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1. Introduction 

Cell culture is a widely used technique in biomedical research. It permits the analysis of 

cell specific functions which can relate to changes in certain disease states at the single cell 

level. A number of cell culture models have been established. These include immortalised 

cell lines which replicate indefinitely in culture and retain the ability to differentiate and 

primary cell lines which can be isolated directly from the host tissue and grown in 

culture. However, primary cell lines have limited replicative potential and become 

senescent in culture. In the case of muscle cells, cell lines can provide a valuable means of 

investigating physiology in the absence of confounding factors (such as circulating 

hormones, adipokines and other bioactive molecules) which arise when dealing with the 

body as a whole.  

Human primary cell lines provide additional benefits in research, when compared to 

immortalised cell lines, as primary cultures have been shown to retain the metabolic 

characteristics of the tissue donor and thus reflect alterations in metabolism as seen in 

specific disease states such as obesity and type 2 diabetes mellitus (Gaster et al., 2004; 

Steinberg et al., 2006). Of particular interest to the treatment of myopathies is the use of 

human primary myotube cultures which can be isolated from muscle extracts in normal and 

diseased states. We (Chen et al., 2005; McAinch et al., 2006b; McAinch et al., 2007; Steinberg 

et al., 2006) and others (Bell et al., 2010; Mott et al., 2000; Thompson et al., 1996) have shown 

that the resultant myotube cultures retain phenotypic traits of the donor related to defects in 

fatty acid oxidation, impairment of insulin stimulated glucose uptake, leptin and/or 

adiponectin resistance. Thus, there is increased clinical relevance associated with the use of 

primary cell cultures in researching disease pathogenesis, making human primary cell 

cultures an invaluable tool in assessing aberrant cellular metabolism and how this may be 

targeted experimentally to alleviate metabolic dysregulation.  

In this chapter we aim to provide the reader with a detailed explanation of the 

methodological considerations in isolating and culturing of human primary myotubes and 

their subsequent experimental uses.  
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2. Current applications of human primary myotubes 

2.1 Skeletal muscle cell culture  

The skeletal muscle is a highly metabolically active tissue and has a profound influence over 

systemic metabolic function through the regulation of carbohydrate and fatty acid 

metabolism (Baron et al., 1988; Zurlo et al., 1990). Historically, the study of cellular 

mechanisms regulating skeletal muscle physiology was limited by difficulties in 

maintaining metabolically viable isolated muscle extracts and the ability to manipulate 

specific variables in vivo. The development of cell culture models has provided an 

invaluable tool by which cellular physiology can be studied. Over the last several decades 

cell culture techniques have evolved and the resultant studies have contributed greatly to 

the current understanding of cellular metabolism. A vast number of cell types are cultured 

to investigate pertinent research questions. Typically the cells used in these models will 

either be an immortalised cell line or a primary cell line, each of which has distinct 

advantages. Herein, we provide a brief discussion of the development of both immortalised 

and primary skeletal muscle cell culture models. 

2.1.1 Immortalised cell lines  

Undifferentiated immortalised skeletal muscle cell lines have an indefinite myogenic 

potential, with cells continuing to undergo mitotic divisions when maintained in the 

appropriate culture conditions. Accordingly, these cell lines expand rapidly in culture to 

provide a readily repeatable experimental model and can provide an alternative to isolating 

primary cell lines. A key consideration with the use of immortalised cell lines is the 

retention of physiological functions similar to that of the tissue source (Obinata, 2001). 

Therefore it is important that immortalised cell lines are adequately characterised to 

demonstrate that differentiated cell lines recapitulate the physiology of the original tissue. 

Clonal cell lines were initially derived from transgenic animal models, tumour cells, 

treatment of cells with carcinogens or arose through mutations of specific cells within 

primary cultures (Efrat et al., 1988; Obinata, 2001; Richler & Yaffe, 1970; Todaro & Green, 

1963; Todaro et al., 1963). These cells do not readily respond to the normal apopotic signals 

and continue to replicate and divide beyond the life span of un-mutated cells. Isolation and 

cloning of these myogenic cells enables clonal cell lines to be formed. Despite their benefits 

in experimental molecular and cellular biology, the relative lack of clonal cell lines and the 

difficulty in generating new cell lines has inhibited research capacity. More recent 

techniques utilised to produce immortalised cell lines involve cellular transfection with 

immortalising genes or oncogenes (Condon et al., 2002; Douillard-Guilloux et al., 2009; Jat et 

al., 1991). Such methods utilise transfection of genes including telomerase, SV40 Large T-

antigen, cyclin-dependent kinase 4 and Bmi to induce immortalisation of a number of cell 

types (Condon et al., 2002; Di Donna et al., 2003; Douillard-Guilloux et al., 2009). These 

methods are limited initially by the number of cells stably expressing the transfected DNA 

needed to generate a viable population of the immortalised cell line. Additionally, cellular 

incorporation of the immortalising gene can occur at different sites in theoretically identical 

cells which can lead to variable gene expression and cellular behaviours. The use of clonal 

cell lines is further confounded by the potential for the introduced DNA to alter the cellular 
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phenotype and therefore cellular physiology (Ridley et al., 1988). This issue may also be 

apparent in certain cell lines derived from transgenic animal models and tumour cells which 

reflect the host’s expression of certain genes and proteins (Efrat et al., 1988). This may be 

partially overcome by the generation of conditionally immortalised cell lines in which the 

effect of the immortalising agent is abrogated under certain culture conditions, such as 

changes in serum concentrations or temperature (Macpherson et al., 2004; Obinata, 2001).  

Immortalised cell lines that are commonly used for investigating skeletal muscle physiology 
are L6 and C2C12 skeletal muscle myotubes which are derived from rat and mouse origin, 
respectively (Blau et al., 1985; Yaffe, 1968; Yaffe & Saxel, 1977). These cell lines can be 
terminally differentiated into skeletal muscle myotubes by altering the culture environment 
to low serum conditions and thus provide a relevant method of investigating muscle 
physiology.  

The L6 cell line was initially described by Yaffe (1968). This cell line was established from 
newborn rat thigh muscle treated with the carcinogen 20(3) methylcholanthrene in the growth 
medium during the first two growth passages (Yaffe, 1968). In initial experiments, the L6 cell 
line was maintained in vitro for more than 18 months without losing the ability to fuse to form 
differentiated myotubes (Yaffe, 1968). In subsequent studies, Richler & Yaffe (1970) observed 
the L6 cell line to develop into multinucleate, cross-striated myotubes which retain contractile 
properties. The clonal mouse C2C12 cell line is a diploid sub-clone generated by Blau et al., 
(1985) as a derivative of the cell line described by Yaffe & Saxel (1977). This cell line was 
developed by Yaffe & Saxel (1977) from thigh muscle of CH3 mice and was shown to retain 
the capacity to proliferate and differentiate in culture.  The C2C12 cell line has subsequently 
been used in muscle physiology studies due to its rapid proliferation and ability to 
differentiate to form contractile myotubes which express myogenic proteins (Blau et al., 1985; 
Yaffe & Saxel, 1977). The initial characterisation of both the L6 and C2C12 cell lines indicating 
pronounced differentiation and retention of contractile properties suggest that these cell lines 
are appropriate models for studying muscle physiology. 

2.1.2 Primary cell lines 

Adult myotubes are not capable of mitotic divisions and therefore primary skeletal muscle 
culture systems rely on the ability to induce activation and subsequent myogenic 
differentiation of quiescent satellite cells from within the muscle fibre (Berggren et al., 2007; 
Blau & Webster, 1981). Unlike immortalised cell lines, once isolated, primary skeletal muscle 
cultures are fated for senescence and cease to proliferate after a relatively short period in 
culture. Consistent with this Machida et al., (2004) showed that with passaging the 
myogenic potential (as measured by myogenic markers, proliferation and differentiation 
potential) of rat primary cells to decrease. However primary cells do retain phenotypic traits 
of the donor cells, and are able to be cultured from small muscle samples of approximately 
50 mg to counter this limitation (Berggren et al., 2007; McAinch et al., 2007). For example, 
studies investigating the phenotype of human primary skeletal muscle myotubes have 
shown the retention of aberrant glucose metabolism in primary myotubes cultured from 
insulin resistant Pima Indians (Thompson et al., 1996). Further studies have demonstrated 
that phenotypic traits of impaired insulin signalling (Bell et al., 2010), fatty acid uptake and 
oxidation (Bell et al., 2010; Mott et al., 2000), action of the anti -obesogenic and -diabetic 
adipokines, adiponectin and leptin and aberrant expression of genes which regulate 
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substrate metabolism within skeletal muscle (McAinch & Cameron-Smith, 2009; McAinch et 
al., 2006b; McAinch et al., 2007) are also retained. Thus, cultured primary myotubes enable 
the study of muscle cell structure and function in any number of physiological and 
pathophysiological states. Moreover, cultured myotubes enable the investigation of many 
metabolic abnormalities that exist in vivo, while eliminating confounding environmental 
influences on the muscle (such as circulating hormones, adipokines and other bioactive 
factors). Myogenic satellite cells can be isolated from a number of tissues including skeletal 
muscle (Blau & Webster, 1981; Chen et al., 2005; Gaster et al., 2001a; McAinch & Cameron-
Smith, 2009). When cultured in specific conditions, quiescent satellite cells isolated from 
donor skeletal muscle can be stimulated to re-enter the cell cycle and proliferate before 
being terminally differentiated to recapitulate the phenotype of skeletal muscle from the 
donor.  

As such primary skeletal muscle myotubes have multiple research applications including 

but not limited to; 1) the study of the effects of myopathies and systemic metabolic diseases 

on skeletal muscle function, 2) tissue regeneration and renewal for tissue engineering 

purposes, 3) gene therapy and 4) drug screening (Berggren et al., 2007; Chen et al., 2005; 

Kessler et al., 1996; Loro et al., 2010; McAinch & Cameron-Smith, 2009; McAinch et al., 

2006a; McAinch et al., 2006b; McAinch et al., 2007; Stern-Straeter et al., 2008).  

The following sections outline the process of culturing human primary myotubes from their 

isolation from muscle biopsies to their growth and maintenance in culture and finally a brief 

look at their current and future applications. At this point we are compelled to mention that 

methodological variations arise at almost every stage of primary myotube culture, especially 

in regards to medium composition and the differentiation protocol. Whilst we endeavour to 

consider the differences in protocols and the implications of these, we primarily report the 

established methods of our laboratory. Therefore some optimisation may be necessary on 

behalf of the end user where experimental outcomes differ significantly.  

3. The muscle biopsy 

A number of techniques can be used to obtain a skeletal muscle biopsy including needle 

biopsy and surgical excision (Dietrichson et al., 1987; Tarnopolsky et al., 2011). Successful 

isolation of myogenic satellite cells can be undertaken from small samples of muscle 

biopsies ranging in size from 50-100 mg (wet weight) (McAinch et al., 2007). This suggests 

that the typical muscle yield from suction-enhanced needle biopsies is sufficient to culture 

viable primary myotubes (Melendez et al., 2007; Tarnopolsky et al., 2011). The use of needle 

biopsy has additional benefits in the relative ease of obtaining muscle biopsies, enabling 

sampling from a number of accessible skeletal muscles with only the use of local anaesthetic 

(Dietrichson et al., 1987). The suction-enhanced method described by Tarnopolsky et al., 

(2011) is described briefly as follows.  

The area from which the muscle biopsy is to be obtained is sterilised and the skin and 
subcutaneous tissue is numbed with a local anaesthetic. A small stab incision (4-5 mm) is 
made in the skin at the biopsy site. With the aperture closed, the biopsy needle is advanced 
through this incision to penetrate at least 1 cm beyond the fascia. This motion will be 
associated with the sensation of deep pressure within the muscle. Once the needle is in 
position within the muscle, the aperture is opened, and if using a suction enhanced 
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technique, suction is applied using a sterile 60 ml syringe (approximately 20 ml per sample). 
It is important to note that the equipment used by these authors is modified to 
accommodate the suction procedure. However, the biopsy size is significantly increased by 
using suction compared to no suction (approximately 125 mg compared to 35 mg, 
respectively. However significant variation in muscle biopsy size exists). The needle is then 
closed to isolate the muscle biopsy. The needle can then be rotated to obtain another muscle 
sample as above. The authors describe taking up to 3 samples in quick succession in the one 
biopsy to obtain adequate muscle sample and is associated with minimum discomfort. The 
needle is removed using a twisting motion during withdrawal. Pressure is applied to the 
skin incision and it is closed with a single suture or a tape closure (although a suture may be 
associated with a lesser degree of scarring) and then pressure is reapplied for 10-15 minutes 
often with concomitant icing. It is then important the area be kept clean by the subject in the 
period following the procedure. If closed with a suture, the suture is removed 6 days after 
the biopsy procedure. 

Alternately, skeletal muscle samples can be obtained by open biopsies during surgical 

procedures. This has the benefits of enabling visualisation of the muscle extract prior to 

excision and allows for an increase in extract size and/or more controlled sample size in 

comparison to needle biopsy techniques (Derry et al., 2009; Edwards et al., 1983). In these 

instances patients are usually under general anaesthetic and a muscle sample is taken from a 

pre-existing surgical incision, removing the need for an additional surgical incision and 

superficial trauma. Despite this, it is typically accepted that the needle biopsy procedure 

presents a more efficient means of obtaining a muscle biopsy (Derry et al., 2009; Edwards et 

al., 1983).  

In our hands, skeletal muscle extracts are obtained from patients undergoing routine 

bariatric surgery for obesity or obesity and type 2 diabetes mellitus by the attending 

surgeon. In brief, patients undergo a 12-18 hour fast prior to surgery. They are anaesthetised 

via short acting propofol and maintained via a volatile anaesthetic mixture of fentanyl and 

rocuronium. Skeletal muscle extracts are obtained via surgical excision from the rectus 

abdominis muscle by the attending surgeon (McAinch et al., 2007). Skeletal muscle samples 

extracted from donors to be used for cell culture are trimmed of any visible fat or connective 

tissue and approximately 50 mg of the muscle biopsy is suspended in serum-free alpha 

minimum essential media (Gibco, distributed by Invitrogen, Carlsbad, CA). These samples 

are immediately placed on ice for transportation and undergo no further processing prior to 

satellite cell isolation. Muscle samples stored in cell culture medium can be maintained at 4 

°C for up to 24 hours prior to isolation of the satellite cell population with minimal adverse 

effects on cellular yield and viability (Blau & Webster, 1981).  

4. Tissue culture methods 

4.1 Isolation of myogenic satellite cells 

The myogenic satellite cell population of skeletal muscle fibres was first characterised by 
Mauro in 1961. This study correctly identified and proposed satellite cells to be important in 
muscle regeneration and growth (Mauro, 1961). Degenerative myopathies or muscle injury 
stimulates quiescent satellite cells to re-enter the cell cycle (Charge & Rudnicki, 2004). Active 
satellite cells proliferate rapidly promoting muscle regeneration. Therefore controlled 
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growth of satellite cells is seen to be favourable in the treatment of myopathies and in tissue 
engineering processes.  

Here we describe the process of isolation of these myogenic satellite cells from skeletal 
muscle extracts which is modified from the methods of Blau & Webster (1981). These 
methods have been adapted by our laboratory in accordance with optimisation by Gaster et 
al., (2001a). All processing of skeletal muscle extracts for cell culture should be carried out in 
a sterile isolated environment, free of biological contaminants. Accordingly, biological safety 
cabinets should be sterilised under UV light for 20 minutes and cleaned with 70% ethanol 
prior to use to minimise the risk of contaminating the sample with extraneous cell types. All 
equipment used must be sterilised. 

Satellite cells are isolated from skeletal muscle extracts of 50-100 mg through enzymatic 

dissociated in 0.05% trypsin-EDTA (Gibco, distributed by Invitrogen, Carlsbad, CA) via a 

series of incubations. Skeletal muscle extracts are washed twice in approximately 5 ml of alpha 

minimum essential medium and then washed 3 times in approximately 5 ml of ice-cold 1x 

Dulbecco’s phosphate buffered saline (Gibco, distributed by Invitrogen, Carlsbad, CA). Any 

remaining connective tissue is removed at this stage. Subsequently, the skeletal muscle extract 

is manually homogenised in 3 ml of 0.05% trypsin-EDTA in a tissue culture dish using a sterile 

scalpel. The desired size for muscle fragments is less than 1 mm3 (Blau & Webster, 1981). The 

resultant homogenate is then combined with an additional 12 ml of 0.05% trypsin-EDTA in a 

sterile vial, sealed and agitated on an orbital mixer for 20 minutes. Thereafter, the supernatant 

is aspirated and combined with 5 ml of foetal bovine serum in a 50 ml falcon tube before being 

placed on ice. Care must be taken at this step to ensure the finely homogenised muscle extract 

is not aspirated with the supernatant. An additional 15 ml of 0.05% trypsin-EDTA is added to 

the extract and again agitated as specified above for 20 minutes. The supernatant is combined 

with the initial yield in the 5 ml of foetal bovine serum. Three repetitions of this process are 

necessary to fully dissociate the muscle fibres. The supernatant (trypsin and foetal bovine 

serum mixture) is next filtered through a BD Falcon™ 100-µm nylon cell strainer (BD 

Biosciences, Bedford, MA). To isolate the cellular fraction of the supernatant, it is transferred to 

a sterile 50 ml falcon tube and is centrifuged for 7 minutes at 0.5 x g. The resulting pellet of 

cells will localise at the bottom of the tube and appear reddish-brown in colour. The cellular 

fraction is gently resuspended in 5 ml of growth medium (alpha minimum essential medium 

supplemented with 10% foetal bovine serum (v/v), 0.5% penicillin streptomycin (v/v) (Gibco, 

distributed by Invitrogen, Carlsbad, CA) and 0.5% amphotericin B (v/v) (Sigma-Aldrich, St 

Louis, MO)) via repeated pipette mixing.  

Following the above protocol should yield approximately 5 x 103 viable, proliferating 
satellite cells from a 0.1 cm3 muscle sample (Blau & Webster, 1981). 

4.2 Myoblast culture and maintenance  

As the cellular population isolated does not consist solely of myogenic satellite cells, the cell 
suspension is initially cultured on an uncoated 25 cm2 tissue culture flask (Greiner Bio-One, 
Monroe, NC) for 20 minutes in a controlled humidified environment of 37 °C and 5% carbon 
dioxide. This increases the satellite cell content of the cultured sample and minimises 
contamination by fibroblasts which preferentially adhere to the surface of the tissue culture 
vessel. Gaster et al., (2001a) provide evidence of increased sample purity after pre-plating 
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showing a time dependent increase in satellite cell fraction. However, increased duration of 
pre-plating is associated with a greater total loss of satellite cells and therefore we choose a 
duration of 20 minutes. After the 20 minute incubation period, gently aspirate the cell 
suspension taking care not to disturb the base of the flask to which the majority of 
fibroblasts will have attached. This flask is then discarded. The aspirated cell suspension is 
then seeded onto a 25 cm2 flask coated with an extracellular matrix (Geltrex™ Reduced 
Growth Factor Basement Membrane Matrix; Invitrogen, Carlsbad, CA; allow extracellular 
matrix coating to dry in a sterile environment before seeding cells) to simulate the basement 
membrane under endogenous conditions. Extracellular matrices containing laminin and 
collagen IV, such as Geltrex™, have been shown to promote preferential satellite cells 
adhesion over fibroblast adhesion to enhance the satellite cell fractional content (Kuhl et al., 
1986). Cells are then incubated in a cell culture CO2 incubator in the conditions described 
above. Viable cells will adhere to the coated base of the tissue culture flask over the next 24 
hours. These cells are considered to be at passage 1. The isolation and initial culturing of the 
myogenic satellite cells is depicted in figure 1. 

 

Fig. 1. Schematic representation of the isolation and initial culturing of myogenic satellite 
cells. 1, site of muscle biopsy is chosen; 2, biopsy extracted; 3, muscle biopsy is manually 
minced in trypsin-EDTA; 4, first enzymatic dissociated in trypsin under constant agitation; 
5, supernatant is combined with foetal bovine serum; 6, second enzymatic dissociated in 
trypsin under constant agitation; 7, supernatant is combined with foetal bovine serum; 8, 
third enzymatic dissociated in trypsin under constant agitation; 9, supernatant is combined 
with foetal bovine serum; 10, supernatant/foetal bovine serum solution is filtered; 11, 
cellular fraction is pelleted via centrifugation, 12, cellular pellet is resuspended in growth 
medium; 13, isolated cells are seeded into a 25 cm2 tissue culture flask for pre-plating and 
then transferred to an extracellular matrix coated flask and maintained at 37 °C and 5% 
carbon dioxide. 

24 hours after the initial seeding, the cells are washed twice with 1x phosphate buffered 

saline to remove cellular debris along with non-adherent and non-viable cells. Thereafter, 
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growth medium (5 ml) should be refreshed every other day subsequent to a washing step 

with approximately 5 ml 1x phosphate buffer saline. Continue to maintain the growth of the 

cells until approximately 70% confluence is reached. This may take 2-3 weeks and therefore 

it is essential to monitor cell growth to ensure they do not become over-confluent within this 

period. If myoblastic cells become over-confluent, spontaneous differentiation to mature 

myotubes will occur and the mitogenic properties of the cells will be lost. At 70% 

confluency, dissociate the cells from the flask through the addition of 1.5 ml of 0.05% 

trypsin-EDTA and subsequent incubation at 37 °C, 5% CO2 for 3 minutes. At this point cells 

will appear suspended in the media and therefore successful dissociation can be confirmed 

via microscopic examination. Next, inactivate the trypsin with 3 ml of growth medium, 

gently ejected over the base of the flask to remove any remaining adherent cells. Isolate the 

cellular fraction through centrifugation (5 minutes at 0.4 x g) and resuspend the cell pellet in 

50 ml growth medium. Gently mix to ensure homogenous cell distribution and then seed 

onto five extracellular matrix coated 75 cm2 cell culture flasks. These cells are designated to 

be at passage 2. Cells are again grown to approximately 70% confluent following the same 

procedure as describe for cells at passage 1, before dissociation and isolation via 

centrifugation. At this point we usually cryopreserve four of the 75 cm2 flasks and maintain 

one for continued growth to passage 3. Cryopreservation enables establishment of a number 

of stored cell vials for future experimental use to assist in the investigation of your chosen 

research field. The process of cryopreservation is given in section 4.2.1. The remaining flask 

is passaged once more as above and seeded onto ten extracellular matrix coated 75 cm2 

flasks (split ratio 1:10). At 70% confluence cells are trypsinised and isolated via 

centrifugation (5 minutes at 0.4 x g) and can at this point be cryopreserved.  

It is common throughout this process for cell lines isolated from different individuals to 

exhibit a distinct growth pattern which may be reflected in considerably longer or shorter 

times taken to reach confluence. Moreover, myoblasts may initially exhibit slow growth 

patterns, however once maintained in culture for a number of days, growth rates may 

increase rapidly. Therefore, regularly observing the confluence of the myoblasts is critical to 

ensure that passaging takes place at the appropriate confluence. Similarly to the dissociable 

growth patterns of myotubes derived from different individuals, myotubes may also differ 

in appearance depending on the donor. This can complicate the determination of confluence 

and therefore each cell line needs to be judged on an individual basis relative to area for 

growth.  

4.2.1 Cryopreservation of myoblastic cells 

Cryopreservation of cell stocks is an important practice in any laboratory as it helps to 

protect against loss of cell lines through bacterial or fungal contamination. Furthermore, as 

primary cell lines can be passaged finitely before becoming senescent, cryopreservation of 

cell lines ensures that cell stocks are maintained. It is important that viable cells are chosen 

for cryopreservation and that the cells are not depleted of myogenic properties due to 

becoming over-confluent at an earlier passage.  

The cryopreservation method used in our laboratory for human primary myoblasts are 
described herein. Using this method we have established stocks of a large number of viable 
cell lines derived from muscle extracts. One 75 cm2 flask at 70% confluent provides sufficient 
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cells for distribution to two cryotubes. Thus, the four flasks from passage 2 can be frozen-
down in eight cryotubes whilst the ten flasks from cells at passage 3 enable twenty 
cryotubes to be frozen. This facilitates the rapid expansion of stores of subcultures. In order 
to ensure consistency between studies, we cryopreserve all cells prior to experimental use. 
Cells are cryopreserved in a solution containing 25% growth medium (v/v), 25% foetal 
bovine serum (v/v) and 50% filter sterilised freezing medium. Freezing medium can be 
made through the addition of 10% dimethyl sulfoxide (v/v; Sigma-Aldrich, St Louis MO) to 
standard growth medium (as defined in section 4.1). Dimethyl sulfoxide  is a freezing agent 
which acts to reduce the freezing point of the medium to facilitate gradual cryopreservation 
and  prevents ice crystals forming during freezing and lysing the cells. Dimethyl sulfoxide is 
photosensitive and therefore it is important to protect the freezing medium from light at all 
stages. Freezing medium is then filter sterilised prior to use though a 0.2-µm nylon cell filter. 
Dissociated cells and isolate the cellular fraction via centrifugation as outlined in section 4.2 
and then resuspend the pellet in growth medium (25% of total volume). Add to this the 
foetal bovine serum (25% of total volume). Add the pre-made freezing medium to the cell 
solution (50% of total volume) and gently mix. Aliquot 1 ml of this solution into each 
labelled cryotube. The specific volumes to be used depends on the number of flasks to be 
cryopreserved, however as a guide for two 75 cm2 flask use 1 ml of growth medium, 1 ml of 
foetal bovine serum and 2 ml of freezing medium. To minimise cell death, cells are 
incrementally frozen at -20 °C for 30 minutes and then enclosed in a foam box for freezing at 
-80 °C overnight, before finally being stored in liquid nitrogen until required. Alternatively 
use a cryopreservation freezing container such as “Mr. Frosty” (Nalgene® Labware as part 
of Thermo Fisher Scientific, New York) which results in a controlled decrease in 
temperature of 1 °C per minute. Gradually decreasing the temperature during the freezing 
process aids in preserving cell viability and hence is critical to successful cryopreservation of 
a viable myoblastic cell population. However, it is also important to note that dimethyl 
sulfoxide is cytotoxic and therefore once cells are combined with the freezing medium it is 
important to progress to the freezing stage as rapidly as possible.  

Conversely, the thawing procedure must take place as rapidly as possible again due to the 
toxic nature of dimethyl sulfoxide. We recommend immersing the bottom two thirds of the 
cryotube in a waterbath heated to 37 °C. Take care not to let the water reach the level of the 
lid as this will increase the risk of contamination of the subculture. When partially thawed 
the sample should be removed from the waterbath and rapidly combined with 
approximately 1–2 ml of growth medium to dilute the dimethyl sulfoxide and gently pipette 
mixed to facilitate thawing. Once fully thawed, combine the cell solution with 9 ml of 
growth medium and centrifuge at 0.4 x g for 5 minutes to pellet the cellular fraction. Pour 
off the growth medium to remove the dimethyl sulfoxide and gently resuspend the pellet in 
growth medium. Myoblasts can then be seeded onto 75 cm2 or 175 cm2 tissue culture flasks, 
depending on the volume of cells required for experimentation. As a rough guide one 75 
cm2 tissue culture flask at 80% confluence provides adequate cells for ten 6-well tissue 
culture plates or ten 100 mm tissue culture dishes. We recommend that experimentation be 
conducted at passage 4 or 5 to avoid senescence. For our purposes cells cryopreserved at 
passage 3 will be at passage 4 when thawed and subcultured. Thus at 80% confluence these 
cells must be seeded onto the appropriate vessel for differentiation and experimentation at 
passage 5. Therefore, when thawing cells it is important to be aware of the volume of cells 
that will be required to complete the study. 
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4.3 Myotube formation 

The process of myoblast fusion is critical to the development of mature multinucleate 

skeletal muscle myotubes. During the process of myoblast differentiation, the myogenic 

cells exit the cell cycle and mitotic activity ceases (Linkhart et al., 1981; Yaffe, 1968). 

Myogenic commitment is under the synergistic regulation of a vast number of myogenic 

promoters (including MyoD, myogenin, Myf5, myogenic regulatory factor 4, myocyte 

specific enhancement factor 2) and inhibitors (including ID, Msx1, Twist and BMP-4) 

(reviewed by Brand-Saberi & Christ, 1999; Charge & Rudnicki, 2004). Table 1 further 

highlights the expression patterns of myogenic markers associated with different stages of 

myogenic development.  

Extracellular factors also mediate myotube differentiation. Such factors include the cell-cell 

interactions and proximity and cellular interactions with the extracellular matrix. 

Concordant with this, studies by Osses & Brandan (2002) and Langen et al. (2003) show that 

the extracellular matrix enhances myogenic differentiation of clonal C2C12 myoblasts. In 

vitro, protocols used to induce myoblast fusion vary greatly between studies. This has the 

potential to confound the comparison of results between studies. Predominately, 

differentiation protocols vary in the duration and the composition of media used to induce 

myogenic differentiation. 

 

Myogenic stage Increase 
expression 

Decreased 
expression 

Variable 
expression 

Muscle derived stem 
cell 

Sca-1 
Bcl-2 
All MRFs 

 CD34 

Quiescent Satellite cell c-MET 
Truncated CD34 
Pax7 
VCAM-1 

 m-cadherin 
Myf5 
MyoD 
Desmin 

Myogenic precursor 
cell 

m-cadherin 
c-Met 
Full length CD34 
Myf5 
MyoD 
Desmin 

 Myogenin 

Terminal 
differentiation 

Myogenin 
MRF4 
Other MRFs 

CD34 
Pax7 

 

Adapted from review by Deasy et al., (2001) 
MRF; Myogenic regulatory factor. 

Table 1. Expression of myogenic markers at different stages of myotube formation.  

Myoblast fusion and subsequent myotube formation has been reported to occur over a 
period of 4-8 days (Gaster et al., 2001b). In our hands, a differentiation protocol of 4 days is 
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sufficient to induce myoblasts elongation and fusion to produce multinucleate myotubes. 
The results of Gaster et al., (2001b) substantiate this, showing that on the day after culture 
conditions were changed to induce differentiation, myoblast fusion to form myotubes had 
begun and there was an increase in creatine kinase activity and fast myosin heavy chain 
content up until day 4 when these markers began to decline. This study also reported the 
presence of developing myofibrils and cross-striations at day 8 of differentiation (Gaster et 
al., 2001b), however no data is reported evaluating these parameters before this time. 
Therefore, it is hard to compare the presence of the developing contractile apparatus with 
functional measures such as creatine kinase activity and fast myosin heavy chain content 
which were seen to decline from day 4 onwards. Contrary to this Stern-Straeter et al., (2008) 
observed increased expression of myogenic genes from day 4 of differentiation but peaked 
at day 16. Creatine kinase activity in this study was also seen to peak at day 16 (Stern-
Straeter et al., 2008). These results suggest a longer differentiation period may facilitate 
further maturation of the myotube cultures and therefore provide a more physiological 
representation of skeletal muscle. However, longer durations of differentiation can lead to 
myotube detachment and subsequent cellular death. Moreover, it has been shown in rats 
that the source of skeletal muscle biopsy (that is, soleus compared to extensor digitorum 
longus) affected the rate at which the isolated cells differentiated (Lagord et al., 1998). This 
suggests that the source of muscle will alter the myogenic properties of the derived human 
primary myotubes.  

Aside from variations in the duration of culturing, myoblast fusion can be induced under a 
number of conditions such as a reduction in sera concentration and substitution of foetal 
bovine serum with horse serum, which contains less growth factors (Gaster et al., 2001a; 
Gaster et al., 2001b; Linkhart et al., 1981; McAinch et al., 2007). Further, addition of growth 
factors (vitronectin, B27 supplement, basic fibroblast growth factor, cardiotropin-1, brain-
derived neitrophic factor, glial derived neurotrophic factor and neutrophin 3 and 4)  (Das et 
al., 2009) and provision of soluble basement membrane in the absence of additional growth 
factors and serum (Langen et al., 2003) can also be used to promote differentiation.  

In view of these variations, some contention exists as to the optimal protocol for myoblast 

differentiation. Accordingly, the differentiation process may need to be optimised by the 

end user for their specific needs. Differentiation can be confirmed via a number of different 

measures including analysis of sarcomere formation, creatine kinase activity, myosin heavy 

chain and alpha actin content and expression of myogenic markers MYoD (up-regulated in 

earlier stages of differentiation), myogenin, desmin, and myogenic regulatory factor 4 (Blau 

& Webster, 1981; Stern-Straeter et al., 2008; Stern-Straeter et al., 2007). Such analyses enable 

individual optimisation of the differentiation process to suit the demands of specific studies.  

For our purposes the optimised differentiation protocol is as follows. At approximately 70-

80% confluent, cells which have previously been seeded onto extracellular matrix coated 

tissue culture vessels are washed in 1x phosphate buffered saline. A simple substitution of 

10% foetal bovine serum for 2% horse serum is made in the replacement medium. All other 

components remain the same as for the growth medium (that is, differentiation media 

contains 2% horse serum (v/v), 0.5% penicillin streptomycin (v/v) and 0.5% amphotericin B 

(v/v)). Cells are washed and differentiation media is changed every other day until day 4 is 

reached. When visualised microscopically cells will appear elongated and fusion will be 

evident. At this point myotubes are ready for experimentation. 
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5. Experimentation 

At the conclusion of the optimised differentiation protocol, myotubes are ready for 

experimental purposes. However, the specific protocol used in the final stages of myotube 

culturing is dependent on the end use of the myotubes. That is, the way the myotubes are 

subcultured and subsequently lysed will depend on the experiment to be conducted. Here 

we will briefly examine some of the key considerations in designing experiments for 

analysis of different metabolic parameters. 

5.1 mRNA analysis of genetic markers 

The analysis of gene expression provides an invaluable source of information regarding 

changes in the expression of key regulatory genes. Gene expression often provides the basis 

for additional studies aimed at assessing the effects of experimental interventions on cellular 

signalling. The growth of human primary myotubes for gene expression purposes has 

several subtle differences to that of other outcomes. Myotubes grown for the analysis of 

messenger RNA abundance are typically grown in 6-well tissue culture plates (Greiner Bio-

One, Monroe, NC) as decreased cell volume is typically needed for successful RNA 

extraction. Given the lower area for growth (approximately 9.6 cm2 per well) confluence is 

often reached in a shorter period and therefore it is important to regularly check confluence 

to ensure differentiation is conducted at 70-80% confluence. Being over-confluent will risk 

the cells detaching during the experimental period. Subsequent to experimentation, the next 

key consideration is the process by which the cells are to be lysed. The experimental 

treatments should be ceased by rapidly washing each well 3 times in approximately 2 ml of 

ice-cold 1x phosphate buffered saline. Myotubes should be placed immediately on ice to 

inhibit RNase activity after the third wash and then rapidly lysed. We find the lysis of cells 

with TRIzol® reagent (Invitrogen, Carlsbad, CA) is highly efficient and provide a high yield 

of quality RNA (as determined spectrophometrically). RNA is a particularly unstable 

molecule and it is important to ensure that the sample is not contaminated with RNases 

during the extraction procedure. TRIzol® reagent acts to solubilise cellular membranes and 

debris whilst inhibiting RNase activity and maintains RNA integrity (Santella, 2006). 

However, due to the corrosive TRIzol® (including the vapour phases) cells should be 

transferred on ice to an RNA designated fumehood prior to the addition of this reagent. 

Using filtered pipette tips add 800 µl of TRIzol® to each well. Gentle agitate the TRIzol® to 

ensure that the entire surface of the well is covered and then repeatedly eject the TRIzol® 

over the base of the well to ensure myotubes are lysed. Transfer cellular lysates to a labelled 

tube. At this point the cellular lysates can be stored at -80 °C until ready to continue with the 

RNA extraction.  

Total cellular RNA is then extracted through the addition of 200 µl of chloroform (Sigma 

Aldrich, St Louis, MO) to the cellular lysates. Mix via short vortex and then allow to sit on 

ice for 5 minutes. Centrifuge the TRIzol®/chloroform for 15 minutes at 16,000 x g to 

separate the phases. Three distinct phases should be visible; a bottom phase containing the 

TRIzol® and cellular debris, a thin opaque interphase and a clear RNA containing 

supernatant. If the separation of phases does not occur, re-vortex the tube and allow to sit on 

ice before centrifuging again as above. The RNA containing supernatant is then aspirated 

into a fresh tube containing an equal volume of isopropanol to supernatant (approximately 
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600 µl; Sigma Aldrich, St Louis, MO) and 10 µl of 5 M sodium chloride (Ajax Finechem, 

Seven Hills, Australia). Care must be taken not to contaminate the RNA sample with the 

interphase and therefore it is recommended that 80% of the supernatant volume be 

aspirated. At this point incubate the samples at –20 °C for a minimum of 2 hours (can be left 

overnight) to precipitate the RNA pellet. Subsequent to the incubation period, centrifuge the 

samples at 16,000 x g for 20 minutes to isolate the pellet. Take care to orient all tubes in the 

same manner to enhance the ease of RNA extraction, as the RNA pellet may be small and 

difficult to visualise. Aspirate the isopropanol/sodium chloride solution taking care not to 

aspirate the RNA pellet. Wash the pellet once with 400 µl of 75% molecular grade ethanol 

(Sigma Aldrich, St Louis, MO) and centrifuge for 8 minutes at  8,000 x g. Again aspirate the 

ethanol taking care not to aspirate the RNA pellet and then allow the pellet to air-dry for 5-8 

minutes on ice. Resuspend the RNA pellet in 5 µl of sterile diethylpyrocarbonate treated 

water (Invitrogen, Carlsbad, CA). The resuspension of the pellet can be enhanced by heating 

the diethylpryocarbonate treated water to 65 °C. Transfer 1 µl of RNA to a fresh tube 

containing 19 µl of diethylpyrocarbonate treated water for spectrophotometric 

determination of RNA content at 260 nm and 280 nm. RNA purity can be determined from 

OD260/OD280 ratio. Samples with an OD260:OD280 ratio of 1.9 – 2.1 can be considered of 

high quality and relatively free of contaminates (Santella, 2006). RNA samples should be 

stored at –80 °C until required.  

RNA can then be reverse transcribed to complementary DNA via the use of such kits as the 

iScript cDNA synthesis kit (Bio-Rad Laboratories, Hercules, CA). Resultant complementary 

DNA can then analysed for messenger RNA expression of genes of interest by such 

techniques as ‘real-time’ polymerase chain reaction (Heid et al., 1996). Data from ‘real-time’ 

polymerase chain reaction can be analysed by either absolute quantification or relative 

quantification (Livak & Schmittgen, 2001). Absolute quantification determines the input 

copy number of the gene of interest usually against known standards, whilst relative 

quantification enables determination of the expression of the gene of interest relative to a 

reference gene (Livak & Schmittgen, 2001). 

5.2 Protein 

The growth of myotubes for analysis of protein markers requires a greater cell density than 

is required for analysis of gene expression. Accordingly, when growing for analysis of 

protein expression, myotubes should be subcultured and grown to confluence on 100 mm 

tissue culture dishes (Greiner Bio-One, Monroe, NC) coated with extracellular matrix prior 

to differentiation. As for messenger RNA analysis cells destined for protein expression 

studies need to be differentiated at approximately 70-80% confluence to ensure an adequate 

yield. To stop experimental treatments cells should be washed twice with ice-cold 1x 

phosphate buffered saline. To avoid dilution of the protein fraction it is important to remove 

excess phosphate buffered saline with either suction or transfer pipettes. When lysing cells 

for protein expression the addition of a protease inhibitor to the lysis buffer is necessary to 

inhibit proteolytic protein degradation. For muscle cultures we find that an 

immunoprecipitation lysis buffer (10 mM Tris pH 7.5, 5 mM EDTA, 150  mM NaCl, 1% NP-

40) containing complete mini protease inhibitor cocktail tablet per 10 ml working stock 

(Roche Diagnostics, Indianapolis, IN) is suitable in lysing cells for protein extraction. 

www.intechopen.com



 
Muscle Biopsy 

 

48

Adherent skeletal muscle myotubes are lysed using 100 µl of immunoprecipitation lysis 

buffer and complete mini-protease inhibitor cocktail tablet. Mechanically detached adherent 

cells from the base of the 100 mm cell culture dish with a cell scraper (Greiner Bio-One, 

Monroe, NC). To proceed with protein extraction, centrifuge the cellular lysate at 17,000 x g 

for 4 minutes. Carefully aspirate the supernatant, aliquot and store at -80 °C. Freeze-thaw 

cycles should be avoided. 

Protein abundance can then be quantified against known albumin standards with a working 

range of 20-2000 µg/ml in accordance with the assay microplate procedure using a Pierce 

Bicinchoninic Acid kit (Pierce Biotechnology distributed by Thermo Fisher Scientific, 

Scoresby, Australia) at 562 nm.  We have previously found that the protein content from a 

single 100 mm tissue culture dish is low and in order to have sufficient protein to measure 

multiple markers it may be necessary to have a number of replicates for each experimental 

condition which can be combined to increase the overall protein concentration. If this is the 

case up to four 100 mm dishes can be lysed using 100 µl of lysis buffer transferred from 

plate to plate along with the cellular lysates. This helps to reduce sample dilution with the 

lysis buffer.  

5.3 Glucose and fatty acid uptake  

Aberrant glucose and fatty acid metabolism is observed in human primary myotubes 
isolated from individuals with obesity and type 2 diabetes mellitus compared to control 
(Bell et al., 2010; Mott et al., 2000; Thompson et al., 1996). Therefore, determination of 
glucose and fatty acid uptake in these cells can be a useful tool in screening new 
pharmacological agents aimed at ameliorating perturbed substrate metabolism. The process 
described below outlines the key methodological considerations for growing human 
primary myotubes for glucose and fatty acid uptake assays.  

5.3.1 Glucose uptake 

Prior to differentiation, skeletal muscle myotubes should be grown to approximately 70% 
confluence in 12 well tissue culture plates. At confluence, differentiation should be 
undertaken for 4 days. Previous results indicate that basal glucose uptake decreases upon 
myoblast fusion (Klip et al., 1984; Mitsumoto et al., 1991). In contrast insulin-stimulated 
glucose uptake increases subsequent to myoblast fusion particularly in the serum deprived 
L6 myotubes (Klip et al., 1984; Mitsumoto et al., 1991). Therefore for this particular assay we 
recommend a differentiation period of 4 days however this may need to be optimised 
depending on the specific outcome of the study. The protocol for measuring glucose uptake 
is adapted from that of Ciaraldi et al., (1995). 

At confluence, myotubes are pre-incubated in serum free alpha-minimum essential medium 
for 4 hours and subsequently washed three times in uptake buffer (150 mM NaCl, 5 mM 
KCL, 1.2 mM MgSO4, 2.5 mM NaH2PO4, 1.2 mM CaCl2, 10 mM HEPES, 0.1% bovine serum 
albumin, pH 7.4). Myotubes should then be incubated with the compound of interest in 1 ml 
of uptake buffer for the given time period. Initiate the glucose uptake reaction through the 
addition of radiolabelled glucose (2—[3H]-deoxy-D-glucose) at 1 µCi/ml and 2-deoxy-D-
glucose (Perkin Elmer, Waltham, MA) at 10 µM per well and incubate at 37 °C and 5% CO2 

for 15 minutes. Subsequently, aspirate the reaction buffer and rinse the myotubes four times 
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rapidly with ice cold 1x phosphate buffered saline to stop the reaction. Solubilise the 
myotubes with 500 µl of 0.1 M sodium hydroxide for 30 minutes at room temperature. This 
process can be enhanced by gentle agitation. The cellular lysates should then be divided 
with 400 µl being combined with 4 ml of scintillation fluid in scintillation vials for 
determination of incorporated radiolabelled glucose. The remainder of the lysates should be 
used to determine cellular protein content. Non-specific glucose uptake can be determined 
in the presence of cytochalasin B (10 µM/l) to block glucose transporter mediated glucose 
uptake (Ceddia et al., 2005; Fletcher et al., 2000; Michael et al., 2001). Cytochalasin B has 
been shown to be a potent inhibitor of cellular glucose uptake (Kletzien et al., 1972). Non-
specific glucose uptake is subtracted from the total glucose uptake values and the net 
glucose uptake value is expressed relative to cellular protein content in picomoles of 2-
deoxy-glucose taken up by the myotubes per mg protein per minute.   

5.3.2 Fatty acid uptake 

The process of determining fatty acid uptake is similar to that of glucose uptake and 

accordingly, human primary myotubes should be grown and differentiated in the same 

manner. Differentiated myotubes should then be exposed to the experimental conditions. 

Fatty acid uptake can then be measured in the presence of [1-14C] palmitate (Perkin Elmer, 

Waltham, MA) and non-radiolabelled palmitate (Pimenta et al., 2008). In brief, the palmitate 

uptake is assayed through the addition of 0.2 µCi/ml [1-14C] palmitate and 20 µM non-

labelled palmitate (Fediuc et al., 2008) in serum free alpha-minimum essential medium for 4 

minutes. Palmitate should be conjugated to fatty acid free bovine serum albumin at a molar 

ratio of 1. Cells should be lysed in 500 µl of 0.1 M NaOH for 30 minutes and palmitate 

uptake is determined relative to cellular protein content as above.   

5.4 Fatty acid oxidation 

In addition to determining substrate uptake it is also possible to determine the rate of fatty 

acid oxidation in human primary myotubes. This allows a more thorough assessment of 

cellular bioenergetics as corresponding results of enhanced uptake and oxidation may be 

indicative of improve metabolic function, whilst results of enhanced uptake but impaired 

oxidation may suggest that the intervention has elicited detrimental effects. Palmitate 

oxidation is determined from the production of radioactive 14CO2  from [1-14C] palmitate. 

This outcome can be determined through measurements of radiolabelled CO2 or water with 

many variations existing in technique (Fediuc et al., 2006; Fediuc et al., 2008; Pathmaperuma 

et al., 2010; Petersen et al., 2005; Pimenta et al., 2008; Watt et al., 2006). One such method is 

described herein and has been adapted from previously described work of Petersen et al., 

(2005) in L6 skeletal muscle myotubes. 

Myotubes should be grown in 100 mm tissue culture dishes until approximately 80% 

confluence at which point growth medium should be substituted for differentiation medium 

containing 2% horse serum. On day 4 of differentiation, pre-incubate the myotubes in serum 

free alpha minimum essential medium contain 0.1% bovine serum albumin for 2 hours. 

Following a washing step with 1x phosphate buffered saline, myotubes can be exposed to 

experimental conditions in alpha minimum essential medium containing 0.1% foetal bovine 

serum (v/v), 4% fatty acid free bovine serum albumin (w/v), 0.1 mM palmitate and 2 µCi of 
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[1-14C] palmitate with the respective experimental conditions. A 2 hour treatment period has 

been shown to be sufficient in determining fatty acid oxidation however the period of 

exposure can be modified to suit the experimental design and therefore should be optimised 

by the end user. Subsequent to experimental exposure 1 ml of the incubation medium is 

added to a 20 ml scintillation vial containing 1 ml of 1 M H2SO4 and a 0.5 ml microcentrifuge 

tube containing 1 M benzethonium hydroxide to trap liberated 14CO2 over a one hour 

period. The microcentrifuge tube containing the trapped 14CO2 is then placed in a 

scintillation vial and counted to determine the rate of fatty acid oxidation. 

6. Future applications 

6.1 Three-dimensional skeletal muscle tissue constructs 

Bioengineering of skeletal muscle constructs employs the use of myogenic progenitor cells 

and specialised scaffolding to form three-dimensional tissue constructs. Given the limited 

regenerative capacity of adult skeletal muscle, bioengineered skeletal muscle provides a 

therapeutically relevant method of reducing morbidity associated with various myopathies. 

Congruent with this, the long term goal of three-dimensional tissue culturing predominately 

centres around the provision of viable tissue transplants for regenerative purposes after 

acute injury or disease for instance the fabrication of three-dimensional cardiac muscle 

constructs. Like adult myotubes, mature cardiac myocytes are terminally differentiated cells 

and thus cannot regenerate subsequent to damage. Therefore the ultimate goal of 

bioengineered heart muscle supports myocardial regeneration after myocardial infarction, 

chronic heart failure or in the repair of congenital heart defects (Eschenhagen et al., 2002). 

This has the potential to reduce morbidity and mortality associated with cardiovascular 

diseases. Surgical tissue transplants are widely used in muscle regeneration after muscle 

injury, however muscle transplantation is associated with significant donor site morbidity, 

and loss of muscle volume and function (Bach et al., 2004). Implantable bioengineered 

skeletal muscle constructs remove the need for large muscle extracts from healthy donor 

tissue and thus pre-engineered tissue constructs provide an appealing treatment method for 

skeletal muscle pathologies. Bian & Bursac (2008) propose distinct advantages associated 

with the use of bioengineered muscle constructs as being the ability to engineer constructs 

with architecture specific for the site of damage, the ability to precondition fabricated 

muscle for the specific mechanical and metabolic demands of the site and the administration 

of specific growth factors and hormones to support growth after implantation. However, 

despite these potential benefits, the field of bioengineered tissues is still in its relative 

infancy, with muscle constructs exhibiting morphological differences to native muscle with 

respect to the level of differentiation and organisation of the cell microstructure, making 

direct comparison with native muscle problematic (Baar, 2005).  

The architectural, electrical and functional integrity of fabricated muscles must be similar to 

that of native muscle in order to compensate for structural and functional deficits within the 

endogenous muscle. Accordingly, the construct needs to be contractile, demonstrate electro-

physiological stability, be flexible yet mechanically robust and have angiogenic potential.     

Currently, bioengineered muscle constructs are small in size with Huang et al., (2005) 

generating myooids of 177 ± 10.5 µm in diameter with the cross-sectional area of individual 

myotubes being only 10 µm. This is similar to results of Powell et al., (2002) who generated 
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human bioartificial muscles with individual myotubes being less than 10 µM in diameter. 

Furthermore, the current methods of generating muscle constructs result in myooids which 

exhibit significant deficits in force production compared to that of native muscle (Dennis et 

al., 2001). The absence of fibroblasts in constructs generated from C2C12 cells also resulted in 

a force deficit manifesting in a 35% reduction in peak twitch force after tetanic stimulation 

(Khodabukus & Baar, 2009). The authors noted that addition of 3T3 fibroblasts to C2C12 

myotubes (ratio 1:5) prior to seeding attenuated this force deficit but lead to a 50% decrease 

in specific force. Taken together these results imply that further work needs to be done 

before bioengineered muscle constructs can be used for functional regeneration of human 

skeletal muscle. Nonetheless, in spite of the functional limitations, much can be gained 

through investigations of muscle formation using three-dimensional models of myotube 

growth (Bach et al., 2004).  

Three-dimensional skeletal muscle tissue constructs provide a useful model for the study of 

muscle structure and function in physiological and pathophysiological states, drug 

screening and gene therapy despite current limitations in their fabrication (Bach et al., 2004; 

Vandenburgh, 2010; Vandenburgh et al., 2008). The use of three-dimensional constructs 

provides a method with enhanced physiological relevance due to the relative absence of 

cellular monolayers within their endogenous micorenvironments. Interestingly, Larkin et 

al., (2006) describe a method of co-culturing pre-formed self-organising primary rat tendon 

constructs with isolated myoblasts in place of artificial tendons, to form a functional 

myotendinous junction in the three-dimensional constructs formed. Functional testing of 

these constructs revealed the myotendinous junction could withstand tensile forces beyond 

the physiological range (Larkin et al., 2006). Rivron et al., (2008) further review recent 

advances in the ability to generate pre-vascularised tissue constructs in vitro which has the 

capacity to readily anastamose to the host vasculature and thus can enhance viability of 

implanted tissue constructs. These advances within the tissue engineering field represent 

promising progress in the development of functional muscles for regenerative purposes. 

However due to the differences between native muscle and bioengineered muscle 
constructs, the challenges which still exist in the formation of de novo skeletal muscle cannot 
be ignored. Specific challenges still exist in supporting growth of sufficient differentiated 
muscle tissue for regenerative purposes, the capacity to supply sufficient oxygen and 
nutrients to the core of the construct, the need for these tissue constructs to remain viable 
and be vascularised and innervated in vivo (Bach et al., 2004; Birla et al., 2005; Davis et al., 
2007; Gawlitta et al., 2007). Overcoming these challenges to achieve maximal therapeutic 
benefits centres largely around the ability to accurately recapitulate the endogenous 
environment for growth in vitro. Strategies to enhance myoblast proliferation and 
differentiation to support these needs are currently in great demand. One such method may 
be the application of mechanical stretch during construct formation. Endogenously, the 
electrical impulses generated by the central nervous system are critical developmental 
stimuli prompting the formation of mature muscle fibres with de-innervated muscle 
showing reduced numbers of secondary myotubes (Ross et al., 1987). In cell culture models 
electrical stimulation has been shown to enhance activation of quiescent satellite cells, 
myoblast alignment, protein synthesis, proliferation and differentiation (Donnelly et al., 
2010; Tatsumi et al., 2001; Vandenburgh & Karlisch, 1989). Sarcomere formation and the 
development of contractile apparatus have also been shown to be enhanced by electrical 
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stimulation in C2C12 myotubes grown in three-dimensional constructs (Langelaan et al., 
2010; Park et al., 2008). An 8 day mechanical stretch/relaxation protocol in bioengineered 
human muscles also augmented the myofibre diameter and area suggesting adaptation to a 
phenotype more similar to that of native muscle (Powell et al., 2002). In line with enhanced 
myotube diameter, Huang et al., (2005) showed that treatment with the trophic factor 
insulin-like growth factor 1 significantly increased force production of myooids. In further 
research insulin-like growth factor 1 was shown to induce myotube hypertrophy which was 
associated with a concomitant increase in active force production (Vandenburgh et al., 2008).  
This further supports the notion that extracellular paracrine factors are also important in 
enhancing construct formation.  Levenberg et al., (2005) also demonstrated that the co-
culture of myoblasts with embryonic fibroblasts and endothelial cells promoted the 
formation of vessel-like structures within the resultant muscle constructs which has the 
capacity to advance vascularisation in vivo. These findings highlight the significant progress 
being made in relation to the field bioengineering muscle constructs which resemble native 
muscle.  

6.1.1 Growth of bioengineered tissue constructs 

The growth of three-dimensional tissue cultures relies on the manipulation of the in vitro 

environment to support self-organisation of myotubes into bioengineered constructs which 

resemble the basic structure of in vivo skeletal muscle. Parallel alignment of the myotubes 

along a uni-directional axis is important if force is to be generated by the construct. The 

ability of the muscle constructs to generate adequate force to restore muscle function is 

likely dependent on the provision of an extracellular matrix that facilitates interactions of 

myofibres in a manner similar to that of native muscle (Bian & Bursac, 2008). Several forms 

of scaffold can be used to support organisation including non-biodegradable and 

biodegradable scaffolds, of which biodegradable scaffolds are preferable as their controlled 

degradation supports the development of native extracellular matrix and allows for the 

formation of densely packed myotubes in new muscle tissue (Koning et al., 2009; Rossi et al., 

2010). Biodegradable scaffolds which have been employed for myooid growth include 

polygycolic acid, alginate and hyaluronic acid hydrogels (Kamelger et al., 2004), fibrin 

(Huang et al., 2005), collagen (Hinds et al., 2011) and lamina gels (Dennis et al., 2001). 

Biomimetic extracellular scaffolds have been shown to enhance myotube fusion and 

markers of differentiation in two-dimensional cell culture models (Osses & Brandan, 2002). 

These findings can be extrapolated and applied to three-dimensional tissue culture and thus 

highlights the importance of the extracellular matrix used.   

Moreover, the scaffold needs to be biocompatible if the tissue is to be implanted in vivo as 
this prevents the host’s immune system initiating an immune response against the foreign 
substance (Rossi et al., 2010) which otherwise has the potential to increase the muscle 
damage sustained. Indeed, recent advances in both skeletal and cardiac muscle engineering 
have seen bioengineered constructs successfully implanted subcutaneously in rodents (Birla 
et al., 2005; Levenberg et al., 2005). Birla et al., (2005) initially cultured neonatal cardiac 
myocytes on laminin coated plates before the bioengineered cardiac constructs were 
implanted subcutaneously. The authors show the implants become vascularised and cell 
viability is maintained for at least 3 weeks in vivo (Birla et al., 2005). Levenberg et al., (2005) 
report similar findings with the bioengineered muscle continuing to differentiate in vivo and 
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anastamoses of vessels fabricated in vitro with the host’s vasculature, as evidenced by the 
presence of erythrocytes within the lumen of these vessels. Importantly, the explanted 
constructs showed spontaneous contractility and force production was augmented 
compared to in vitro cultured controls (Birla et al., 2005). Moreover, skeletal muscle grafts 
cultured in collagen/Matrigel™ hydrogel have been used in myocardial repair subsequent 
to infarct induced by coronary ligation which was associated with cellular differentiation 
and vascularisation 4 weeks after implantation (Giraud et al., 2008). These findings 
represent significant progression towards the end goal of developing implantable tissue 
constructs and are an important intersect between applications for skeletal and cardiac 
muscle regeneration.   

An additional consideration regarding the appropriateness of various scaffolds culture 
techniques is the provision of sufficient bioactive signals to replicate the endogenous niche 
to regulate satellite cells quiescence and myoblast proliferation and differentiation. 
Reproducing a microenvironment which accurately emulates the endogenous niche of 
muscle cells is complicated by the distinctive combination of cellular, biochemical and 
biophysical systems which define the biochemical and structurally properties of the 
endogenous microenvironment (Cosgrove et al., 2009). Eberli et al., (2009) support the 
importance of adequately replicating the microenvironment showing that the addition of 
fibroblast growth factor, epidermal growth factor, dexamethasone and insulin to collagen 
coated dishes enhances the formation of differentiated human primary myotubes. However, 
this issue is confounded due to the extensiveness of the list of factors which regulate 
myogenesis and myotube formation.  

The use of Matrigel™ (BD Biosciences San Jose, CA), a bioactive extracellular matrix derive 
from the mouse Engelbreth-Holm-Swarm tumour lineage may partially address this issue. 
Matrigel abundantly produces extracellular matrix factors which support cellular growth 
and differentiation (reviewed by Kleinman & Martin (2005)). Given these effects, Matrigel™ 
is an appealing substrate to support the fabrication of three-dimensional tissue constructs. 
Consistent with this, Hinds et al., (2011) found that the use of a hydrogel matrix consisting 
of Matrigel and fibrin enhanced myotube formation and density within the construct which 
was positively correlated with force production. Whilst no single extracellular matrix has 
been identified conclusively as superior, the use of fibrin gels with aprotinin, a plasminogen 
inhibitor and the naturally occurring cross-linking agent, genipin, have been shown to 
enhance force production and time-to-failure of constructs by way of controlled degradation 
of this matrix (Khodabukus & Baar, 2009). Moreover, fibrin gels provide a more flexible 
scaffold medium into which cells migrate and proliferate both on top of and within the 
fibrin gel to increased specific force production (Dennis et al., 2001; Huang et al., 2005). 
Furthermore, controlled fibrinolysis of the fibrin gel and secretion of extracellular matrix 
proteins by the muscle cells allows the muscle construct to develop a phenotype more 
representative of native muscle (Ross & Tranquillo, 2003). When considered in conjunction 
with the findings of Hinds et al., (2011) this suggests enhanced fibrin gels to be an appealing 
substrate for fabrication of bioengineered muscle and accordingly is the method we choose 
to report herein due to these advantages and also the relative inexpensiveness of substrates 
and ease at which myooids can be formed.  

The methods described are based on previous research in skeletal muscle myotubes (Huang 
et al., 2005). Methods utilising C2C12 myotubes have since been optimised to support an 
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extended period for which the constructs can be maintained in culture (Khodabukus & Baar, 
2009). The protocol reported below is based on the optimised procedure.  

Myotubes are cultured on polydimethylsiloxane (SYLGARD 184 Elastomer kit; OBA, 

Dandenong, Australia) coated 35 mm tissue culture dishes or 6-well tissue culture plates. 

Prepare the polydimethylsiloxane according to the manufacturer’s instructions in a ratio of 

10:1 base to curing agent.  In brief, using a syringe aspirate 1.5 ml of the base agent and 

slowly coat the base of each dish, taking care to avoid the formation of air bubbles. Add 150 

µl of the curing agent and gently mix with the pipette tip. Allow the dish to cure for 48 

hours at room temperature. This process can be quickened by incubating in a humidity-free 

incubator at 60 °C. Place two 6 mm long braided silk sutures (Fine Science, North 

Vancouver, Canada) at either end of the dish with an interposing gap of 12 mm between the 

end of each suture. Secure the sutures in place with 0.1 mm-diameter stainless steel 

minutien pins (Fine Sciences, North Vancouver, Canada) as shown in Figure 2. Place 

multiple pins along the length of the suture to ensure that they are firmly fixed in place.  

 
(Cornall et al., Unpublished observation) 

Fig. 2. Arrangement  of sutures in the polydimethylsiloxane coated well of a 6-well tissue 
culture plate. As the sutures are to provide the only point of force to which the myotubes 
align against the suture needs to be firmly affixed with multiple minutien pins along the 
length of the suture.  

At this point it is important to sterilise the dishes to avoid contamination of the myooids 

constructs. This can be done by soaking the dishes in 70% ethanol for 20 minutes. Following 

this, aspirate the ethanol and rinse the dish with 1 ml of 1x phosphate buffered saline. The 

dishes can also be exposed to UV light for 1 hour to assist with sterilisation. 

The next step is the preparation of the fibrin gel. Once all components have been diluted to 

the appropriate concentrations, determine the number of dishes and prepare a master mix of 

growth medium, genipin (Sigma Aldrich, St Louis, MO), thrombin (Sigma Aldrich, St Louis, 

MO) and aprotinin (Sigma Aldrich, St Louis, MO). C2C12 myotubes growth medium is made 
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with a base of Dulbecco’s modified eagle medium supplemented with with 10% foetal 

bovine serum (v/v), 1% penicillin streptomyocin (v/v) and 0.5% amphotericin B. For each 

dish add 463 µl of growth medium containing 10 µl Genipin (stock concentration 10 

mg/ml), 25 µl Thrombin (stock concentration 200 U/ ml) thrombin and 2 µl Aprotinin (stock 

concentration 10 mg/ ml).  Gently agitate the dish until the entire surface is covered, ensure 

no air bubbles form around the sutures and pins. Quickly, add 200 µl of 20 mg/ml 

fibrinogen (Sigma Aldrich, St Louis, MO) to each dish and gently mix.  Allow the gel to 

polymerise for 1 hour. Seed the cells into each of the dishes (100,000 cell per dish) in growth 

medium to a final volume of 2 ml. Allow the cells 24 hours to attach prior to changing the 

growth medium every other day. Myoblasts will migrate through the fibrin gel to proliferate 

both within and on top of the gel. After 2 days the gel should begin to contract and the 

myotube will begin to realign themselves between the points of force between the 2 sutures. 

This process should complete around day 7. The myotubes are then differentiated for 2 days 

in reduced serum differentiation medium (2% horse serum). Continue to maintain the 

forming myooids in growth medium containing 7% foetal bovine serum until construct 

formation is completed.  

 

Fig. 3. Formation of three-dimensional C2C12 tissue constructs at different time points after 
initial seeding of the cells. Note the progressive contraction of the gel and subsequent 
alignment of the construct between the two sutures resulting in the formation of a densely 
packed three-dimensional tissue construct. At day 16 the dimensions of the construct were 
determined as approximately 25 mm length and 1 mm in width and the myooid was 
deemed to be fully formed. 
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Once construct formation is complete the myooids can be stimulated to contract using 

platinum wire electrodes positioned either side of the constructs using a force transducer. 

Electrical stimulation of constructs has been successfully demonstrated using clonal C2C12 

myotubes in a number of studies (Khodabukus & Baar, 2009; Langelaan et al., 2010; Park et 

al., 2008). However, in our experience the process of electrically stimulating constructs of 

human primary myotubes has proven difficult. Whilst we have previously been able to 

culture the human primary myotubes to form bioengineered skeletal muscle constructs, 

these myooids have been unresponsive to electrical stimulation (McAinch, Unpublished 

observations). As primary cells have limited myogenic capacity, this may reflect changes in 

the electrical potential of the membrane as the cells age in culture. It may be possible to form 

contractile myooids from human primary myotubes which have been isolated from the 

muscle sample immediately prior to culturing in this manner, as opposed to being passaged 

in monolayers initially. However, it remains unclear whether contractile ability is retained.  

Despite the lack of contractile ability, culturing the myotubes in three-dimensional 

arrangements provides an interesting model providing a more physiologically relevant 

arrangement of cells (that is, in vivo cells are rarely arranged in monolayers). When cultured 

in this manner it enables investigations into the importance of cell-cell interactions and 

spatial arrangements on the maturation and metabolic processes of skeletal muscle 

myotubes.   

7. Conclusion 

This chapter has highlighted the diverse nature of research applications associated with the 

use of human primary myotubes for studies investigating muscle physiology and the 

implications of this for systemic health. We have identified significant benefits of using 

human primary myotubes over the use of immortalised cell lines such as the C2C12 and L6 

cell lines due to the fact that these cells retain donor phenotypic traits. This increases the 

physiological relevance of results obtained in studies utilising such primary myotubes. 

Moreover, the relative ease at which samples of sufficient size can be obtain through simple, 

relatively non-invasive biopsy techniques heightens the practicality associated with their 

use. Whilst we have outlined the practices within our research group of isolating myogenic 

satellite cells, growing and maintaining myoblasts and the differentiation of myoblasts into 

myotubes for experimentation, it is apparent that significant variations in methodology do 

prevail. Therefore, the methods described in this chapter may need optimising by the end 

user depending on the outcomes and clinical measures of the specific study. Accordingly, 

we recommend these methods as a highly appropriate starting point for this procedure. We 

have also provided an indication of methods for a number of experimental techniques 

associated with the use of human primary myotubes for developing bioengineered skeletal 

muscle constructs and their application for the treatment of various of myopathies. This list 

of applications is by no means exhaustive which furthers demonstrates the versatile nature 

of this experimental model. 
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Investigation of muscle diseases has changed dramatically with the understanding of genetic basis of a wide

range of muscle diseases. Muscle biopsy has become a powerful tool not only to provide diagnosis but to

make tissue available for genetic studies and to basic scientists for biomedical research. Accurate

interpretation of muscle biopsy to detect cell dysfunction/ damage/death or absence / abnormality of a protein

or genetic defect by the sophisticated technologies is important to guide treatment of various muscle diseases.
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use in the culture of myotubes and membrane transport studies.Muscle biopsy is an important technique to

investigate mitochondrial dysfunction and the mitochondrial DNA integrity in oxidation. Phosphorylation in

various metabolic diseases like obesity, type 2 diabetes mellitus and peripheral vascular disease is explored in

the other chapters with detailed descriptions on methodology. This book provides the advances in the basic

techniques of muscle biopsy for a neuroscientist.
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