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1. Introduction 

Atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine) is a widely used herbicide 

in many countries for the control of broadleaf and grassy weeds in agricultural crops. The 

State of São Paulo, located in Brazil Southeast, is an important sugarcane, soybean and corn 

producing area with high use of chemicals in agriculture and potential risk of 

environmental contamination because of the pesticide dissemination, among them the 

atrazine (ATZ) leaching to groundwater (Cerdeira et al., 2005). 

The prolonged use of ATZ and its persistence involves the risk of its retention in crops and 

soils; moreover, these compounds may also pass from surface to ground waters (Figure 1). 

In this way, ever-increasing agriculture has caused contamination of natural water sources 

(Mundiam et al., 2011). The maximum contaminant levels for the most of triazines in 

drinking water are 3 parts per billion (µg/L) (Costa Silva et al., 2010). 

Some European countries have included ATZ on the list of pesticide residues to be 

controlled because it is a potential contaminant due to its chemical characteristics, including 

lipophilicity, slow hydrolysis, moderate to low water solubility, and high solubility in 

organic solvents with high absorption by organic matter, clay, and fat tissues (Ross et al., 

2009). The lack of data about the effects of ATZ metabolites has prompted the U.S. 

Environmental Protection Agency (U.S. EPA) to state that the toxicity of atrazine’s 

metabolites is equivalent to that of its parent compound and that exposure to these 

metabolites should be taken into account for risk assessment purposes (Ralston-Hooper et 

al., 2009). 

Mohammad & Itoh (2011) presented the relative risk of various scenarios of exposure and 

recovery with an aquatic test organism submitted a long-term exposure to herbicides and 

demonstrated the toxicity of isolated or mixtures of ATZ at different concentrations. 

However, the patterns of accumulation of xenobiotics vary depending on the organism, 

characteristics of the chemical compound, quantity of this substance present in the 

environment, and the balance between assimilation and metabolic rates (Nwani et al., 2011).  
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It is necessary to study the effects of atrazine exposure in a great variety of experimental 
animal models in order to understand its action in the organisms and their target organs. In 
this context, it is very important to verify the effect of high concentration of herbicides in 
animal tests as positive controls. Saal & Welshons (2006) related the importance of positive 
controls in toxicological research to determine whether conclusions from experiments that 
report no significant effects in low-dose of the toxicant are valid or false. 

Since in the last decade many efforts have resulted in intensive research about action of ATZ 
in various organisms, it could be necessary to identify morphological, molecular, 
biochemical or physiological biomarkers that detect biological effects of this triazine 
herbicide on the organisms (Campero et al., 2007).  So we present in this chapter an 
extensive bibliographical review about this herbicide in animal tissues, focusing some 
target-organs, in order to gain insight into its cellular mechanisms, highlighting the results 
obtained by our research group. 

 

Fig. 1. Environmental contamination way of atrazine.  Studies about biota and human health 
hazard are the basis for risk assessment and, in this context, cellular markers in target 
organs from organisms exposed to this herbicide could be used in monitoring programs. 

2. Morphological and molecular alterations caused by ATZ 

2.1 Hepatotoxicity  

In liver, organ responsible for detoxification process, our researches with Wistar rats orally 

exposed to 400 mg/kg body weight (bw) of ATZ for 14 days, showed reduced accumulation 
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of hepatic glycogen and early symptoms of cytotoxicity. This event is attributed to the 

hepatotoxic effect of ATZ, which inhibits the activity of key enzymes of glyconeogenesis 

such as hexokinase, glycogen synthase, and glucokinase (Glusczak et al., 2006) and it can 

explain decrease in animals’ body weight observed in our study. This finding agrees with 

Curic et al. (1999), who studied fish exposed to low doses of ATZ (2 mg/kg) for two weeks 

and observed the decrease of glycogen and the increase of lipids in the liver. 

On the other hand, no differences in glycogen or lipid storage were noted in livers of 

Xenopus laevis tadpoles exposed to both atrazine concentrations 200 and 400μg/L (Zaya et 

al., 2011). Livers of ATZ-exposed tadpoles were significantly smaller and those from 

400μg/L-exposed tadpoles had higher numbers of activated caspase-3 immuno-positive 

cells suggesting increased rates of apoptosis. The changes noted in body and organ size at 

200 and 400μg/L ATZ indicated that exposure throughout development compromised the 

tadpoles. Additionally, fat body size decreased significantly after exposure to 200 and 

400μg/L of ATZ, although this organ still contained some lipid and lacked any pathology. 

Zaya et al. (2011) suggested that significant reductions in fat body size could potentially 

decrease their ability to survive the stresses of metamorphosis or reduce reproductive 

fitness as frogs rely on lipid storage for these processes. 

In male Japanese quail (Coturnix japonica), vacuolar degeneration in liver was observed at 

high doses of ATZ (500 mg/kg bw) ingested orally by 45 days (Hussain et al., 2011). 

Additionally, biliary hyperplasia and mild renal tubular necrosis were observed in these 

quails. In our studies with Wistar rats orally exposed to 400 mg/kg body weight (bw) of 

ATZ for 14 days, similar data were observed in liver and renal tubular necrosis was also 

observed. 

Zebrafish (Danio rerio) is other model organism that presented histopathological effects in 

liver, which were induced by atrazine exposure. Yuanxiang et al. (2011) found seven 

proteins that were upregulated >2- fold, whereas 6 protein were downregulated >2-fold, 

after 10 and 1000 µg/l ATZ exposures in zebrafish for 14 days. They suggested that these 

changes in protein regulation were associated with a variety of cellular biological processes, 

such as response to oxidative stress, oncogenesis and others. 

Another example of cellular biological process that could be changed in response to atrazine 

exposure is the lipid metabolism and insulin resistance. Study performed in Sprague-

Dawley rats treated for 5 months with vehicle or ATZ (30 or 300 µg kg-1 day-1), supplied in 

drinking water, showed prominent accumulation of lipid droplets in the livers of ATZ-

treated rats (Lim et al., 2009). By means of transmission electron microscopy, some liver 

mitochondria from the ATZ-treated group showed partially disrupted cristae. Despite the 

fact that mitochondrial morphology was altered in liver and, additionally, in muscle, protein 

expression levels of mitochondrial OXPHOS complex subunits in liver and muscle tissues 

were not changed significantly by ATZ administration. Since no treatment-related changes 

in food or water intake or physical activity were observed at any point during the study, 

Lim et al. (2009) believe that the development of insulin resistance by ATZ might be related 

to energy metabolism and they suggest that long-term exposure to the herbicide ATZ might 

contribute to the development of insulin resistance and obesity, particularly where a high-

fat diet is prevalent. 
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2.2 Reproductive toxicity  

In review of Sifakis et al. (2011) about pesticide exposure and health, related issues in male 
and female reproductive system have been presented and they showed that ATZ seems to 
have estrogenic and anti-androgenic properties. 

Our research group evaluated histopathological effects of low and high doses of ATZ in 
ovary and testicles from exposed Wistar rats and the compilation of data are presented in 
the Table 1. 

Testicular lesions observed in our studies (Table 1) also be detected, associated with reduced 
germ cell numbers, in teleost fish, amphibians, reptiles, and mammals; and induces partial 
and/or complete feminization in fish, amphibians, and reptiles (Hayes et al., 2011). Then, 
ATZ is an endocrine disruptor that demasculinizes and feminizes the gonads of male 
vertebrates by means of the reduction in androgen levels and the induction of estrogen 
synthesis - demonstrated in fish, amphibians, and reptiles - that represent plausible and 
coherent mechanisms to explain these effects, according to Hayes et al. (2011). ATZ reduce 
testicular testosterone in male rats and it was associated with poor semen quality (Sifakis et 
al., 2011). 

 

Morphological alterations induced by atrazine oral exposure

Ovaries Testis

0,75mg/kg 400mg/kg 0,75mg/kg 400mg/kg 

Primordial follicles 
without alterations 

Primordial follicles 
without alterations 

Normal 
histoarchitecture 

Disorganized 
histoarchitecture 

Primary follicles 
without alterations 

Primary follicles 
without alterations 

Absence of 
degeneration in 

seminiferous 
epithelium

Degeneration in 
some areas of the 

seminiferous 
epithelium 

Presence of some 
multioocytic 

Preantral follicles 

Preantral follicles 
with disorganized 

granulose layer 
and/or a 

degenerating 
oocyte 

Germinative cells 
keep their typical 

morphology 

Some germinative 
cells presented 

apoptotic or 
necrosis features 

Antral follicles 
without alterations 

Presence of some 
Antral follicles 

with a 
degenerating 

oocyte 

Germinative cells 
were not released to 

tubular lumen 

Releasing of 
germinative cells to 
the tubular lumen 

Atretic antral 
follicles with 

intensification of 
apoptosis in 

granulose cells 

High intensity of 
apoptosis in the 

granulose cells of 
Atretic antral 

follicles 

Intertubular tissue 
around seminiferous 

tubules remained 
intact 

Intertubular tissue 
around 

seminiferous 
tubules remained 

intact 

Table 1. Histopathological analysis of ovaries and testis from Wistar rats submitted to 
subchronic oral exposure: 0,75mg atrazine/kg/day during 30 days; and subchronic oral 
exposure: 400mg atrazine/kg/day during 14 days. 
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A study developed by Hussain et al. (2011) that intended to determine the pathological and 
genotoxic effects of ATZ in male Japanese quail (Coturnix japonica) demonstrated that testis 
from ATZ treated birds were comparatively smaller in size and seminiferous tubules in 
group treated with 500 mg/kg bw exhibited decreased number of spermatocytes, necrotic 
nuclei of spermatids, and lesser number or absence of spermatozoa. 

A significant dose dependent induction in the levels of mRNA expression of genes of 
steroidogenic acute regulatory protein (STAR), cytochrome P450-11A1, 3ǃ-hydroxysteroid 
dehydrogenase (3ǃ-HSD), and other steroidogenic proteins were observed in cells exposed 
to ATZ. These data suggest the applicability of these selected marker genes of 
steroidogenesis as an indicator of short term exposure of ATZ induced rat testicular toxicity 
in interstitial Leydig cells (ILCs) (Abarikwu et al., 2011). 

Pogrmic-Majkic et al. (2010) examined Leydig cells treated for 24 h with the concentrations 

0.001, 1, 10, 20, and 50µM of ATZ and they observed increased basal and human chorion 

gonadotropin-stimulated testosterone production and accumulation of cAMP in the 

medium of treated cells. The stimulatory action of atrazine on androgen production but not 

on cAMP accumulation was abolished in cells with inhibited protein kinase A. They 

observed that Leydig cells obtained from rats treated with 200 mg ATZ/kg body weight, by 

gavage, during the first 3 days of treatment, stimulated the expression of mRNA transcripts 

for steroidogenic factor-1, steroidogenic acute regulatory protein, cytochrome P450(CYP)-

17A1, and 17b-hydroxysteroid dehydrogenase (HSD), as well as the activity of CYP17A1 

and 17bHSD and cAMP accumulation and androgen production. However, this behavior is 

followed by a decline during further treatment (6 days). These results indicate that ATZ has 

a transient stimulatory action on cAMP signaling pathway in Leydig cells, leading to 

facilitated androgenesis. 

ATZ exposure (120 or 200 mg/kg body weight ATZ orally for 7 and 16 days) has a dose-

dependent adverse effect on the testicular and epididymal sperm numbers, motility, 

viability, morphology, and daily sperm production in rats (Abarikwu et al., 2009). Although 

the testis of the ATZ -treated animals appear normal, few tubules had mild degeneration 

with the presence of defoliated cells, similar to observed in our research group for rat testis 

(Table 1). Likewise, no perceptible morphological changes were observed in the epididymis. 

The results suggest that ATZ impairs reproductive function and elicits a depletion of the 

antioxidant defense system in the testis and epididymis, indicating the induction of 

oxidative stress. Glutathione (GSH) and glutathione-S-transferase (GST) activities were 

elevated in the high-dose group, whereas the activity of superoxide-dismutase (SOD), 

catalase (CAT); ascorbate (AA), and malondialdehyde (MDA) levels and hydrogen peroxide 

production were unchanged in the testis during the 7-day exposure protocol. When ATZ 

treatment was increased to 16 days, GSH levels remained unchanged, but lipid peroxidation 

levels were significantly increased in both the testis and epididymis. This corresponded to 

the significant diminution in the activities of GST and SOD. CAT activities were unaffected 

in the testis and then dropped in the epididymis. These experiments performed by 

Abarikwu et al. (2009) was important to understand the antioxidant defense system in the 

testis and epididymis; and it is interesting to note that ATZ can also affect mitochondrial 

electron transport and oxidative stress in the insect Drosophila melanogaster (Thornton et al., 

2010). 
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Eggs of alligator Caiman latirostris, at stage 20 of embryonic development, were exposed to 
0,02ppm of ATZ and incubated at 33ºC resulted in male hatchlings. Tortuous seminiferous 
tubules with increased perimeter, disrupted distribution of peritubular myoid cells (desmin 
positive), and emptied tubular lumens characterized the testis of pesticide-exposed Caiman 
(Rey et al., 2009). 

ATZ is a known ovarian toxicant which increase progesterone (P4) secretion and induce 
luteal cell hypertrophy following repeated administration. The aim of Taketa (2011) study 
group was to define the pathways by which these compounds exerted their effects on the 
ovary and hypothalamic-pituitary-gonadal (HPG) axis. They demonstrated that 300 mg 
ATZ/kg were orally given daily from proestrus to diestrus in normal cycling rats resulted in 
significant increased serum P4 levels, upregulation of the follow steroidogenic factors: 
scavenger receptor class B type I, steroidogenic acute regulatory protein, P450 cholesterol 
side-chain cleavage and 3ǃ-hydroxysteroid dehydrogenase (HSD), and so downregulation 
of luteolytic gene 20ǂ-HSD. ATZ may directly activate new corpora lutea by stimulating 
steroidogenic factor expressions and the authors suggest that multiple pathways mediate its 
effects the HPG axis and luteal P4 production in female rats in vivo. 

One of the molecular events that may be triggered by stressful conditions, like pesticide 

exposure, is the synthesis of heat shock proteins (HSP). Additionally to histophatological 

analysis of rat ovaries (Table 1), our studies also emphasized the immunohistochemical 

labeling of 90 KD heat shock protein (HSP 90) in order to evaluate the role played by this 

protein in the ovary, under stressed conditions induced by ATZ exposure. Our results 

indicated that atrazine induced impaired folliculogenesis, increased follicular atresia and 

HSP90 depletion in female rats submitted to subacute treatment, while the subchronic 

treatment with the lowest dose of ATZ could compromise the reproductive capacity 

reflected by the presence of multioocytic follicle and stress-inducible HSP90 (Juliani et al., 

2008).  

Experiments developed by our research group also showed that low doses of ATZ, which 

does not affect estrous cyclicity, induced a higher HSP70 expression in cells of the oviduct 

when compared to the control group, indicating that HSP70 may be acting in the tissue 

response to stress caused by chronic exposure to the herbicide. In subacute exposure, with 

the dose that disrupts the estrous cycle, the expression of HSP70 was higher than the control 

group and the subchronic treatment (Figure 2), probably indicating a major protective 

function of HSP70 in addition to the estrogen receptor baseline level maturation. In 

literature, HSP70 is related to the maturation of the estrogen receptor in the oviduct 

(Mariani et al., 2000). We concluded that the increased expression of HSP70 induced by ATZ 

is mainly related to the protective effect of these chaperones in response to chemical stress 

generated by exposure to this herbicide. 

2.3 Glandular alterations 

Due to the adrenal gland is reported to be the most common endocrine organ associated 
with chemically induced lesions, our research group also evaluated adrenal glands of adult 
rats submitted to subacute and subchronic treatment with this herbicide, respectively. The 
morphological and histochemical analyses were performed and the results indicated that the 
subacute treatment induced drastic alterations in the cortex of the adrenal glands as well as 
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Fig. 2. Immunohistochemical detection of HSP70 (Heat Shoch Protein - 70) in oviduct from 
Wistar rats. A–B) Control Group; C-D) Experimental group submitted to subchronic oral 
exposure: 0,75mg atrazine/kg/day during 30 days; E-F) Experimental group submitted to 
subchronic oral exposure: 400mg atrazine/kg/day during 14 days. Oviducts present 
different degrees of immunopositive reaction (brown color) in epithelium (ep) and 
connective tissue (ct). Arrows indicate areas with high imunolabeling of HSP70. A, C, E – 
Magnification = 200x; B, D, F – Magnification = 400x. 

in the medullar region. The subchronic treatment with the low dose of ATZ caused slight 

morphological alterations in the cortex of adrenal glands, but not in the medullar region. 

The histochemical analyses showed abnormal accumulations of lipid droplets mainly in the 

Reticularis Zona of the adrenal cortex suggesting alteration in the steroidogenesis process 

that occur in this region (Figure 3). 

Foradori et al. (2011) demonstrated that high doses of ATZ (200mg/kg), administered for 4 

days, suppress luteinizing hormone (LH) release and increase adrenal hormones levels. 

Considering the known inhibitory effects of adrenal hormones on the hypothalamo-

pituitary-gonadal axis, the authors investigated the possible role that the adrenal gland has 

in mediating ATZ inhibition of LH release and observed that adrenolectomy had no effect 

on ATZ inhibition of the LH surge but prevented the ATZ disruption of pulsatile LH 

release. These data indicate that ATZ selectively affects the LH pulse generator through 

alterations in adrenal hormone secretion. Adrenal activation does not play a role in ATZ’s 

suppression of the LH surge and therefore, ATZ may work centrally to alter the 

preovulatory LH surge in female rats. 

2.4 Genotoxicity 

Although the toxic properties of ATZ are well known, there is not a consensus about the 
genotoxic effects of ATZ. On aquatic organisms they are rather scarce. To evaluate the 
genotoxic effects of ATZ and an ATZ-based herbicide (Gesaprim®) on a model fish species 
Carassius auratus L., 1758, (Pisces: Cyprinidae) using the micronucleus test and the comet 
assay in peripheral blood erythrocytes, fish were exposed to 5, 10 and 15 μg/L ATZ and to 
its commercial formulation for 2, 4 and 6 days (Cavas, 2011). The results revealed significant 
increases in the frequencies of micronuclei and DNA strand breaks in erythrocytes of C. 
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auratus, following exposure to commercial formulation of ATZ and thus demonstrated the 
genotoxic potential of this pesticide on fish. 

 

Fig. 3. Cryosections of adrenal gland from Wistar rats, stained with Sudam Black. The dark-
brown color indicates the presence of lipids in the Reticularis Zone (RZ) but not in the 
Medullar region (M). A–B) Control Group; C-D) Experimental group submitted to 
subchronic oral exposure: 0,75mg atrazine/kg/day during 30 days. In (B) and (D), lipids in 
cells of Reticularis Zone are indicated with arrows (black arrow= the strongest intensity; 
white arrow= strong intensity). A, C – Magnification = 200x; B, D – Magnification = 400x 

Significantly longer comet tails of DNA damage in leukocytes and isolated hepatocytes of 
male Japanese quail (Coturnix japonica) were recorded with 500 mg/kg bw ATZ (Hussain et 
al., 2010). 

In our results with rats treated with 400mg ATZ/kg bw too have been observed a significant 

increase of micronucleated polycromatic erythrocytes (data not published), corroborating 

that authors and suggesting a possible genotoxic potencial of ATZ in mammals, which have 

to make its use highly controlled.  

2.5 Mutagenicity and cancer 

Chronic studies of ATZ and simazine and their common metabolites show an elevated 
incidence of mammary tumors only in female Sprague Dawley (SD) rats. On the basis of the 
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clear tumor increase in female SD rats, ATZ was proposed to be classified as a likely human 
carcinogen by US Environmental Protection Agency (EPA) in 1999. With Fischer rats, all 
strains of mice, and dogs, there was no evidence of increased incidence of ATZ -associated 
tumors of any type. Evidence related to the pivotal role of hormonal control of the estrus 
cycle in SD rats appears to indicate that the mechanism for mammary tumor induction is 
specific to this strain of rats and thus is not relevant to humans. In humans the menstrual 
cycle is controlled by estrogen released by the ovary rather than depending on the LH surge, 
as estrus is in SD rats. However, the relevance of the tumors to humans continues to be 
debated based on endocrine effects of triazines. No strong evidence exists for ATZ 
mutagenicity, while there is evidence of clastogenicity at elevated concentrations. ATZ does 
not appear to interact strongly with estrogen receptors ǂ or ǃ but may interact with putative 
estrogen receptor GPR30 (G-protein-coupled receptor). A large number of epidemiologic 
studies conducted on manufacturing workers, pesticide applicators, and farming families do 
not indicate that triazines are carcinogenic in these populations. A rat-specific hormonal 
mechanism for mammary tumors has now been accepted by US EPA, International Agency 
for Research on Cancer, and the European Union. Chlorotriazines do influence endocrine 
responses, but their potential impact on humans appears to be primarily on reproduction 
and development and is not related to carcinogenesis (for revision, see Jowa & Howd, 2011). 

According an extensive review, epidemiology studies do not provide consistent, 
scientifically convincing evidence of a causal relationship between exposure to ATZ or 
triazine herbicides and cancer in humans. Based upon the assessment studies, there is no 
scientific basis for inferring the existence of a causal relationship between triazine exposure 
and the occurrence of cancer in humans (Sathiakumar et al., 2011). 

A study developed by NIEHS (National Institute of Environmental Health Sciences) that 
extended analysis of cancer risk associated with occupational hazard of ATZ showed that 
there was no strong or consistent evidence of an association between ATZ and any cancer. 
There was a non-statistically significant increased risk of ovarian cancer related to 
occupational hazard for female who reported to use ATZ compared to those who did not; 
however, this observation was based on a small number of cases among ATZ users. The 
authors found an elevated risk of thyroid cancer, has not been previously reported, for the 
highest versus lowest category of intensity weighted ATZ use, but the trend was not 
monotonic and not statistically significant when lifetime days of use was considered as the 
exposure metric. In contrast, they observed little evidence for an association between ATZ 
occupational use and other cancers previously reported in the literature, such as NHL non-
Hodgkin lymphoma) and leukemia, or with cancers of the breast or prostate, for which ATZ 
has been hypothesized to be a risk factor because of its hormonal properties (Freeman et al., 
2011). 

Although there is conflicting information about relationship between ATZ and cancer some 
researches have been demonstrated preoccupation with this aspect and they highlighted the 
importance of many studies to confirm or not this supposition. 

3. Conclusion  

We concluded that: 

- In adult model animals, lower doses of atrazine generally induce accumulation of lipids 
in hepatocytes, otherwise higher doses induce hepatotoxicity with degree variation 
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according to animal. Amphibian tadpole’s liver presents morphological response 
pattern, which is different those from the adult model animals. 

- In rat and bird testis, atrazine has a dose-dependent adverse effects varying from no 
perceptible morphological changes to degeneration of seminiferous epithelium because 
ATZ impairs reproductive function and induces a depletion of the antioxidant defense 
system, according to the dose and time of exposure. Otherwise, in testis of teleost fish, 
amphibian and reptile, atrazine has a demascunilization/feminization effect that can be 
partial or complete what depends on the dose and time of exposure. 

- High concentrations of atrazine induce morphological alterations in rat ovarian follicles, 
but not in oviduct. Induction of HSP70 in oviduct (low and high doses) could be used as 
exposure cell marker, as well as HSP90 depletion (high dose) or HSP90 increasing (low 
dose) could indicate the degree of ATZ exposure. 

- In adrenal glands of rats, atrazine exposure induced varied degree of morpho-
physiological alterations, which is observed in a dose-dependent way due its endocrine 
disruptor property. 

- There is not a consensus about the genotoxic effects of atrazine, and then it is necessary 
further studies in experimental animal models. 

- Although high doses of atrazine induce clastogenicity, there is not consistent evidence 
that associate mutagenecity with cancer in humans. 
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