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1. Introduction  

The greatest stability of in vitro plant materials with practical storage periods measured in 
decades can be achieved by cryogenic storage at ultra low temperatures. Liquid Nitrogen 
(LN) is the most common medium for cryostorage as it is relatively inexpensive and readily 
available (Withers, 1987; Panis and Lambardi, 2005). This process puts the cells in 
suspended animation where they can retain their viability indefinitely. Maintenance under 
these conditions effectively halts biological growth and development (Franks, 1985; Grout 
and Morris, 1987; Grout, 1990a; 1990b) because at below -140ºC, the rates of chemical and 
biophysical reaction will be too slow to affect cell survival. Consequently, material that can 
be brought to the ultra-low temperature and recovered from it without acquiring lethal 
injury may be stored for extremely long periods. The challenge is to devise a protocol that 
allows in vitro plant material to be recovered from the cryogen at high viability, and without 
structural and functional changes (Kartha, 1997; Withers, 1987; Grout and Morris, 1987; 
Grout, 1990 a, 1990 b). Preservation of viability depends upon the ability to minimize the 
stresses of cryopreservation and protect against the damaging consequences. A variety of 
plant material can be used for cryopreservation including in vitro cultivated material, pollen, 
seeds, embryos, buds and meristematic tissues. 

Although cryopreservation has many advantages, freezing and thawing injuries related to 
membrane structure and function that would result in low survival percentages are still the 
limiting factors (Ashmore, 1997). Prior to freezing, the cells must be treated with a 
cryoprotectant solution such as glycerol, dimethyl sulfoxide (DMSO), or ethylene glycol. 
These substances protect the cells and their membranes from damage during the freezing 
process. After the cells have been exposed to the freezing medium containing the 
cryoprotectant, they must be dehydrated so that the water inside the cells will not form ice 
crystals damaging the cell. To dehydrate the cells, they are cooled very slowly prior to 
plunging them into LN at -196° C that will maintain this constant temperature as long as 
there is nitrogen in the storage tank (Touchell and Dixon, 1999). When cells are to be 
thawed, they are warmed rapidly and the cryoprotectant solution is removed. The cells are 
then cultured in an incubator where they will resume their growth and development. 
Thawed cells have retained their viability following freezing in LN for more than half a 
century. The cryopreservation of plant genetic resources has two purposes: (1) preservation 
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of genetic diversity and (2) preservation of selected varieties for the economic value of their 
characteristics. Maintenance of continuous culture is labour intensive. In addition, frequent 
subcultures can generate variants. This disadvantage can be limited by slow growth of in 
vitro cultures, whereby the frequency of subculture can be reduced. However, the principle 
inconvenience is the possible occurrence of somaclonal variants, incompatible with the aim 
of genetic resource conservation. Large differences in cell growth lag phase relate to the 
cryopreservation protocol, the cell source used, as well as variations in cell size and degree 
of vacuolation in the calli or cell suspensions used for preservation. Thus, there is a concern 
that cryopreservation and regrowth procedures might contribute to selection of cells with 
specific characteristics. In addition, tissue culture continues to play a vital role in the 
development of cryopreservation techniques. Thus, there is an increasing requirement to 
determine whether plants derived from cryopreservation are ‘true to type’ or not, to 
measure the extent of the ‘normal phenotype’ in cryopreserved plants, and to estimate the 
degree of closeness of cryopreserved plants to the ‘true’ parental genotype. These 
determinations may be achieved through the application of a range of analytical techniques 
to examine cryopreservation-derived changes at the phenotypic, histological, cytological, 
biochemical and molecular levels (Harding et al., 2009).  

2. Available plant cryopreservation protocols 

Methods for the cryopreservation of a variety of in vitro cultured tissues such as 
embryogenic cells (Huang et al., 1995), suspension cells (Ishikawa et al., 1996), transgenic 
suspension cells (Cho et al., 2007) have been developed. However, a general protocol for 
cryopreservation of plant cell cultures has not yet been developed. Also, an exact and most 
suitable guideline for individual specimens is not available as noted by Withers (1983). 
Thus, the steps involved in the process such as osmotic pre-treatment, cryoprotection, 
freezing, thawing and subsequent regeneration require standardization for individual 
species or even individual cell line (Cho et al., 2007). The three most common methods are 
given below.  

2.1 Classical slow-cooling/freezing protocol 

The function of controlled, slow-cooling in cryopreservation is to allow cryodehydration to 
progress without intracellular freezing, removing water from cells to a point where their 
contained solutions will not form ice crystals when taken to the final cryogen temperature. 
Cell injuries during freezing are effectively decreased by the addition of various 
cryoprotectants that reduce the cell size and lower the freezing point to prevent the 
formation of ice crystals in the cells (Jain et al., 1996). Slow-cooling rates minimize thermal 
stress from non-uniform temperature distribution, and cryoprotectants contribute to reduce 
stress by changing the microstructure of the ice formed (Gao et al., 1995). 

2.2 Encapsulation/dehydration 

In this method, explants (usually meristems or embryos) are first encapsulated in alginate 
beads (which can contain also mineral salts and organics), thus forming “synthetic seeds” 
(“artificial seeds” or “synseeds”). They are then, treated with a high sucrose concentration, 
dried down to a moisture content of 20-30% (under airflow or using silica gel) and 
subsequently rapidly frozen in LN. Due to the extreme desiccation of explants, most or all 
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freezable water is removed from cells and vitrification of internal solutes takes place during 
rapid exposure to LN, thus avoiding lethal intracellular ice crystallization (Engelman, 1997). 

2.3 Vitrification 

It consists of first preculturing the explants in a dilute solution of a permeating 
cryoprotectant (so called as loading phase), followed by a vitrification solution (so called as 
dehydration phase). Since the osmotic strength of the vitrification solution is very high (>8 
osmol) and the duration of application fairly short, the main function is to dehydrate the 
sample, concentrating the permeable components and other cytoplasmic contents within the 
cell (Towill, 2002). Vitrification-based procedures involve removal of most or all freezable 
water by physical or osmotic dehydration of explants, followed by ultra-rapid-freezing 
which results in vitrification of intra cellular solutes, i.e. formation of an amorphous glassy 
structure without occurrence of ice crystals which are detrimental to cellular structural 
integrity. These techniques are less complex and do not require a programmable freezer, 
and are more appropriate for complex organs like embryos and shoot apices. Hence, are 
suited for use in any laboratory with basic facilities for tissue culture. Engelmann (2000) 
described seven vitrification-based procedures in use for cryopreservation: encapsulation-
dehydration, vitrification, encapsulation-vitrification, desiccation, pregrowth, pregrowth-
desiccation, and droplet freezing, which have been reported to be successfully used for a 
number of different plant species.  

Slow freezing causes extracellular ice to form, thus dehydrating the cell and preventing 
damage by intracellular ice formation. However, if the freezing is carried out too slowly and 
dehydration is excessive, the cell will suffer from “solution effects” damage (Withers, 1984; 
Mazur, 1984). This has been ascribed to pH alterations, intracellular solute concentration, 
dehydration, membrane alterations and protein denaturation and intracellular ice formation 
at supraoptimal rates (Towill, 2002). Solution based vitrification is very time-consuming, 
and processing large numbers of explants is often difficult. The encapsulation procedure 
allows more propagules to be handled at one time, and timing is not very critical; although 
it usually requires several hours to attain the desired level of desiccation. If air drying is 
used, the duration will differ depending on the relative humidity of the atmosphere. While 
two step cooling systems require a suitable apparatus, vitrification procedures eliminate the 
necessity for expensive and sophisticated slow-cooling equipments by allowing tissues to be 
cryopreserved by direct immersion in LN. Explants like shoot apices have high moisture 
content and require specialized treatments to prevent lethal ice crystal formation during 
freezing. Vitrification reduces the requirement for extensive manipulation of the apices that 
may result otherwise in physical damage to the tissues (Towill and Jarret, 1992). However, 
as vitrification solutions cause extreme desiccation of shoot apices, care must be taken 
during washing procedures to prevent rapid deplasmolysis. To reduce cellular damage, 
washing solutions should be isotonic with the thawed tissues, which is usually achieved by 
the manipulation of the sucrose concentration in the washing medium (Touchell and Dixon, 
1999). The key to high survival rates in the slow-cooling method is to carefully control the 
cooling procedure, whereas in the vitrification method, the cryoprotectant exposure must be 
carefully controlled. It is reasonable to expect that no single method will give high levels of 
survival for every genotype of a species after cryogenic exposure. Since a method cannot be 
devised for each genotype, once a useful procedure is identified the next step would be to 
apply it to different genotypes to determine overall utility.  
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2.4 Other protocols 

The other available methods are the pre-culture/dehydration used by Dumet et al. (1993), 
where clumps of somatic embryos of oil palm were dissected from standard cultures and 
pre-grown on 0.75M sucrose for 7 days or further dehydrated under air flow and silica gel 
for few hours before immersing in LN. In another preculturing method given by Panis et al. 
(1996), the proliferating meristems of banana were pre-cultured for 2-4 weeks on MS 
medium with 0.3-0.5M sucrose, then excised and plunged into LN. In the droplet freezing 
method by Schäfer et al. (1997), apical shoot tips of potato were first incubated in DMSO, 
then transferred into 2.5ml droplets placed on small leaflets of aluminium foil and immersed 
in LN. All these techniques have been used for only a limited number of plant species. 

3. Cryoprotective-agent 

 In theory, ultra low temperature, such as -196ºC in LN, maintains tissue quality. In practice, 
the water-rich plant tissues require additional compounds to prevent ice crystal damage 
during cryopreservation. Different chemicals and treatments are applied to protect and to 
recover the plant materials during and after storage in LN. Such a chemical should sustain 
the viability of biological material during freeze thaw cycle and must not be toxic to tissues 
at the concentration required adequately to lower the freezing point.  

There are two types of cryoprotectants: (i) low molecular weight compounds which 
penetrate the cell with ease, e.g. glycerol and DMSO, and (ii) compounds which penetrate 
the cell slowly e.g. sucrose, PVP, dextran etc. These compounds protect the cell surface 
membrane by reducing growth rate and size of ice crystals and by lowering the effective 
concentration of solutes in equilibrium with ice inside and outside the cell. This increases 
membrane permeability which aids water removal from the cell and facilitates protective 
dehydration during early stages of freezing. Most commonly used cryoprotective agents 
include glucose, DMSO and polyethelene glycol. Glucose serves as a dehydrating agent. 
DMSO (toxic at higher temperature) passes through the cell membrane readily and protects 
the cells during the process of freezing. Polyethylene glycol (PEG) gives a water stress to the 
cells so that ice formation is reduced and may also diminish the harmful effects of DMSO on 
the freeze stressed cells. Desferrioxamine, an iron-chelating agent, has also been used as a 
cryoprotectant (Benson et al., 1995). When establishing a cryopreservation protocol, it is also 
important to determine if cryoprotectants impair cell growth and development. However, 
published information on the toxicity of cryoprotectants prior to the cooling process is 
limited. In some species, cryoprotectants cause a temporary loss of semi permeability of 
membranes (McLellan et al., 1990), while, Pushkar et al. (1976) and Moiseyev et al. (1982) 
found that in the presence of low molecular weight PEGs, the activity of enzyme system was 
decreased. The cryoprotectant mixture of Withers and King (1980), containing DMSO (0.5M), 
glycerol (0.5M) and sucrose (1.0M), has been most widely used particularly in studies with rice 
cells and has not been found to be toxic to the rice cells or inhibit its regeneration. 

4. Regeneration of plants after cryopreservation  

Regeneration is an important criterion for most of the cryopreserved materials. Moreover, 
the viability rate of in vitro cultured and cryopreserved cells must be high to avoid the 
growing of particular types of cells (Menges and Murray, 2004). Since elite genotype 
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selection is on the basis of both in vitro and ex vitro evaluations, the process from somatic 
embryo initiation to mass seedling production can be long. A consequence of this extended 
time period is that embryogenicity may diminish or even be irrevocably lost in a few weeks 
or months (Breton et al., 2006). A way around this problem is to cryopreserve tissues while 
they are at their peak productivity, shortly after embryogenic tissue induction and when 
enough tissue is available (Kong and Aderkas, 2011). Thus, a relatively simple and 
reproducible protocol for the regeneration of plants from the cryopreserved explant is essential 
for long-term preservation/conservation. Plant regeneration and its frequency are dependent 
on various factors like: (1) genotypes, (2) age and physiological state of the culture preserved, 
(3) state of differentiation i.e., isolated cells or well-differentiated tissue and organs, (4) water 
content of cells of the explant, (5) concentration and duration of treatment with the 
cryoprotectant, (6) method and rate of freezing and (7) method of thawing and culture 
including combinations of plant growth regulators used during regeneration (Withers, 1983; 
Bajaj and Sala, 1991; Tsukara and Hirosawa, 1992). The pregrowth phase of plant cells is 
considered as very important stage for attaining successful cryopreservation. During this 
period, various changes may occur at the cellular level including a decrease in cell and vacuole 
size, changes in the flexibility and thickness of cell walls and alteration of metabolic activities 
(Withers, 1978). Tissue survival is mainly affected by pretreatment i.e., the longer the 
pretreatment, the higher the survival percentage. Embryogenicity is also affected by the 
temperature of the pretreatment. Lower temperatures prevent embryos from maturing and, 
thus extend embryogenic tissue recovery (Kong and Aderkas, 2011). After recovery from LN, 
explants contain living, weakened and killed cells. Undifferentiated suspensions, which 
consist of large vacuolated cells, are also prone to severe cryoinjury compared with 
embryogenic cultures and apical organs, which contain small cytoplasmic-rich meristematic 
cells (Wang et al., 2002). In addition, suspension cells are sensitive to environmental stresses, 
such as dehydration, high osmotic pressure, and low temperatures. Therefore, the 
assessment of the condition of a specimen both quantitatively and qualitatively after the 
various stages in the cryopreservation procedure is one of the most important aids to the 
development of a freeze preservation protocol. Viability of the explants/cells after 
cryopreservation can be assessed by the flourescein diacetate (FDA) or triphenyltetrazolium 
chloride (TTC) test. The FDA gets converted to flourescein as a result of esterase activity. 
Cells with an intact plasma membrane fluoresce green in ultraviolet light as the larger 
molecules of fluorescin are unable to pass through the membrane. The TTC reduction is 
based on the mitochondrial respiratory efficiency of cells that converts the tetrazolium salt 
to insoluble formazon, which is extracted and measured spectrophotometrically.  

The first report on survival of plant tissues on exposure to ultra low–temperatures was 
made by Sakai, when he demonstrated that very hardy mulberry (Morus sp.) could 
withstand freezing in LN after dehydration by extra organ freezing (Sakai,1956). Huang et 
al. (1995) achieved success in plant regeneration from cryopreserved suspension cells of rice. 
Cornejo et al. (1995) discovered that cryopreservation did not affect the ability of rice cells to 
integrate and express foreign genes. Yang et al. (1999) reported developing an efficient 
protocol for regeneration of a model rice variety Taipei 309 from long-term storage. Anther-
derived rice (O. sativa L. sp. japonica variety) plants were obtained after cryopreservation by 
an encapsulation/dehydration technique. Eighty percent of the plantlets developed into 
normal plants after being transferred to greenhouse conditions. Histological observations 
showed that the origin of the plants was not modified by the cryopreservation process 
(Marassi et al., 2006).  
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5. Variation in cryopreserved derived plant  

The genome “quality” reflects its organization and structure, and the genome “flexibility” 
reveals the complex functionality including capability to response to intracellular and 
exogenous signals. The measure of tolerance of the genome to exogenous factors depends on 
the genome “flexibility” generating genetic variation (Skyba and Cellarova, 2009). Zhang 
and Hu (1999) and Moukadiri et al. (1999a) suggested that phenotypic variations seen in 
some of the regenerated plants were mainly due to tissue culture induced variations rather 
than effect of cold storage that were revealed by flow cytometric analysis (Moukadiri et al., 
1999a) and randomly amplified polymorphic DNA (RAPD) markers (Moukadiri et al., 
1999b). However, differences in band intensities among some but not all bands might 
indicate structural rearrangements in DNA caused by different types of DNA damage 
(Danylchenko and Sorochinsky, 2005) that might not be readily detected using the given 
system. The RAPD technology has previously been used successfully to detect occurrence of 
genetic alterations (Finkle et al., 1985; Harding, 1997; Aronen et al., 1999; Ahuja et al., 2002; 
Urbanova´ et al., 2005; Castillo et al., 2010), but this approach possesses limits with 
reproducibility, and it is currently being replaced by techniques such as Amplified 
Fragment Length Polymorphisms (AFLPs) and/or Simple Sequence Repeats (SSRs, 
microsatellites). These techniques are now being used to consider more carefully the issue of 
genetic fidelity after cryo-procedures, especially in the breeding of long-living conifers (Salaj 
et al., 2010), where genetic changes might be substantially expressed only later on, in mature 
trees.  

Phenotypic and DNA variation among putative plant clones is termed somaclonal variation. 
Somaclonal variation caused by the process of tissue culture is also called tissue culture-
induced variation to more specifically define the inducing environment (Kaepler et al., 2000). 
Somaclonal variation is a likely reflection of response to cellular stress in other situations as 
well. Therefore, understanding the mechanism of tissue culture variation will be useful in 
defining cellular mechanisms acting in the process of evolution, and in elucidating the 
mechanism by which plants respond to stress. Epigenetic processes are likely to play an 
important role in these mechanisms. Primary regenerants (R0) are often more variable than 
their progeny. Examples of aberrant phenotypes in regenerated plants include abnormal leaf 
structures and variant floral morphology (Kaeppler et al., 2000) and change in kernel color of 
O. rufipogon seeds in R1 plants (Zeliang et al., 2010). Qualitative mutation is frequent among 
tissue culture regenerants and the summation of protein assays, DNA studies and specific 
mutant analyses suggests that single-base changes or very small insertions/deletions are the 
basis of these changes (Kaeppler et al., 1998). 

However, there is no convincing evidence for genetic alterations due to cryoprotectant 
effects in cryopreservation experiments where concentrations of protectants are relatively 
low, exposure time are short and reduced temperatures are likely to have an ameliorating 
effect. It has also been suggested that freezing damage is related, in part, to free radical 
effects, and that both DMSO and glycerol provide an element of protection against these 
agents by acting as free radical scavengers (Benson, 1990). Although one of the benefits of 
cryostorage is the maintenance of germplasm in a genetically secure environment, very little 
work has been conducted on the genetic fidelity of shoot material or plants recovered after 
cryostorage. Most workers relied on observations of phenotype for confirmation of stability 
in morphogenic cultures. Phenotypic abnormalities became more common as the number of 
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reports of regeneration increased, suggesting that many genetic changes are not 
incompatible with regeneration (Withers, 1984). The climate of opinion on genetic stability 
in tissue culture is also changing due to the recognition of ‘somaclonal variation’ as an 
important phenomenon associated with in vitro works (Scowcroft and Larkin, 1983; 
Scowcroft, 1984). The need to screen for and to report on induced genetic variation is now 
widely recognized. In the case of Manihot spp (Withers, 1984) and Saccharum spp (Ulrich et al., 
1979), cryopreservation led to an apparent loss of totipotency. However, the reported 
phenomenon is different from the time-related loss of totipotency observed in long-term 
callus cultures. There is increasing evidence that, provided that the cryopreservation 
technique applied ensures the greatest possible maintenance of the integrity of the stored 
specimen, there will be no modification at the phenotypic, biochemical, chromosomal or 
molecular level due to cryopreservation (Engelmann, 1997). In a study on Cosmos 
atrosanguineus cryopreservation by Wilkinson et al. (2003), the use of AFLP gave no 
indication of any variation among the tested regenerants and any growth abnormality 
observed directly after regeneration was not carried over to the later growth stages. 
Moreover, the nature and location of cell damage appeared to be dependent on the pre-
growth cryoprotectant, freezing protocol and species under study.  

6. Current status of research and development in cryopreservation  

When plant cells are cryopreserved, their plasma membranes are believed to freeze first. As 
the plant cell is frozen, ice crystals form in the intercellular space and eventually expand 
with drop in temperature. This creates an osmotic pressure difference between the inside 
and outside of the cell; therefore, to compensate for this difference, the cell expels water. 
Since the freezing outside the cell is faster than the inside, ice formation occurs first outside 
the cell. This formation of ice in turn reduces the water content outside the cell and causes 
the water inside the cell to move out thereby eventually dehydrating the cells. Temperature, 
as a major triggering variable in low temperature exposure, affects all structures and 
processes in the living matter with no exception. Skyba and Cellarova (2009), using the 
Hypericum peforatum model, studied the effect of temperature on the physical and 
physiology aspect of the plant after cryopreservation. They concluded that, the way in 
which temperature was decreased affect cell viability and choice of the explants and its 
seasonal rhythm affect survival rate after cryopreservation. In the case of in vitro cultured 
cells, systematic studies about cryopreservation and its applicability are yet to be 
determined, because even cell lines of closely related species require different parameter 
and the same cell line may behave differently in different laboratories. Even if a 
cryopreservation method has been worked out, the problems of transporting the cultures or 
reproducing the same method in a different laboratory remain to be solved (Dobbennack et 
al., 2009). Further, there is no demonstrated mechanism for enhancing the survival of 
thawed cells. It is supposed that  high sugar in culture medium lowers water content and 
increases endogenous sugar concentrations in cells (Matsumoto et al., 1998). Sugars are 
known to protect membranes from desiccation events that are inherent to any preservation 
and added between protocol  and are also known to enhance glass formation during cooling.  

Cereals, especially rice and barley are two well studied model crops where a variety of 
information is available. Cryopreservation of rice cell suspension was first reported by Sala 
et al. (1979). Various types of in vitro cultures of rice, such as cell suspensions, protoplast, 
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zygotic embryos and cultured shoot apices survive freezing in LN and retain their 
morphogenic potential. Rice cells suffer severe metabolic impairment after freezing in LN 
and show reduced uptake of glucose after freezing (Cella et al., 1982) and preferentially use 
fructose as carbon source. A detailed study on cryopreservation of suspensions cells of 
Taipei309 was carried out by Lynch and Benson (1991). They suggested that successful 
cryopreservation depends on cryogenic technique and pre and post freezing tissue culture. 
In the post-freezing recovery phase, carbon source in the culture medium has been reported 
to be an important factor. Kuriyama et al. (1989) showed that viability and proliferation of 
thawed rice cells are depressed in presence of NH4+ ions. The effect is thought to be due to 
the inability of freshly thawed cells to control ionic gradients across plasma membranes. 
However, rice cells utilize NH4+ ions effectively once they have started recovery from cryo-
injury. Freezing protocol of Withers and King (1980) has been used in majority of the studies 
with rice cells. Rice is normally cultured with sucrose as the sole source of nitrogen. Sucrose 
is rapidly hydrolyzed by actively growing rice cells to fructose and glucose, which are 
utilized equally. Sucrose hydrolysis is dependent on invertase activity (Amino and Tazawa, 
1988), which in turn is associated with the cell wall (Schmitz and Lorz, 1990). However, 
long-term maintenance of freezed cells on fructose was detrimental. The direct immersion of 
frozen cells in liquid medium is damaging for rice suspension cells (Lynch and Benson, 
1991; Huang et al., 1995; Lynch et al., 1995). Physiological condition of growth, cell aggregate 
size, embryogenicity and water content of cells has been reported to influence the 
cryopreservation by Lynch et al. (1995) and Watanabe et al. (1995). Their study revealed that 
cells from poorly cryoprotectable genotypes showed increased freezing tolerance after 
protoplasting (removing of cell wall).  

Jain et al. (1996) reported a two step freezing protocol for aromatic rice varieties. Suspension 
cells were cryopreserved by pre-conditioning cells in mannitol, pretreatment in a 
cryoprotectant solution containing sucrose, DMSO, glycerol, proline and modified R2 
medium, cooling to -25°C in a freezer followed by storage in LN. Plants were regenerated 
from freezed cells as well as from protoplasts isolated from re-established suspension cells. 
Cryopreservation by vitrification of rice calli has been reported by Wang et al. (1996). 
Watanabe et al. (1998) cryopreserved non-embryogenic rice callus cells by vitrification and 
found that the cell grew vigorously after cryopreservation in the same manner as untreated 
control and program freezed cells. Medium containing organic nitrogen (amino acids) 
source was found most suitable as pre-growth medium for suspension cells while inorganic 
nitrogen was required for successful post thawing recovery. Hu and Gou (1996) and Towill 
and Walters (2000) successfully cryopreserved pollen grain. Adventitious buds were also 
cryopreserved efficiently by Zhang and Hu (1999). Adding haemoglobin solution 
(ErythrogenTM) to post–thaw medium of indica rice (O. sativa L.) cells has been reported to 
enhance survival following cryopreservation (Forkan et al., 2001). During rapid-freezing of 
rice embryogenic suspension cells, the addition of AFP-I (polar fish antifreeze protein) 
displayed protective action in the higher concentrated (but non vitrifying) cryoprotectants 
and detrimental effect in more dilute ones (Wang et al., 2001). Pregrowth-desiccation of the 
suspension cells using sucrose and sorbitol in AA medium also gave 96-100% survival 
(Zhang et al., 2001). In another study by Jelodar et al. (2001) the protoplast yields increased 
for re-established cell suspension cultures after cryopreservation compared to unfrozen 
control cultures. Direct immersion in LN of calli pre-treated with abscisic acid was found to 
be a fast and highly efficient freezing procedure that maintained the main characteristics of 
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the cell populations and appeared to increase their metabolic activity (Moukadiri, 2002). 
Marassi et al. (2006) developed encapsulation-dehydration technique and successfully 
cryopreserved anthers with this technique.  

In barley, preculturing reduced the volume of vacuoles and eliminated some osmotically 
sensitive mitochondria. Reduction in total water content, increase in bound water ratio and 
accumulation of new proteins also occurred during this step. The adaptation other than in 
structure and physiology improved the tolerance of cells to desiccation and freezing (Wang 
and Huang, 2002). Antifreeze proteins first identified in polar fishes also accumulate in 
freezing–tolerant overwintering cereals (Antikainen and Griffith, 1997). These proteins can 
lower the freezing temperature noncolligatively and inhibits the growth of ice crystals. The 
function of these proteins during cryopreservation of rice cells was tested by Wang and 
Huang (1998) and Wang et al. (1999). They found that at the proper concentration, antifreeze 
proteins may enhance viability through inhibition of ice crystallization, whereas at high 
concentration, they may decrease the survival rates by ice nucleation.  

In a study on Panax (Ginseng), Mannonen et al. (1990) preserved P. ginseng cultures either in 

LN or under mineral oil for 6 months and compared their growth behaviour and ability to 

produce ginsenosides after a recovery period with the cultures maintained by frequent sub 

cultivation during the same period. They demonstrated that neither growth kinetics nor the 

degree of vacuolation that occurred during growth was affected by either storage protocol. 

However, some changes in secondary metabolism were found with preservation under 

mineral oil but not with the cryogenic method (Yoshimatsu and Shimomura, 2002). 

In the case of conifers, the conventional cryopreservation method of embryogenic tissue 
required a few key steps: (1) pretreatment with osmotic regulators, such as sugars (usually, 
sucrose) or sugar alcohols (such as sorbitol and mannitol), (2) cryoprotectant treatment with 
DMSO, and (3) a carefully controlled slow-cooling process before the immersion in LN 
(Klimaszewska et al., 1992; Cyr, 1999; Gale et al., 2007). Currently, efforts are being made to 
simplify this process by exploring new methods of cryopreservation in both angiosperms 
and gymnosperms (Touchell et al., 2002; Gale et al., 2008; Popova et al., 2009; Yin and Hong, 
2010). DMSO was found to cause genetic alteration under some conditions by Vannini and 
Poli (1983) and  DNA damage and/or rearrangements in some cases viz., Abies cephalonica 
(Aronen et al., 1999), Solanum tuberosum L. (Harding, 1997) and Rubus grabowskii (Castillo et 
al., 2010) This effect of DMSO is usually explained by its effect on membrane permeability 
and function, thermostability of chromosome structure, or inhibition of DNA synthesis. The 
addition of abscisic acid to in vitro stock plants has been found to improve 
cryopreservability for cold hardy species (Ryyanen, 1998) but in general, cryopreservation 
procedures have been shown to be species specific.  

7. Conclusion  

Cryogenic storage is often referred to as a safe system, but this is dependent on reliable 
procedures and subsequent handling. For propagules from clones or desiccation-sensitive 
seed, uncontrolled temperature fluctuations, especially above -120º C may drastically affect 
viability. Hence, cryogenic storage tanks should be carefully monitored for temperature or 
LN level, along with proper handling, which is crucial for safe storage. It is believed that 
many biochemical (Stirn et al., 1995), genetic (Wang et al., 1992), and histological (Wang and 
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Huang, 1995) properties in relation to the embryogenic potential disappear rapidly during 
extended subculturing. Therefore, cryopreservation can be used to arrest the genetic 
instability that occurs by continual culture of embryogenic lines (Wang et al., 2002). 
Techniques of controlled freezing, vitrification, encapsulation-dehydration, dormant bud 
preservation and combinations of these are now directly applicable with plant genotypes 
representing hundreds of species (Reed, 2002). Although the stresses involved in the 
introduction into and recovery from storage may be considerable, they can be minimized by 
appropriate handling and are unlikely to be genetically influential (Withers, 1984). 
Cryopreservation may also aid germplasm preservation of vegetatively propagated plants 
maintain the morphogenetic potential of cultured cells, and facilitate regeneration from 
young explants. The initial investment for cryopreservation is greater, but recurrent costs 
are minimal. As expertise in the cryopreservation of organized cultures increases, 
cryopreservation is likely to be the chosen long-term storage method for shoot tips and 
embryos because of its advantages of lower cost and greater convenience and stability. 
Cryopreservation techniques have been shown to be adaptable to a variety of plant tissues, 
but they must be tested and adapted to each new species that is tried (Pence, 1990). 
Although the species-specific nature of the cryostorage protocols presents problems, the 
overall benefits of the process argue well for cryoconservation of endangered genetic 
resources. The relative costs of storing cultures in the growing state and by cryopreservation 
will also change over time. Further studies will also increase the applicability of the 
procedure to other threatened species from around the world. Recent interest in the 
potential for turning in vitro related instability to advantage in plant breeding should also 
improve our understanding of the phenomenon and hence its control. 
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