy only partially, since resistance has tended to follow the switches in insecticides 
(Hemingway & Ranson, 2000). 
In the past, the use of DDT in agriculture was considered a major cause of its resistance in 

malaria vectors, as many vectors breed in agricultural environments (Mouchet, 1988). At 

present, DDT resistance is thought to be triggered further by the use of synthetic PYs 

(Diabate et al., 2002). Indeed, DDT and PYs share a common target, thus facilitating the 

development of a cross-resistance mechanism (Martinez-Torres et al., 1998). In addition, 

evidence of increased frequency of resistance genes due to IRS or ITN programs is quite 

alarming (Karunaratne & Hemingway 2001; Stump et al., 2004): PYs, the only class 

approved for use on ITNs (Zaim M et al 2000), are being increasingly deployed in IRS 

programmes in Africa and there has been a dramatic increase in reports of PY resistance in 

malaria vectors over the past decade (Santolamazza et al., 2008); moreover, PYs are also 

widely used in the control of agricultural pests worldwide (Ranson et al., 2011). 

Typically, two major mechanisms are assumed to be responsible for insecticide resistance: a) 

changes in the insecticide target site (mutations in the sodium channel, acetylcholinesterase 

and GABA receptor genes) that reduce its binding; b) increased rates of insecticide 

metabolism (alterations in the levels or activities of detoxification proteins) and reduced 

insecticide ability to reach the target site (Hemingway et al., 2004; Ranson et al., 2011).  

These mechanisms, alone or in combination, lead to resistance, sometimes at an extremely 
high level, to all of the available classes of insecticides (Hemingway et al., 2004).  

4.1 Target site resistance 

As previously discussed, OPs, Cs, OCs, and PYs all target the nervous system (Enayati & 
Hemingway, 2010).  Single base point mutations are the most common cause of target-site 
resistance, changing the properties of these target sites, and reducing their susceptibility to 
insecticide binding (Hemingway & Ranson, 2000; Enayati & Hemingway, 2010).  
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4.1.1 Voltage-gated sodium channel 
PYs and OCs target the voltage-gated sodium channel in insect neurons (Davies, T.G. et al. 
2007). Insecticide binding delays closure of the sodium channel prolonging action potential 
and causing repetitive neuron firing, paralysis and eventual death of the insect (Ranson, 
2011). Mutations in the sodium channel conferred by DDT and PY resistance are known as 
knockdown resistance (kdr), so-called because insects with these alleles can withstand 
prolonged exposure to insecticides without being ‘knocked-down’ (Hemingway et al., 2004; 
Hemingway & Ranson, 2000; Ranson, 2011). The kdr is due to changes in the affinity 
between the insecticide and its binding site on the sodium channel, as a consequence of 
single or multiple substitutions in the sodium channel gene (Martinez-Torres et al., 1998). 
1014 residual aminoacid replacement, which consists in substitution of the leucine residue 
with an alternative phenylalanine or serine, does not appear to interact directly with the 
insecticide but is predicted to alter channel activation kinetics (O’Reilly A.O. et al. 
2006,Enayati A. and Hemingway J. 2010; Ranson H. et al 2011). However, even though the 
association between kdr and resistance to PYs and DDT is clear, it is not well understood 
whether this allele resistance alone is sufficient to lead to control failure (Ranson et al., 2011). 

4.1.2 Acetylcholinesterase 

The molecular target of OPs and Cs is acetylcholinesterase (AChE) (Enayati & Hemingway, 
2010).  AChE has a key role in the nervous system, terminating nerve impulses by catalyzing 
the hydrolysis of the neurotransmitter acetylcholine on the post-synaptic nerve membrane 
(Hemingway & Ranson, 2000; Hemingway et al., 2004). The insecticides inhibit enzyme 
activity by covalently phosphorylating or carbamylating the serine residue within the active 
site (Corbett, 1984). Mutations in AChE  gene in OP- and C-resistant insects result in a 
decreased sensitivity to inhibition of the enzyme by these insecticides (Hemingway & 
Ranson, 2000). 

4.1.3 GABA receptor 
The target site of cyclodiene insecticides, such as dieldrin, and of fipronil, a phenyl pyrazole 
insecticide, is the type A receptor for the neurotransmitter γ-aminobutyric acid (GABA). The 
GABA receptor is a widespread inhibitory neurotransmission channel in the central nervous 
system and neuromuscular junctions of insects (Hemingway & Ranson, 2000). GABA 
receptor binding elicits rapid gating of an integral chloride selective ion channel. Mutations 
at a single codon in the Rdl (resistance to dieldrin) gene (encoding one receptor subunit), 
from an alanine residue to a serine or more rarely to a glycine, have been documented in all 
dieldrin- resistant insect species to date (ffrench-Constant et al., 1998). This mutation 
appears to confer both insensitivity to the insecticide and a decreased rate of desensitization 
(Hemingway et al., 2004). 

4.2 Metabolic resistance 

Metabolic resistance occurs when elevated activity of one or more enzymes results in a 
sufficient sequester or detoxification of the insecticide before it reaches the target site 
(Ranson et al., 2011). Increased expression of the genes encoding the major xenobiotic 
metabolizing enzymes is the most common cause of insecticide resistance in mosquitoes 
(Hemingway & Ranson, 2000). 
Three major enzyme groups are responsible for metabolically based resistance to OCs, OPs, 
Cs, and PYs: a) glutathione S-transferase (GST), like DDT-dehydrochlorinase, which was 
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first recognized as a GST in the house fly, Musca domestica; b) esterases, often involved in 
OP, C, and to a lesser extent, PY resistance; and c) monooxygenases, involved in PY 
metabolism, OP activation and/or detoxication and, to a lesser extent, C resistance 
(Hemingway & Ranson, 2000). 

4.2.1 Glutathione S-transferases 

Several studies have shown that insecticide-resistant insects have elevated levels of GST 
activity, which has been implicated in resistance to at least four classes of insecticides. GSTs 
are dimeric multifunctional enzymes that play a role in detoxification of a large range of 
xenobiotics through catalysis of the nucleophilic attack of reduced glutathione on the 
electrophilic centers of lipophilic compounds. For mosquitoes multiple forms of these 
enzymes have been reported (Hemingway & Ranson, 2000). Higher enzyme activity is 
usually due to an increased amount of one or more GST enzymes, either as a result of gene 
amplification or more commonly through increases in transcriptional rate, rather than 
qualitative changes in individual enzymes (Ranson & Hemingway, 2004).  
The DDT dehydrochlorinase reaction proceeds via a base abstraction of hydrogen, catalyzed 

by the thiolate anion generated in the active site of the GST, leading to the elimination of 

chlorine from DDT and generating DDE (Prapanthadara et al., 1995).  These GSTs also act as 

a secondary detoxification route for OPs, resulting in cross-resistance to insecticides such as 

fenitrothion.  

Detoxification of OPs occurs via an O-dealkylation or O-dearylation reaction. In O-

dealkylation, glutathione is conjugated with the alkyl portion of the insecticide (Oppenoorth 

et al., 1979), whereas the reaction of glutathione with the leaving group (Chiang & Sun, 

1993) is an O-dearylation reaction. GSTs can also catalyse the secondary metabolism of OP 

insecticides (Hemingway et al., 2004).  

GSTs have no direct role in the metabolism of PY insecticides but they play a very important 

role in conferring resistance to this insecticide class by reducing oxidative damage and 

detoxifying the lipid peroxidation products induced by PYs (Vontas et al., 2001). GSTs may 

also protect against PY toxicity in insects by sequestering the insecticide (Kostaropoulos et 

al., 2001). 

4.2.2 Esterases 

Over-production of non-specific carboxylesterases as response to OP and C insecticide 
selection pressure has been documented in numerous arthropod species including 
mosquitoes (Hemingway & Karunaratne, 1998). In OP-susceptible insects, the active oxon 
analogues of the insecticides act as esterase inhibitors, because they are poor substrates 
with a high affinity for the enzymes. Esterases from resistant insects are more reactive 
with insecticides than their counterparts from susceptible insects and so they sequester 
the oxon analogues protecting the acetylcholinesterase target site (Karunaratne et al., 
1995). The predominant cause of this excessive enzyme synthesis is amplification of the 
genes (Mouches et al., 1986; Vaughan & Hemingway, 1995; Vaughan et al., 1995), 
although up-regulated transcription without an underlying gene amplification event has 
been reported (Rooker et al., 1996). In some resistant mosquito species, elevated 
carboxylesterase activity involves rapid hydrolysis of the insecticide, rather than 
increased sequestration (Hemingway et al., 2004). This mechanism is almost always found 
in association with Malathion resistance, and gives a much narrower cross-resistance 
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spectrum (in some cases Malathion-specific) than the amplified esterase-based 
mechanism. Although the genetic alterations generating these qualitative changes have 
not yet been identified in mosquito populations, several data obtained from other 
arthropods suggest that only one or two amino acid mutations may be responsible 
(Hemingway et al., 2004). 

4.2.3 Monooxygenases 

Monooxygenases are involved in the metabolism of PYs and in the activation and/or 
detoxification of OP insecticides (Hemingway & Ranson, 2000). The monooxygenases are 
a complex family of enzymes found in most organisms, including insects, involved in the 
metabolism of xenobiotics. The P450 monooxygenases are generally the rate-limiting 
enzyme step in the chain. Cytochrome P450-dependent monooxygenases are an important 
and diverse family of hydrophobic, haem-containing enzymes involved in the metabolism 
of numerous endogenous and exogenous compounds and of virtually all insecticides. It 
lead to activation of the molecule in the case of OP insecticides, or more generally to 
detoxification. P450 enzymes bind molecular oxygen and receive electrons from NADPH 
to introduce an oxygen molecule into the substrate (Hemingway & Ranson, 2000).  There 
are many reports demonstrating elevated P450 monooxygenase activities in insecticide-
resistant mosquitoes, frequently in conjunction with altered activities of other enzymes 
(Hemingway et al., 2004). 

4.3 Cuticular resistance 

Some mosquitoes have also evolved thicker or altered cuticles, reducing penetration of the 
insecticide (Stone & Brown, 1969; Apperson & Georghiou, 1975). Obviously this is not the 
main resistance mechanism used by pests, since the major route of insecticide delivery is by 
ingestion. However, in malaria control, insecticides are typically delivered on bed nets or on 
wall surfaces, and uptake of insecticides is primarily through the appendages. Hence an 
increase in the thickness of the tarsal cuticle, or a reduction in its permeability to lipophilic 
insecticides, could have a major impact on the bioavailability of insecticide in vivo (Ranson 
et al., 2011).  

4.4 Behavioural resistance 

Mosquitoes are able to change their behaviour as a result of intensive indoor use of 

insecticides, but there are currently insufficient data to assess whether these behavioural 

avoidance traits are symptomatic of genetic or adaptive responses (Bogh et al., 1998).  

Several insecticides such as DDT and permethrin influence behavioural changes in the insect 

by reducing the rate of mosquito entry into houses, by increasing the rate of early exit from 

houses and by inducing a shift in biting times (Lines et al., 1987; Mbogo et al., 1996; 

Mathenge et al., 2001). Mosquitoes may also express a change in host preference because 

their favoured hosts under the ITN can not be reached (Takken, 2002).  

In vector control-free areas, mosquitoes are mostly collected in bedrooms. The excito-

repellent effect of PYs forces mosquitoes to leave rooms to outdoors, thus explaining the 

reduction of indoor biting (Takken, 2002). There is a clear need for robust controlled studies 

to quantify the extent of this behavioural change, and to assess whether scale-up of ITNs 

and/or IRS could increase importance of outdoor transmission of malaria and new tools 

against outdoors malaria vectors might be required (Ranson et al., 2011). 
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5. Future perspectives and possible alternatives to insecticides 

Regular monitoring for insecticide resistance is essential in order to react promptly to 
prevent vector control compromission. Once resistance reaches very high levels, strategies 
to restore susceptibility are unlikely to be effective (Ranson et al., 2011).  
Effective monitoring and decision support systems can be used to detect insecticide 
resistance at an early stage, which should lead to the implementation of changes in insec-
ticide policy (Sharp et al., 2007). However, the practice of using an insecticide until 
resistance becomes a limiting factor is rapidly eroding the number of suitable insecticides 
for vector control (Hemingway & Ranson, 2000) and the choice of unrelated insecticides 
remains limited (Nauen, 2007).  
Rotations, mosaics, and mixtures have all been proposed as resistance management tools 
(Hemingway & Ranson, 2000): they could delay the development and/or spread of 
resistance (Curtis C.F. et al., 1998), but cannot prevent it (Penilla et al., 2006). 
Efforts are being made to expand the number of available insecticide classes. One 
initiative is the Innovative Vector Control Consortium (IVCC), a Product Development  
Partnership, established in 2005 to stimulate the search for alternative active ingredients 
or improved formulations of insecticides for vector control, and several promising leads 
are now being evaluated in laboratory and field trials (Ranson et al., 2011; Enayati & 
Hemingway, 2010). With this goal, also the discovery of new potential targets can be 
important. For example the sequencing of the Anopheles gambiae genome has also been 
exploited by several groups to identify the range and function of olfactory receptors in the 
mosquito, with the aim of developing new attractants and repellents (Enayati & 
Hemingway, 2010).   

5.1 Chemical alternatives: repellents 

In order to push away mosquitoes, which usually are attracted by the moisture, warmth, 
carbon dioxide or estrogens from human skin, a large spectrum of repellents have been 
developed and are currently used; these substances, manufactured in several forms, 
including aerosols, creams, lotions, suntan oils, grease sticks and cloth-impregnating 
laundry emulsions, are usually applied on the skin or clothes, and produce a vapor layer 
characterized by bad smell or taste to insects (Brown & Hebert, 1997). The ideal repellent 
should satisfy several criteria: a) have long-lasting effectiveness; b) do not irritate human 
skin; c) have a bad odor only to mosquitoes but not to people; d) have no effects on clothes; 
e) be inert to plastics commonly used, such as glasses or bracelets; f) be chemically stable; 
and g) be economical (Brown & Hebert, 1997). 
The list of main insect repellents, some of which are also used as insecticides, includes N,N-
diethyl-3-methylbenzamide (DEET), permethrin, picaridin, indalone, and botanicals. 
DEET has been considered the most broad-spectrum and efficacious repellent for sixty 

years, and is currently used on the skin or clothes. Its mechanism of action is to provide a 

vapor barrier with a bad odor capable to push down mosquitoes. Among side effects, 

central nervous system, cardiovascular, cutaneous symptoms have been reported, but 

generally they were related to overuse o incorrect use of the product (Osimitz & Grothaus, 

1995). 

Permethrin is a synthetic PY with also repellent properties. Its mechanism of action requires 
direct contact with the insect; thus it is not recommended for skin application. It is 
commonly used in agriculture, and can be used on clothing, shoes, bed nets and camping 
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gear. High doses might induce neurotoxic effects, eye and skin irritation, reproductive 
anomalies, and immune system alterations (Cox, 1998). 
Picaridin (2-(2-hydroxyethil)-1-piperidinecarboxylic acid 1-methylpropyl ester) has been 

used for almost a decade in Australia, and therefore extended to Europe and America. Like 

DEET, it produces a repellent vapor barrier. Interestingly, no side effects have been 

reported, and in the future it might be useful in areas endemic for malaria; unfortunately, at 

present it is not recommended for children younger than 2 years, the most susceptible target 

of Plasmodium in tropical areas (Solberg et al., 1995).  

Indalone (butyl 3,4-dihydro-2,2-dimethyl-4-oxo-2H-pyran-6-carboxylate) is a contact or 

gustatory repellent, slightly volatile, and contact with the treated surface is required to push 

away the insects (Brown & Hebert, 1997) 

Botanicals contain one of several essential plant oils including oil of lemon eucalyptus, 
soybean oil, geraniol or oil of citronella. Natural products might be safer for human use 
than synthetic compounds (Katz et al., 2008). Among natural insect repellents, the most 
commonly used is oil of citronella, an essential oil extracted from the long narrow leaves 
of a perennial grass from tropical Asia. However, despite its repellent properties, 
citronella seems not to be useful for malaria vector control; indeed, it is commercially 
available only as Natrapel (10% citronella), which unfortunately is not effective against 
mosquitoes, and as Green Ban (a mix of citronella, peppermint, cajaput grass, myrrh and 
sassafras), which is the most expensive insect repellent on the market (Brown & Hebert, 
1997). Nevertheless, natural plants clearly represent a large, promising and almost yet 
unexplored area for research of new repellent molecules useful also to malaria 
community. 

5.2 Non-chemical alternatives: genetic control 

The development of non-chemical strategies alternative to insecticides and repellents is 

presently on study. Genetic control appears a promising tool, comprising all methods by 

which a mechanism for pest or vector control is introduced into a wild population through 

mating. These include the sterile insect release method or the sterile insect technique (SIT), 

through which males are sterilized by irradiation or other means and released to mate with 

wild females, leading them to lay sterile eggs. Additionally, the introduction of genetic 

factors into wild populations aimed to make pests harmless to humans might be relevant 

(Pates & Curtis, 2005). Finally novel approaches against vector borne diseases include 

transgenesis and paratransgenesis to reduce vector competence (Coutinho-Abreu et al., 

2010). 

For vector transgenesis, the goal is to transform vectors with a gene (or genes) whose 

protein(s) impair pathogen development. Several mosquito species vectors of different 

parasites and viruses have been transformed. Some of the transformed mosquitoes were 

shown capable of blocking pathogen development via tissue-specific expression of 

molecules impairing the pathogen attachment to the midgut (Ito et al., 2002), or activating 

some biochemical pathways detrimental to pathogen survival (Franz et al., 2006). 

Paratransgenesis aims to reduce vector competence by genetically manipulating symbionts. 

Transformed symbionts are spread maternally or via coprophagy across an insect 

population (Durvasula et al., 1997). Unfortunately, although these approaches are 

potentially promising, they remain a complex approach with a limited use (Coutinho-Abreu 

et al., 2010). 
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6. Conclusion 

The goal to globally eradicate malaria worldwide, established in 2007 by the Bill and 
Melinda Gates Foundation and rapidly endorsed by the World Health Organization (WHO) 
and the Roll Back Malaria association, is certainly ambitious. The combination of parallel 
vector control approaches, either based on current knowledge of benefits and risks of 
available insecticides or on future research on new promising tools, including chemical 
agents like repellents or non-chemical strategies such as genetic control, might be helpful in 
order to reach such an objective. Therefore, it represents an intriguing but hopefully 
affordable challenge for all the malaria research community. 
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