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1. Introduction  

The spurge family (Euphorbiaceae) is one of the most diverse and numerous clades of the 

angiosperms, including several species of great economic importance as rubber tree (Hevea 

brasiliensis), cassava (Manihot esculenta), and some oil seed crops, as candlenut (Aleurites 

moluccana), physic nut (Jatropha curcas) and castor bean (Ricinus communis). Castor bean, the 

single member of the African genus Ricinus (subfamily Acalyphoideae), presents a wide 

variation regarding vegetative traits such as leaf and stem colors, number and size of leaf 

lobes and presence of wax covering the stem (Popova & Moshkin, 1986; Savy-Filho, 2005; 

Webster, 1994; see Fig. 1). Depending on the environmental conditions, even the vegetative 

habit may vary, although it is more likely in a shrubby form (Webster, 1994). However, the 

most conspicuous variability is related to reproductive characters, as color shape and size of 

seeds, number of flowers per raceme, peduncle length and fruit dehiscence (Figs. 1 and 2) as 

described by Popova & Moshkin (1986). 

Castor oil, which has a long history of use for medicinal purposes (see Gaginella et al., 1998), 

has been considered a promising raw material for the production of renewable energy in 

tropical countries. Besides, castor bean has been traditionally cultivated for the production 

of lubricants and paints (see Berman et al., 2011; Ogunniyi, 2006; Scholz & Silva, 2008). 

Mainly in the semi-arid regions, a xerophytic-like as castor bean can be grown in areas with 

higher farming limitations, not intended for other crops (Ogunniyi, 2006). Furthermore, the 

biodiesel derived from castor oil has several advantages over other vegetable oils due to the 

presence of 5% more oxygen, low levels of residual phosphorus and carbon, high cetan 

number, solubility in alcohol and absence of aromatic hydrocarbons (Ogunniyi, 2006; Scholz 

& Silva, 2008). The high viscosity of the castor oil is due to the high percentage of ricinoleic 

acid (a hydroxycarboxylic acid), which is a limiting factor for the use of pure castor bean 

diesel in the engines (Pinzi et al., 2009). However, the employment of this biodiesel blended 

with petrodiesel can be exploited in regions with severe winter. This is a highly 
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recommended procedure because of its low freezing point and the lubricant power afforded 

by castor oil, as well as all other advantages associated to the utilization of renewable energy 

resources (see Berman et al., 2011; Demirbas, 2007; Ogunniyi, 2006; Pinzi et al., 2009; Singh, 

2011).  

 

Fig. 1. Different raceme types observed in castor bean accessions held by Embrapa Algodão 
(Brazil). Inflorescences of a cultivar (‘BRS Nordestina’) and a dwarf lineage (‘CSRD-2’) are 
shown in (a) and (b), respectively. Observe in (b) a pistillate flower with red stigmas in the 
left-superior corner and a multi-staminate flower in the right-inferior corner. A large 
raceme, typical of the cultivar ‘BRS Energia’, is shown in (c). Racemes with long peduncles 
of the accessions ‘CNPAM 93-168’ and ‘BRS Nordestina’ are shown in (d) and (e), 
respectively. Compact raceme characteristic of a castor bean subespontaneous population 
from northeastern Brazil, (Buíque – PE) (f), and of the cultivar ‘BRS Paraguaçu’ (g). Spineless 
fruits of the lineage ‘BRA 10740’ in (h).  

The development of new cultivars with traits of interest and adapted to specific 
microclimates is only possible when there is available knowledge about the extant genetic 
diversity of the species (Gepts, 2004). Despite the recent publication of the castor bean 
genome (Chan et al., 2010), little is known about the actual genetic diversity of this species. 
Genetic diversity analyses of castor bean germplasm collections worldwide have showed 
low levels of variability and lack of geographically structured genetic populations, 
regardless of a marker system used (e.g. Allan et al., 2008; Foster et al., 2010; Qiu et al., 2010). 
Thus, the remarkable phenotypic variation observed in castor bean do not seem to reflect a 
high genetic diversity, similarly to the reported for physic nut, in which variations in 
epigenetic mechanisms may have a more important role in the diversity of the species than 
genetic variability per se (Yi et al., 2010). 
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Fig. 2. Representation of the variability in color and size observed among seeds of castor 
bean. 

In this work, we provide a review on the current status of genetic diversity analysis in castor 

bean. Moreover, we present the results of our data mining efforts on screening for genomic 

simple sequence repeat (SSR) primers in addition to the previously reported expressed 

sequence tag-SSR (EST-SSR) sequences. We performed genotyping among castor bean 

accessions with inter simple sequence repeat (ISSR) primers from the University of British 

Columbia (UBC) set and primer combinations from amplified fragment length 

polymorphism (AFLP) Starter Primer Kit (Invitrogen, Carlsbad, USA) for amplicon 

generation. Furthermore, we have tested the characterization of distribution of large 

microsatellite clusters along the castor bean chromosomes by means of fluorescent in situ 

hybridization (FISH). Our results in addition to compiled data from literature will be highly 

useful for breeding programs, providing information about genetic diversity and tools for 

genetic mapping in this important crop. 

2. Diversity analyses with molecular markers in castor bean  

Several molecular markers are available for germplasm characterization and identification 
of cultivated plant varieties. The profile analysis of multilocus DNA markers, also called 
DNA fingerprinting, is a potential source of informative marker bands, which allows a 
reliable differentiation among cultivars (Tanya et al., 2011), wild populations (Andrade et 
al., 2009), species and even related genera (Simon et al., 2007). Additionally, molecular 
markers are very stable, in contrast to morphological characters, which may be influenced 
by environmental factors and having continuous variation and high plasticity (Weising et 
al., 2005).  

Unlike other important oilseed crops, as oil palm (Elaeis guineensis), soybean (Glycine max), 
sunflower (Helianthus annuus), and some Euphorbiaceae species, as cassava and rubber tree, 
castor bean diversity is still poorly characterized by means of molecular marker systems (see 
Billotte et al., 2010; Feng et al., 2009; Sayama et al., 2011; Sraphet et al., 2011; Talia et al., 
2010). In fact, the species had been overlooked until the late 2000s, when analyses regarding 
genetic diversity of germplasm collections were first published (see Allan et al., 2008). 
However, castor bean was the first member of the Euphorbiaceae family with the whole 
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genome published (Chan et al., 2010), a fact that will be of great importance for characterizing 
the genetic base of the species. 

2.1 Genetic diversity characterization with dominant markers 

AFLP, ISSR and random amplified polymorphic DNA (RAPD) are among the most widely 
used marker systems in DNA fingerprinting. Although the differentiation between allelic 
types is hampered in the output data from these molecular markers, many features have 
made them quite widespread, such as low costs and the possibility of generating a large 
amount of informative marker bands in a short time. Besides, there is no need for prior 
knowledge about DNA sequences of the studied organism when this kind of molecular 
markers is used (Weising et al., 2005). 

As mentioned above, just a few analyses were carried out using dominant markers to access 

polymorphisms among castor bean accessions. Despite the great potential of ISSR and AFLP 

in characterizing the genetic diversity of several crops (Kumar et al., 2009; Weising et al., 

2005), it is noteworthy that these powerful marker systems have been underused in genetic 

diversity analyses with this species. To the best of our knowledge, the only study in which 

AFLP markers were used to describe the genetic diversity of the species was performed by 

Allan et al. (2008). In a preliminary application of 16 AFLP primer combinations, these 

authors reported low levels of variability among 14 castor bean genotypes from different 

regions of the world. Thereafter, the authors selected the three most polymorphic primer 

combinations and applied them to a wider number of accessions (41 in total) that indicated 

weak geographically structured populations among germplasm collections of the five 

continents. These results were quite similar to those obtained with genomic SSR markers in 

the same work (discussed below), and this was the first indicative of a narrower genetic base 

than first thought for the species. However, due to the small number of generated marker 

bands (only 119), the low polymorphism sampled by Allan et al. (2008) could be an 

underestimation of the factual levels of information that this marker system might reach 

within the species.  

Differences regarding polymorphism levels of AFLP markers have been reported for many 
other crops (Weising et al., 2005). The average percentage of polymorphic markers obtained 
by Tatikonda et al. (2009) for physic nut, for instance, was higher than that found by 
Pamidimarri et al. (2010) (88.2% and 61.2%, respectively). Additionally, even when the same 
primer combination (E-ACA + M-CAT) was used, different polymorphism levels were 
obtained [82.8% by Tatikonda et al. (2009) and 68.1% by Pamidimarri et al. (2010)]. This fact 
may be occurred due to differences in genetic diversity levels between the two sampled 
germplasm collections. 

Results concerning lack of genetic structure through geographic distribution, as first 
indicated with AFLP markers, have been obtained by other research groups. Analyzing 32 
castor bean lines from different countries using an association between RAPD markers and 
quantitative phenotypic traits (volume and weight of seeds, root length, time of germination 
and first flowering), Milani et al. (2009) obtained a certain degree of convergence between 
the resultant clusters regarding data from these two different approaches. Once again, 
accessions from different origins were put together, confirming the previously reported lack 
of geographically structured clusters among castor bean genotypes.  
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Afterwards, Gajera et al. (2010) have published a wider analysis with these low cost 

dominant markers, in which 200 RAPD primers and 21 ISSR primers were tested for 

generation of informative characters among Indian castor bean lines, and thus 30 and five, 

respectively, were selected for further polymorphism screening using 22 genotypes. Like in 

the previous RAPD analysis, the authors have found a remarkable level of polymorphism 

with both marker systems, in particular with RAPD analysis, in which 80.1% of the 256 

marker bands were polymorphic. However, the lower variability obtained with ISSR 

markers by Gajera et al. (2010) may be occurred due to the smaller number of used primers 

(only five) compared to the RAPD approach. In general, ISSR markers tend to be more 

polymorphic because of its target site in the genome. Microsatellite sequences are known as 

one of the most variable and widespread types of repetitive DNA (Edwards et al., 1991; 

Weising et al., 2005). Thus, these results obtained by amplifying ISSR markers, which is a 

powerful tool that has been widely used to detect polymorphism either among crop 

cultivars or among wild populations of plants (Reddy et al. 2002), may not reveal the real 

polymorphism level in castor bean. For walnut (Juglans regia), for instance, Christopoulos et 

al. (2010) found a higher level of polymorphism with ISSR markers (82.8%) than the 

reported values by Nicese et al. (1998) for RAPD markers (25%). 

Therefore, in order to increase the repertory of available ISSR markers for diversity analysis 

of castor bean, we have tested 60 primers from the UBC set (Table 1) for amplification 

among three genotypes of the species (‘BRS Nordestina’, ‘BRS Paraguaçu’ and ‘Epaba 81’), 

using the protocol described by Bornet & Branchard (2001). PCR conditions of cycle 

intervals and annealing temperatures were used as described by Amorim (2009). Extraction 

and purification of genomic DNA were according to the methodologies described by 

Weising et al. (2005; CTAB protocol I) and Michaels et al. (1994), with minor modifications. 

Our results have revealed a preference for amplification of regions with AG/CT repeats in 

sampled primers and annealing temperatures used (Table 1). Most primers directed to AT 

microsatellite repeats have not amplified any DNA fragment with PCR conditions herein 

referred, although there is a high density of these regions in castor bean genome (as 

presented below). Possibly, the relatively high annealing temperatures [see, Gajera et al. 

(2010) and Tanya et al. (2011)], which were used to increase the PCR stringency, may have 

affected the amplification capability of the primers. However, the higher specificity of the 

DNA amplification, which was propitiated by this measure, ensures the validity of 

generated markers and the reproducibility of results. 

Additionally, we carried out amplification tests with all 64 primer combinations from the 

previously cited AFLP kit (Table 2) with genomic DNA from the same used castor bean 

genotypes in the ISSR assay, following the protocol recommended by the manufacturer. All 

combinations of primers MseI-CAA, MseI-CAG, MseI-CAT and MseI-CTA successfully 

amplified fragments among used accessions and can be used for further analyses regarding 

genotyping and characterization of castor bean germplasm collections, complementing the 

possibilities of markers to be used in genetic diversity studies in the species. On the other 

hand, the primer MseI-CTG only worked when used with the primer EcoRI-AAC. These 

novel AFLP markers that can be used to access polymorphisms among and within castor 

bean germplasm collections will certainly be of great help during the process of genetic 

improvement of the species.  
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Primer SSR motif Ta (°C) Amp. Primer SSR motif Ta (°C) Amp. 

UBC-801 (AT)8T 52.0 – UBC-845 (CT)8RG 54.0 – 

UBC-803 (AT)8C 52.0 – UBC-846 (CA)8RT 54.0 + 

UBC-804 (AT)8A 52.0 – UBC-847 (CA)8RC 54.0 – 

UBC-805 (TA)8C 52.0 – UBC-848 (CA)8RG 54.0 + 

UBC-806 (TA)8G 52.0 – UBC-849 (GT)8YA 52.0 + 

UBC-807 (AG)8T 50.4 + UBC-850 (GT)8YC 54.0 + 

UBC-808 (AG)8C 52.0 + UBC-851 (GT)8YG 54.0 – 

UBC-809 (AG)8G 54.0 – UBC-852 (TC)8RA 52.0 – 

UBC-810 (GA)8T 50.4 + UBC-853 (TC)8RT 52.0 + 

UBC-811 (GA)8C 54.0 + UBC-855 (AC)8YT 52.0 + 

UBC-812 (GA)8A 50.4 + UBC-856 (AC)8YA 52.0 + 

UBC-816 (CA)8T 50.0 + UBC-857 (AC)8YG 54.0 + 

UBC-817 (CA)8A 50.0 + UBC-858 (TG)8RT 52.0 + 

UBC-818 (CA)8G 54.0 + UBC-859 (TG)8RC 54.0 – 

UBC-819 (GT)8A 50.0 – UBC-860 (TG)8RA 52.0 + 

UBC-824 (TC)8G 52.0 + UBC-864 (ATG)6 52.0 + 

UBC-825 (AC)8T 50.4 + UBC-868 (GAA)6 50.0 + 

UBC-826 (AC)8C 52.8 + UBC-869 (GTT)6 50.0 – 

UBC-827 (AC)8G 52.8 + UBC-873 (GACA)4 52.0 + 

UBC-828 (TG)8A 52.0 – UBC-876 (GATA)4 50.0 – 

UBC-830 (TG)8G 52.0 – UBC-878 (GGAT)4 52.0 + 

UBC-831 (AT)8YA 54.0 + UBC-879 (CTTCA)5 50.4 + 

UBC-834 (AG)8YT 52.0 + UBC-880 (GGAGA)5 50.0 + 

UBC-835 (AG)8YC 54.0 + UBC-884 HBH(AG)7 54.0 + 

UBC-836 (AG)8YA 54.0 + UBC-886 VDV(CT)7 54.0 + 

UBC-840 (GA)8YT 52.0 + UBC-887 DVD(TC)7 52.0 + 

UBC-841 (GA)8YC 52.0 + UBC-888 BDB(CA)7 52.0 + 

UBC-842 (GA)8YG 54.0 + UBC-889 DBD(AC)7 52.0 + 

UBC-843 (CT)8RA 54.0 – UBC-890 VHV(GT)7 54.0 + 

UBC-844 (CT)8RC 54.0 – UBC-891 HVH(GT)7 52.0 + 

Table 1. ISSR primers from the University of British Columbia set tested for amplification 

with three castor bean accessions (‘BRS Nordestina’, ‘BRS Paraguaçu’ and ‘Epaba 81’). 

Primers that were either successfully amplified (+) or not (–) using the annealing 

temperatures (Ta) indicated by Amorim (2009) for cowpea (Vigna unguiculata) are indicated.  

2.2 Genome sequencing and the use of co-dominant markers  

As mentioned above, sequencing castor bean genome (Chan et al., 2010) has just opened a 

wide range of possibilities in analyzing the genetic diversity of this economically important 

species. Thus, several approaches that demand previous information about DNA sequences 

can be readily used in large scale analyses regarding the genetic diversity characterization of 

germplasm collections. In general, co-dominant marker systems are the most reliable 
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  MseI primer 

  CAA CAC CAG CAT CTA CTC CTG CTT 

E
co

R
I 

p
ri

m
er

 

AAC + + + + + + + + 

AAG + + + + + + – + 

ACA + + + + + – – + 

ACC + + + + + + – + 

ACG + + + + + + – + 

ACT + + + + + + – + 

AGC + + + + + – – + 

AGG + – + + + – – – 

Table 2. Amplification panel for primer combinations from AFLP Starter Primer Kit 
(Invitrogen, Carlsbad, USA) tested with three castor bean accessions (‘BRS Nordestina’, ‘BRS 
Paraguaçu’ and ‘Epaba 81’). Primer combinations that were either successfully amplified (+) 
or not (–) are indicated. 

markers for characterizing the genetic variability because of their capability to distinguish 
allelic types providing valuable information about the heterozigosity state of a given species 
(Kumar et al., 2009). However, there are factors that may restrict the use of these markers, as 
the high cost and the demanded time to make the DNA sequences available (Weising et al., 
2005). 

Among the most used co-dominant marker systems in evaluating plant diversity are 
microsatellite markers (or SSR) and single nucleotide polymorphisms (SNP) (Kumar et al., 
2009). While the former have been widely employed since its publication in the early 1990s 
(see Morgante & Olivieri, 1993), SNP markers are becoming more popular as information 
about the genomes of plant species are increasing (e.g. Amar et al., 2011; Dong et al., 2010; Li 
et al., 2010).  

In a worldwide-range germplasm characterization, Foster et al. (2010) evaluated the genetic 

diversity among 488 castor bean accessions from 45 countries using 48 SNPs, observing a 

molecular variance far higher within populations (74%) than among populations (22%) and 

countries (4%). These results also confirmed a very weak geographic structuration among 

castor bean populations, confirming previous results obtained with dominant markers 

(Allan et al., 2008; Milani et al., 2009).  

Even within a minor geographic range, among 188 castor bean accessions from 13 wild 
populations from Florida (USA), distribution patterns of SNP alleles were not clear and 
indicated extensive homogenization either due to a high gene flow or because of multiple 
introductions (see Foster et al., 2010). Despite the great number and the wide distribution of 
sampled germplasm collections and better marker coverage compared to the previous 
report (Allan et al., 2008), the genomic coverage of the 48 SNPs described by Foster et al. 
(2010) was quite lower than the coverage of the soybean genome achieved by Li et al. (2010) 
who used 554 SNPs and 303 accessions. 

Chan et al. (2010) estimated that more than half of the castor bean DNA consists of repetitive 
sequences, and SSR motifs are supposed to be widely spread through the species genome. In 
the last years, microsatellite markers have been increasingly employed to characterize 
genetic diversity within castor bean germplasm collections (Allan et al., 2008; Bajay et al., 
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2009, 2011; Qiu et al., 2010) although still there is not an estimate of the extent of SSRs in the 
whole genome of the species. Qiu et al. (2010), analyzing microsatellite repeats associated to 
expressed sequence tags (ESTs), have reported a higher density of SSRs (excluding mono-
repeats) in castor bean genic sequences (1/5.0 kbp) than the average described for other 
crops, such as maize (Zea mays) with 1/8.1 kbp, tomato (Solanum lycopersicum) with 1/11.1 
kbp) and cotton (Gossypium hirsutum) with 1/20.0 kbp (Cardle et al., 2000), for instance. Qiu 
et al. (2010) suggested that such a high SSR density in ESTs may be associated to the small 
genome size of castor bean (~350 Mbp; Chan et al., 2010).  

In order to search for occurrence and distribution of microsatellite repeats across the whole 
genome of castor bean, we have run the SciRoKo (Kofler et al., 2007) software, using the 
genome assembly available at http://castorbean.jcvi.org/downloads.php. Excluding 18,718 
mononucleotide repeats (ca. 97% comprising poli-A SSRs), more than 95,000 SSR sequences 
were revealed in the analysis (Table 3), with one microsatellite occurring each 18.4 kbp, a 
density far below the described for EST-SSRs by Qiu et al. (2010), just as have been reported 
for plants in general (see Morgante et al., 2002).  

 

SSR motif Counts Counts/Mbp AL a AM b AD c PWG d 

AT 19286 55 29.32 0.48 18180.6 20.23% 
AAAT 12890 36.76 19.25 0.51 27201.79 13.52% 
AAT 12763 36.4 25.05 0.93 27472.46 13.39% 
AAAAT 7104 20.26 20.15 0.56 49356.84 7.45% 
AG 6748 19.25 24.72 0.46 51960.73 7.08% 
AAG 5820 16.6 22.27 0.74 60245.88 6.11% 
AAAG 3608 10.29 19.69 0.69 97181.54 3.79% 
AAAAG 3106 8.86 22.91 0.93 112888.29 3.26% 
AATT 2126 6.06 19.91 0.75 164925.22 2.23% 
AAATT 1979 5.64 18.99 0.5 177175.85 2.08% 
AAAAAT 1760 5.02 22.62 0.47 199222.17 1.85% 
AAAAAG 1426 4.07 27.38 0.94 245884.3 1.50% 
ATC 1426 4.07 19.53 0.5 245884.3 1.50% 
AC 1106 3.15 22.33 0.27 317026.23 1.16% 
AGC 855 2.44 18.07 0.32 410094.75 0.90% 
ACC 830 2.37 20.41 0.6 422447 0.87% 
AATAT 818 2.33 21.51 0.82 428644.27 0.86% 
AAC 626 1.79 18.89 0.44 560113.44 0.66% 
AAAC 614 1.75 17.53 0.29 571060.28 0.64% 
AGG 551 1.57 19.54 0.46 636353.93 0.58% 
Others 9871 0.09 21.75 0.36 43916350.09 10.36% 
Average – 61.39 23.22 0.59 18393.66 – 
Total 95313 – – – – 100% 

Table 3. Composition, distribution and frequency of microsatellite motifs across the castor 
bean genome. Microsatellite statistics was performed with the software SciRoKo (Kofler et 
al., 2007), using default settings. Absolute SSR counts and weighted average counts per Mbp 
(105 base pairs) are presented in this panel. aAL weighted average length of the SSRs (bp); 
bAM weighted average number of mismatches; cAD weighted average distance between SSR 
repeats (bp); dPWG percentage of occurrence of the SSR through the whole genome. 
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Thus, we have found that the genomic SSRs consisted of 27,151 dinucleotide repeats 

(28.49%), 23,485 trinucleotide repeats (24.64%), 21,266 tetranucleotide repeats (22.31%), 

15,988 pentanucleotide repeats (16.77%) and 7,423 hexanucleotide repeats (7.79%). On the 

other hand, the overall proportions of the microsatellite classes in EST-SSRs (Qiu et al., 2010) 

were quite different, in which the major proportion of the repeats were constituted by 

trinucleotide motifs (61.06%), followed by di- repeats (32.02%), tetra- repeats (3.63%), penta- 

repeats (1.01%) and hexa- repeats (2.28%). This higher percentage of trinucleotide repeats (as 

well as the hexa- repeats with a higher proportion than the penta- repeats) in EST-SSRs 

might be related to the function of this type repetitive DNA within transcribed regions. It is 

in agreement with results reported for other plants (Morgante et al., 2002). Due to the 

structure of tri- repeats and hexa- repeats, these types of SSR may change in the number of 

repetitions without affecting the reading frame of the gene (Metzgar et al., 2000). The 

general occurrence pattern of specific microsatellite motifs has diverged between EST-SSRs 

(Qiu et al., 2010) and genomic SSRs (Table 3). While Qiu et al. (2010) observed the AG-based 

dinucleotide repeats as the most frequent in the EST-SSRs (22.29%), our results showed that 

the AT mofit was the most abundant in genomic SSR sequences of castor bean (20.23%), as 

described by Morgante et al. (2002) for Arabidopsis thaliana. Likewise, we have found that 

AAT was the most prominent tri- repeat motif within genomic microsatellites (13.39%), as 

the AAG motif was more frequent in transcribed regions (14.35%; Qiu et al., 2010). 

SSR motifs are also abundant in heterochromatic regions, which are quite difficult to 

sequence because of the extremely repetitive nature of this class of chromatin. In this case, 

cytogenetic tools as fluorescent in situ hybridization (FISH) with SSR-like probes in mitotic 

chromosomes may be helpful in characterizing distribution and polymorphisms of large 

microsatellite repeats along the chromosome set (Cuadrado & Jouve, 2010). 

Cuadrado & Jouve (2007), for instance, analyzing the distribution pattern of trinucleotide 

repeats in barley (Hordeum vulgare) chromosomes by means of FISH, observed a preference 

of these large microsatellite clusters for heterochromatic regions, except for the ACT-based 

probe. In relation to the distribution of heterochromatin through castor bean chromosomes, 

large heterochromatic blocks have been related, including all pericentromeric regions 

(Jelenkovic & Harrington, 1973; Paris et al., 1978; Vasconcelos et al., 2010), in which the SSR 

sequences may be important constituents. Thus, in the present work an in situ hybridization 

was performed with the synthetic oligonucleotide (TGA)6 as probe, aiming to test the 

potentiality of using large microsatellite clusters to characterize castor bean accessions. Cell 

preparations, image documentation and FISH conditions followed Vasconcelos et al. (2010); 

probe preparation was done according to Cuadrado & Jouve (2007).  

In contrast to the observed for barley chromosomes, hybridization signals of the TGA-based 

probe, which is directed to the same target of the (CAT)5 oligonucleotide used by Cuadrado 

& Jouve (2007), were observed in all chromosomes, mostly associated to GC-rich 

heterochromatin [evidenced by cromomicin A3 (CMA)] (Fig. 3). While the chromosome E 

presented a non-heterochromatic site of the sampled repeat, the chromosomes B and D were 

the only without a pericentromeric site (Fig. 3). Taking into account the successful 

hybridization of the oligonucleotide in castor bean chromosomes, it is clear that the use of 

FISH to analyze microsatellite distribution through the species genome may be a very useful 

approach. 
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In characterization of castor bean germplasm collections through SSR markers, all studies 

conducted so far indicated congruent results with other marker systems (Allan et al., 2008; 

Bajay et al., 2009, 2011; Qiu et al., 2010). As mentioned above, sampling 41 genotypes from 

35 countries, Allan et al. (2008) first indicated a relatively narrow genetic diversity in the 

species by using only nine genomic SSR markers and three AFLP primer combinations. 

Although SSR markers have yielded more polymorphism than AFLPs in the same analysis, 

both marker systems led to similar results of molecular variance indexes (Allan et al., 2008). 

Subsequently, Bajay et al. (2009, 2011) developed and tested a total of 23 SSR markers from a 

microsatellite-enriched library in two subsequent analyses of genetic diversity within two 

Brazilian castor bean germplasm collections. Similarly to previous results, these two studies 

have revealed relatively low heterozigozity levels among castor bean genotypes. 

 

Fig. 3. Fluorescent in situ hybridization with the synthetic oligonucleotide (TGA)6 in mitotic 
chromosomes of the castor bean cultivar ‘BRS Energia’. In (a) a mitotic metaphase is showed 
evidencing the chromosomes bearing the main rDNA sites (A, B and D) and the only 
chromosome (E) with a terminal signal of hybridization (arrowheads). (b) Representative 
idiogram for castor bean showing the location of the (TGA)6 sites in relation to the marks 
described by Vasconcelos et al. (2010). 

After searching for SSR markers derived from the ESTs of castor bean, Qiu et al. (2010) 

selected 118 primer pairs (out of 379) that were used to estimate relationships among 24 

accessions. The proportion of polymorphic amplicons (41.1%) generated in the analysis can 

be considered as satisfactory, taking into account that Raji et al. (2009) observed 50.6% of 

polymorphism using EST-SSR markers to analyze genetic diversity among cassava, a crop 

with a more recent history of cultivation, in comparison to castor bean. Likewise, PIC and 

heterozigozity values observed for castor bean EST-SSRs were relatively high and quite 

similar to those in cassava (Raji et al., 2009). In contrast to the results observed by Allan et al. 

(2008) and Foster et al. (2010), some degree of geographically structured clusters was 

observed among the accessions used by Qiu et al. (2010), although the authors recognized 

the small number of sampled genotypes, which may have still hindered the results. 

It is clear that there is a great difference in the availability between EST-SSRs and genomic SSR 

to evaluate the extant genetic diversity in castor bean accessions. Albeit less frequent, the 

genomic microsatellites are less likely to suffer mutations with deleterious effects than the EST-

SSRs, a fact that makes genomic SSRs more prone to polymorphisms (see Kalia et al., 2011; 
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Varshney et al., 2005; Weising et al., 2005). Thus, in order to provide a wider range of genomic 

microsatellite markers for castor bean genotyping, we have performed a data mining through 

the whole genome of the species by running the online software WebSat (Martins et al., 2009) 

to locate SSR motifs (minimum size of 30 nucleotides, excluding all microsatellites composed 

by mono- repeats, either simple or compound) and design primers using default settings.  

Covering more than 11 Mbp of the castor bean genome (approximately 3%), a total of 134 
primer pairs were herein designed (Table 4). Despite the low genomic coverage, especially if 
compared to the work carried out by Cavagnaro et al. (2010), in which the whole genome of 
cucumber (Cucumis sativus) was scanned, the analyzed fraction of the genome was close to  

 

Primer Sequence 5’ – 3’ Tm (°C) SSR motif EAS 

RC9-V28828.2 
F: ATTACTTGGGTTCTGTGCCTGT 
R: TTACGAGCTAAGAAAGTCGCTAAAG

59.9 (TA)17 385 

RC19-V28828.6 
F: TCGAGCATAGCAAACATGAA 
R: CGGCAGAACTGTGAGATAAAGT 

58.3 (TAA)16 305 

RC31-V29842.10 
F: AGCAGATTGTGAAGGGATTGTT 
R: ACCCCTGAACTTTTGTGATTTG 

60.1 (AT)24 384 

RC35-V29842.14 
F: GGGATGACTCCAACACCAAT 
R: TTTCCTCCACTCAAAGCAAAC 

59.5 (ATT)10(TAG)10 391 

RC41-V29842.20 
F: AATTGTCCTCTCGCATGGTC 
R: GGGGATTAGGGTTTGTGAGG 

60.3 (AAAAGG)4(GT)9 365 

RC42-V29842.21 
F: TCCGACGCAATAGTACCTTGT 
R: TGTCTCTTCTCCATTGTCTCCC 

60.1 (AT)18 182 

RC54-V29842.33 
F: ACATTACACGAACTCGAACCG 
R: TGCCGGTAGGGCTATAAACA 

60.3 (TA)37(GA)8 557 

RC55-V29842.34 
F: TTTCCCTCTGTGTCTTCGCT 
R: TAGCGCGAGAAAGTCGAGAT 

60.1 (CTT)12 129 

RC58-V29842.37 
F: CGGAAGTTGATGACAAACGA 
R: ATGGTTTTGCTGCTGTTGC 

59.8 (AT)21 303 

RC65-V29842.44 
F: AGCTCCTTGTCCTGTGCCTA 
R: CTGGTGAAGGGTCTGGTCAT 

60.0 (CCACCT)5 389 

RC67-V29842.46 
F: ATACCCTCCACCAATCCCTC 
R: AGTTGCGGAAGTTTCTTTGC 

59.8 
(CCA)7(CCA)9 

(TCCACC)4 
390 

RC71-V29842.50 
F: CAGCTTATGGGAAGATGCTAAA 
R: ATGCAGGATTCACAACAGGA 

58.8 (GT)25 385 

RC86-V29842.65 
F: ATATCCCAAAAGCACCCACA 
R: CCAAAATCATCAGCTCGCTT 

60.3 (AT)17 494 

RC89-V29842.68 
F: AGCTATCCATTCATGCGGAG 
R: AGCTCCTGTCAACATCCCTG 

60.2 (CAT)13 250 

RC94-V29842.73 
F: AGTAAGTTGCGTCAGTCCGC 
R: GTGCTCGCCTTTGTTTGACT 

60.5 (AG)20 265 

RC98-V29842.77 
F: TGGTTGGAGAGAGGTTTGTTTT 
R: GAGCTGTCTTTTGTAGCCCAGT 

60.0 (TA)15 228 

RC108-V29842.87
F: GAATCTCACCTGCTATTATGCCT 
R: CCAAAGCCAAAGAGGGTACTT 

59.2 (AT)20 210 

RC110-V29842.89
F: CCCATCCAATGAAATAGGGA 
R: TGTCCTGCATCAACTGGTTT 

59.4 (TA)16 287 
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Primer Sequence 5’ – 3’ Tm (°C) SSR motif EAS 

RC128-
V29842.107 

F: AGAGAGTGAAAGGCGAGTCAGT 
R: AATCAGTTTGGTCGCGTAGC 

60.0 (TA)20 260 

RC134-
V29842.113 

F: GGTCCAGTTGCCTCTAACCA 
R: AGATCAGCATACAAGGCGCT 

60.1 (TC)17 289 

RC136-
V29842.115 

F: ATGCCCGAACCTATAACCCT 
R: AACCCTATTTCTTCGTCATTGC 

59.6 (AT)15 208 

RC138-
V29842.117 

F: TTGAGGCAAACACTTGCACTA 
R: ATTTTAACTTTGGGCACGCT 

59.1 (AT)28 275 

RC140-
V29842.119 

F: GGCTGTCTAACGCCTAGCAA 
R: AAGGAAATGGTGTGGCAAAA 

60.0 (TA)21 315 

RC141-
V29842.120 

F: CAATGGTGAATGATGAACGG 
R: AGTTGGTGCCAGGAGAAGAA 

59.8 (AT)22 185 

RC146-
V29842.125 

F: TTGGCAGTCATTGTTCTTCTG 
R: GTTTTGGAGTGGCAGAGCT 

59.2 (CT)11(TA)11 393 

RC151-
V29842.130 

F: TTGTGTCCATACCAACATCG 
R: GGATAGGAGCATCAAGAAGGTT 

58.3 (AT)31 389 

RC158-
V29842.137 

F: AATTGGAGTGGGTAGAGAGGG 
R: CAGGTCTCAAGTTTTCCACCA 

59.8 (AAT)10 212 

RC161-
V29842.140 

F: CGCAAATAAACGGAGCATTA 
R: ACAAGCCCACACCCATAAGT 

59.1 (GAAAAA)7 318 

RC165-
V29842.144 

F: TCTGCAACAGGAACGCATAG 
R: TGCAAGGATGTTTGTACTTTGG 

60.0 (CA)10(TA)5(AT)12 280 

RC176-
V29842.155 

F: CAGAGAAAGAACCCTCCGAA 
R: CCGGTCTGAAACTCTTCTGC 

59.7 (AT)7(TA)9 385 

RC185-V29381.1 
F: AGCTGGTAATGGCTCCAAGA 
R: AGAGTGGTTGCCTGATTTGC 

60.0 (TA)32 359 

RC186-V29381.2 
F: CCTTTGTCTCTCTGGCTCGT 
R: GAAAATGGTCCCTCGTTTCA 

59.8 (TA)21 323 

RC196-V29849.7 
F: AGGAAATGAAATGGTGATGG 
R: TGAAGATTGTATGGGGAGGA 

57.6 (TAT)14(TTA)6 173 

RC205-V29849.16
F: TGCGTGAGGGGTTAATTGAT 
R: TGGTGATGGTAGAGATTCCCC 

60.7 (AAT)12 188 

RC207-V29849.18
F: AGCCCCTCACTCCATTATCA 
R: TGTCATATAGGCCCAAGTCG 

59.1 (TG)7(TA)10 294 

RC208-V29849.19
F: AAGGAAGCTCTCTCCAAGGG 
R: ATCGGGGAAGAAGAAAGGAA 

60.0 (CT)6(CT)9(CT)9 308 

RC219-V28829.3 
F: TCCTCAAAGCTGTCCAAACA 
R: GCGAGTGCTGTCTAAAGCCTA 

59.6 (TA)33 267 

RC235-V27471.12
F: AAAGGGGTACAACCGGAAAG 
R: CTTACGCAGCACTGGAAACA 

60.1 (TC)6(TA)16 315 

RC244-V27471.21
F: TGAACCAAGCTCGCATGTAG 
R: GCCAAGAAGATGATTACCCG 

59.8 
(AAT)9 

(GAAGGA)4 
385 

RC252-V27471.29
F: AGATAAACATGACAGCAGGGC 
R: TTGACATAACTGGCTTTGGATG 

59.6 (AT)23 387 

RC253-V27471.30
F: ATGCTGCTTTGTCGTTTCCT 
R: TTCTAACTCCCCATTCGGTG 

59.9 (AT)12(AT)10 569 

RC267-V29697.9 F: ACCCTGTGAGGCGTACATTT 59.2 (TA)28 261 
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Primer Sequence 5’ – 3’ Tm (°C) SSR motif EAS 

R: CCACTCTTTTGGGGTTGTTT 

RC277-V28725.9 
F: ATGAAGGGTGATGGCAGAAG 
R: ACGTCAGCCGAGTTCAAAAT 

59.9 (TC)15 165 

RC279-V28725.11
F: TAGGAAGAGGGGTGGTTTCC 
R: TGGTTAAAGATCAGGCGGTC 

60.2 (AG)11(GA)6 338 

RC280-V28725.12
F: TCGAGAAGTGGGAACAGTGA 
R: TTGGGAGAGATTTGAAGGAAAG 

59.5 (TC)7(CT)14 331 

RC283-V28725.15
F: TTCAAGTATTGGGAATGGCAC 
R: GAGTGGGTTTGAGCAGAAGC 

59.9 (CT)19 188 

RC291-V28725.23
F: TGAGGGAGGAGTTGAAAGAAA 
R: TCAAGTGTGGAGCACGTAAAA 

59.1 (ATA)12 336 

RC292-V30197.1 
F: CATACGCACACAGCCTTGC 
R: GGCCAATCTGGATCATACTTTCT 

61.1 (TA)19 408 

RC302-V30197.11
F: GTTTTGATTTGGATGCTGGG 
R: ACCCATAAGGTGGCATGTTC 

60.0 (AAT)11 349 

RC308-V30197.17
F: GAAATTGCTACAGAAACCGC 
R: TCGATTCTTGGTGAAAGTTAGG 

57.9 (TA)17 313 

RC326-V28359.17
F: GACATGATTTTGACAGGTCGG 
R: GCGGTGGGTGTTTAATTTTG 

60.3 (TA)15 353 

RC328-V28359.19
F: CTAAACCCAGAGAGCGATGC 
R: AGGTCGCAAAAGCTGTGAGT 

60.0 (AT)23 375 

RC330-V28359.21
F: GTCACAATTCAACGCTGCTG 
R: GCTCTACTGATTGATCCGGC 

60.1 (TA)21 391 

RC331-V29476.1 
F: ATTGCTTGTTATCGCCGTTC 
R: TTGAGGGACTAAGGTGAAGAAGA 

59.8 (TCT)18 276 

RC332-V29476.2 
F: TGGAAGTCGCTGTCCTACG 
R: TTAAGGAAGTTGAGGGACCAAA 

60.0 (CT)9(CT)7 285 

RC338-V29828.6 
F: GCCCTACTTCTAACCATGTGC 
R: GTGGTCCTTATGCAACCCAT 

59.2 (AT)29 478 

RC344-V29828.12
F: CCCAACAAGCTCACACCTTT 
R: CCTGCTAGGTTTTGCCAGAG 

60.1 (GA)6(CTCTCA)5 264 

RC354-V28212.4 
F: TGAGGGACTAAATGGTGAAGAA 
R: ACCAGACAAGCCATGAACG 

59.2 (GAA)9(GA)6 277 

RC357-V29605.2 
F: AGCTCACTGGAAAAGCCAAA 
R: GGACCAAATGTCGATAGGAAGA 

60.2 (CT)6(TTC)8 387 

RC379-V29690.8 
F: TTCACTCCCTTCTAGTCGCC 
R: AAAGGCACCAAAGATCCAAA 

59.5 (TAT)12 514 

RC381-V29690.10
F: AAGCACAGAAAAGAGCAAAGC 
R: AGTCCGCCCTTACATATCCA 

59.2 (AT)22 384 

RC387-V29690.16
F: GCTCGTGAAGCTCATAGGC 
R: GGACCATTTTATTTGCTGAGG 

58.6 (TA)20 400 

RC401-V27770.5 
F: TTTGCTTTTGCATTGTGGAC 
R: TGCTTCATAAATTGGCTTGG 

59.2 (TA)26 177 

RC403-V27770.7 
F: TTCATGCAAGTGAGGAATGC 
R: AGGCTGGAAAATGCAAACTC 

59.6 (TA)23 165 

RC410-V29745.2 
F: TCTCTATCGCCACATCACCA 
R: ATTTGATACCACCACCGCTC 

60.0 (TA)40 562 
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Primer Sequence 5’ – 3’ Tm (°C) SSR motif EAS 

RC413-V29745.5 
F: CCGAAAGCTACCAGATCGAG 
R: TCCTCCCATCTTCTTCTTCTTCT 

59.9 (GGAA)6(GAA)10 341 

RC414-V29745.6 
F: GGGAGGGAAGTGGAAATAGC 
R: AGCCATCAGAATTGGGTTCA 

60.2 (CT)12(TA)11 385 

RC417-V29745.9 
F: CGAAACAAATCGCTGGAAT 
R: GAGATTGAACGGGAAGGATG 

59.1 (TA)30 600 

RC420-V29745.12
F: CAACCCAGAAGGGCAGAAG 
R: TGGATTCGGATTTGGAGAAG 

60.4 (GAA)11 190 

RC423-V29745.15
F: ACAAGGACGACGAAGACGAC 
R: CAACAGCAGAACAGTAGCCG 

60.0 (AG)8(GA)12 356 

RC426-V29745.18
F: GAGAAGCTAAAGCCCACAGG 
R: TTTGAAGCCAACTCAACTCG 

59.1 (TA)17 321 

RC430-V29763.1 
F: GCATTGTCCAACTGATGAGC 
R: TGTGAGAAGCTGCGGTTAAAT 

59.6 (TA)20 134 

RC431-V29763.2 
F: CTCTTGGCTTGGTGTCCACT 
R: CGACTGCAATTCTTCCCTGT 

60.3 (TC)15(AT)6 395 

RC434-V29763.5 
F: GAAAAGAGAAGCCCAGATGGT 
R: TTGAAAGGGACACACCAAAA 

59.4 (AAT)11 366 

RC436-V29763.7 
F: AGTGTTTGCTTGATGGGTTGA 
R: TGCAGGCTTTCCAAATCG 

60.7 (AT)26 385 

RC438-V29763.9 
F: GTCGTGAGGCTGTGGAAAAT 
R: AAGTCTAAGCTAATGCTCGCTGA 

60.0 (TA)19 275 

RC441-V29763.12
F: GAGGTGGCAGACTATTTCTTGA 
R: CTCCACTCCTTCATGCTTTTAG 

58.3 (ATA)10 325 

RC446-V28448.1 
F: GCCAAGGCTCTTTCTCTTTT 
R: ACTGTGGTGATCGGAGAGG 

58.2 (ATA)28 378 

RC447-V28448.2 
F: AGCTGACCACCTGAGTACAACA 
R: GTATGTGACGCCAACCATCA 

60.1 (TA)23 369 

RC452-V28448.7 
F: GCTTTTGGGTTGGAGTTCAG 
R: GAGGAGACCAAGAAAACTAAAGGA

59.5 (TC)19 161 

RC453-V28448.8 
F: TTGCATTTGTGTGTGTGTCG 
R: ATTTTAGTTGGCTCCCCACC 

60.2 (GA)14(AG)6 385 

RC457-V28448.12
F: CCGGATTATGTGGTTAGTAGTGG 
R: ATCGTCTCATCGGTGGTTTT 

59.5 (TA)34 296 

RC461-V28448.16
F: GCTGGTATTGGGGTTCTGTG 
R: TCATGGGTTGTTCTGCTTCA 

60.3 (GAA)10 376 

RC462-V28448.17
F: ATAATGGTAGGCTCGGGTGA 
R: TGGAGGATAAAGTGATGTGAGG 

59.2 (CT)19 140 

RC463-V28448.18
F: AACAGGCCAAACAGACAATCTT 
R: CATTAGGCAATAGTAGCTCCCC 

59.6 (TA)11(AG)9 348 

RC465-V37395.1 
F: ATACTTGTCACGGGCTTTGG 
R: AGCGGGAGACGATTGTTATG 

60.0 (TCTTT)6 395 

RC472-V29984.7 
F: TGGCATCCTACATTCACACG 
R: CCTCACATTTGGGTGGACAT 

60.6 (TA)20 504 

RC479-V30056.4 
F: AACCGAGCAGGAAATGAGAA 
R: GTCGTGCAGAAAGGAAGGAG 

59.9 (AT)7(AAT)7 355 

RC480-V30056.5 F: GCTCTGCCTCATCCTCACAT 60.7 (TA)17 279 
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Primer Sequence 5’ – 3’ Tm (°C) SSR motif EAS 

R: AATCAAATGTTCCGCGAGTG 

RC504-V30056.29
F: GCAAGCTCGTTTATATGCTCAA 
R: ATCCAACACCGACACTCCA 

59.7 (AAT)19 586 

RC511-V30056.36
F: TTCTTGCCTCCCTACTGATAATG 
R: AGGTTCTGATGCTTGTTGTCC 

59.4 (AAT)10 201 

RC515-V30056.40
F: ATCAAAGGGTCTTGAGCCAG 
R: ATCCTGCATTTTGTTGTTGC 

59.0 (AT)15 252 

RC537-V29764.12
F: TCGATTCCACCTCCTCATCA 
R: CCAGAAGCCAATTCACATGC 

61.6 (AT)13(TG)12 598 

RC539-V29764.14
F: TGCTCTGCCTCATCATCATC 
R: CACGAATGGTTGTGTTTGCT 

59.8 (AT)23 313 

RC545-V29764.20
F: AGCTCTTTTGCCTTCCCACT 
R: AGGGTTAGAGGTAGGGGTTTTG 

60.1 (AT)24 355 

RC556-V30156.3 
F: GCCATTGATGAGTTTGCTGA 
R: GATACACTTGCCGGAACGAC 

60.2 (AG)17 326 

RC558-V30156.5 
F: GTAGCGACTCCCATCTTTGC 
R: AAAACTCTCACCTTTTCTTCCG 

59.4 (ATT)15 561 

RC559-V30156.6 
F: ACACGGGTGATTTGGGAATA 
R: AAAGGGGCTTCGAGAGAAAA 

60.2 (AC)14(AT)9 214 

RC565-V30156.12
F: CATTTCGAGCCTAAGAACGC 
R: AAGTTCAGGGACCAAAAGTCAA 

60.0 (TCT)13 314 

RC567-V30156.14
F: TGGTGACTCGAACGAAGATG 
R: CCACGTCTTTTGGATGCTTT 

60.0 (TA)27 337 

RC568-V30156.15
F: ACGAAAGGACTGATTGGCAT 
R: ATTATGGGAGGTTCACCAGC 

59.2 (TA)21 589 

RC571-V30156.18
F: CTAAGGATGGTAGCCGAGTG 
R: AATGAGTAGCGAACACACTATCTG 

57.6 (AT)22 475 

RC572-V30156.19
F: CAGATAGTGTGTTCGCTACTCATT 
R: CGTACAATACCCGAATCCAA 

58.0 (AT)15 263 

RC574-V30156.21
F: AGCTCTCTCTCCAAGGGGAC 
R: AATTCTGCGGGATGAAATTG 

59.9 (CT)6(CT)12 348 

RC575-V30156.22
F: GTGAGAAAAGAGAGTGTGAAAGTG 
R: TCATTACCAAACCCGCTAAA 

57.8 (AT)15 380 

RC579-V30156.26
F: TGCCATGACCCAACTAAACA 
R: ATTGCTTCTTGCGCTCTTTC 

59.9 (GA)8(TA)13 370 

RC580-V30156.27
F: TTGGATGCTACCCTCTTAACTCT 
R: CTTAAATGACCCGATTTGGC 

59.0 (TA)18 345 

RC582-V30156.29
F: GTTAGCGGAAACTCGGCA 
R: CATCCCGAACCACATTTCA 

60.1 (TAT)23 400 

RC583-V30156.30
F: TGGTTAAGGGGTTATGGCAG 
R: CGAATTTTAGAAGGAACAAGGC 

59.6 (AT)25 577 

RC584-V30156.31
F: GCCTTGTTCCTTCTAAAATTCG 
R: GAGGGAGAGCTGTTGTTGGT 

59.3 (AT)27(GT)10 568 

RC594-V30156.41
F: TGTGAAAAGGGAGTTCGGAG 
R: ATTGCGGGTAAAACTGAAGC 

59.7 (AT)32(TA)12 357 

RC596-V30156.43
F: TTGAAGGGTGGAGGATTCTTT 
R: CTGCTTGATTGATTTCCCACT 

59.6 (TA)24 397 
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Primer Sequence 5’ – 3’ Tm (°C) SSR motif EAS 

RC598-V30156.45
F: AACAGCAGCGACAACAACAC
R: CAGCAGAACTCAAACCGACA 

60.0 (CAC)6(AAC)9 395 

RC603-V30156.50
F: CACCTTGCAGAGCTTACGAA
R: CCCCAGTTCACACCAATACC 

59.7 (TA)6(CT)9 341 

RC604-V30156.51
F: TCCTACTCTTGTGAGAACGGACT
R: GGGCATACTTCAACCGAAGA 

59.8 (TA)27 300 

RC612-V30156.59
F: CAGGCCGTATTAGCGATGTT
R: GGTATGTCTTAGTTAGGATTGGGC 

59.7 (TA)29 229 

RC614-V30156.61
F: GCGATCACTTACACGATATGC
R: TCACTCATCACACACATCACCT 

58.7 (AT)22 494 

RC621-V30156.68
F: TCGCATGAGTGGAACCTGTA
R: AAGAAGAAGGAGACACGGCA 

60.1 (AAT)12 319 

RC630-V30156.77
F: CCAATAGGTTCAGTGTTTTGCC
R: ACAAGCTGGGCATGATTGA 

60.5 (AT)29 363 

RC638-V30156.85
F: TGGTTGATGGTGCCAGACTA
R: TATCTGAAAATGCGCTGCTG 

60.1 (TC)15(CT)8 305 

RC640-V30156.87
F: CGACGTAGGAGCAACTAAAGG
R: ATCGGACATGGTGCTTAAAA 

58.6 (TTA)10 272 

RC644-V30156.91
F: TGCATCCTTGTTTCCATGTC
R: TTTGCCGATCCTCAGTCTCT 

59.7 (AT)24 569 

RC645-V30156.92
F: CTTGAGGGTCGTAGGAGCAG
R: GGTAGCAACTCTCTTTCTTCGC 

59.8 (AT)41 327 

RC647-V30156.94
F: GGCAAGCACAGAGCATACG
R: GCGCCATAGAATTTGCACTT 

60.4 (TA)19 386 

RC650-V30156.97
F: ATAATTCCAGGGGCAAAATC
R: CAAATGGCACCCAATAAGAA 

58.2 (AT)36 310 

RC654-V29781.1 
F: ATAGAGAGAGAGGGAGGGAGAC
R: TGCCAATATGCAGTCACATC 

57.6 (AG)15 327 

RC655-V29781.2 
F: GGCTGGAAGAGGAAGAAACA
R: GTGCTGATCCAAACTTGATAGG 

59.1 (AG)15 244 

RC658-V47284.1 
F: GAGATGTCTAATCACACGCCAA
R: AATCGGGGCCATTTACTTTT 

59.9 (ATT)11 323 

RC661-V29346.2 
F: TGGTTCCTTCTTGTGTGAGC
R: ATTTGCCTCCCCTAGTTTCC 

59.1 (CCGCA)6 206 

RC662-V29346.3 
F: TGCTGCCCTTGATTTTCTTT
R: CCTTGTGCCCTTTGTATGCT 

60.0 (TA)18(AG)14 252 

RC687-V30006.20
F: GCTTATGGGTGGTTGTTTCC
R: GTTTATCATCGAGCAAGCCA 

59.1 (CT)30 213 

RC690-V30006.23
F: TAGAACGCCTGGTGATTGTG
R: AAACCATTGCACCCTTGAAA 

60.0 (TC)7(AC)14 226 

RC691-V30006.24
F: TGATTCGATTACAACTCCAGC
R: CACTAAATGGTGGAATGACTGA 

57.7 (AT)11(AAT)9 368 

RC693-V30006.26
F: TCCCAACCCCAACAATAGAA
R: CACATGGGTGGCAAAGAAA 

60.3 (TA)15 365 

Table 4. SSR primer pairs obtained through data mining in a fragment of the castor bean 
genome sequence. Sequences, melting temperature and estimated allele sizes (EAS) of 
primer pairs (F: forward; R: reverse) are indicated in the panel. 

www.intechopen.com



Molecular Markers to Access Genetic Diversity 
of Castor Bean: Current Status and Prospects for Breeding Purposes 

 

217 

the value obtained by Qiu et al. (2010) for genic sequences (13.68 Mbp – approximately 4% 
of the genome). Moreover, our stringent criteria for selection of microsatellites to be used 
sharply reduced the final number of annotated primer pairs. Without the adopted restriction 
of 30 nucleotides and using default parameters of the software, the total number of scored 
microsatellites increased from 134 to 696 (data not shown). Therefore, due to the higher 
number of repetitions of the targeted microsatellites, these molecular markers may be more 
liable to polymorphisms than the smaller SSRs. 

3. Conclusion 

Despite the recent efforts to characterize castor bean germplasm collections, there are 
relatively few molecular markers available. Curiously, the use of widely spread and low-
cost anonymous markers, as RAPD and ISSR, in genetic diversity analyses is still 
problematic and insufficient. Even the powerful and reliable AFLP marker system was 
poorly used to describe the extant polymorphism in castor bean germplasm collections. 
However, still there is a need for selection of robust molecular markers able to distinguish 
accessions and/or for association with phenotypic traits of interest such as oil production, 
resistance to abiotic stress and pathogens. Thus, our results, in addition to compiled data 
from literature, will be very useful for breeding programs by providing important 
information about genetic diversity of this important crop. Furthermore, our efforts in 
describing novel molecular markers certainly should help the development of the first 
genetic map for castor bean. 
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