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1. Introduction  

Transitional coastal environments such as the Galician Rías in the Atlantic coast of NW 
Spain are densely populated areas. Their environmental problems are highlighted by the 
conflicting interests of different economic sectors: extensive mariculture activities are 
located in its waters and intertidal zone; shipbuilding, carbuilding, canning and other 
industries compete with tourism on their shores; and dairy farming is the main 
agricultural activity in its surrounding hills and hinterland (Vilas et al., 2008). As a result, 
the management of the coastal zone is highly complex and it is difficult to balance quality 
of coastal waters with economic activities. For instance, in the Ría de Vigo, the 
southernmost of the Rías Baixas, wastewater treatment plants were not installed until the 
1990s, and in spite of regional environmental legislation (Lei 8/2001), their capacity was 
still insufficient in 2005 when the European Court of Justice found Spain guilty of failure 
to fulfill its obligations under the Article 5 of the Council Directive 79/923/EEC on the 
quality required for shellfish waters (Case C-26/04 ECJ). This case was closed following 
Spain's submission of a pollution-reducing programme specifically pertinent to shellfish 
waters; success of this plan will depend critically on the behaviour of the sediments on the 
ría bottom. 
Galician Rías experience seasonal upwelling, which increases marine productivity. This 
promotes the deposition of high organic matter contents in the bottom sediments and 
contributes to the observed intense sedimentation rates of 1-6 mm yr-1 (Álvarez-Iglesias et 
al., 2007; Rubio et al., 2001). Current levels of trace metals (Prego & Cobelo, 2003) in 
sediments of these Rías have caused a significant concern by local and European authorities 
in the last ten years, especially in relation to the application of the Water Framework 
Directive (WFD), aimed to ensure that all waters reach “good status” by 2015. Some of these 
studies (Álvarez-Iglesias et al., 2003; Belzunce-Segarra et al., 2008; Rubio et al., 2000a) 
showed that the highest concentration of trace metals occurs in the muddiest surficial 
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sediments of the rías, and that their fate and bioavalability depends on the intensity and 
speed of bacterial-mediated redoxomorphic post-sedimentary processes (Álvarez-Iglesias & 
Rubio, 2008, 2009; Rubio et al., 2010). This chapter will review the main factors that control 
the incorporation of metals to the sediments in these environments, with a focus on the 
forcing factors and their temporal evolution in the recent sedimentary record. 
This study will also show the critical importance of distinguishing and quantifying the 
various metal forms by using sequential extractions and by the determination of magnetic 
properties in order to reach a full understanding of the potential and present environmental 
impacts of contaminated sediments. Special emphasis will be put in the role of mussel rafts 
on the diagenetic inmobilization of heavy metals. Finally, the solubility of these metals by 
aerobic oxidation will be analyzed in some laboratory experiments in order to improve 
coastal risks prevention and management. 

2. Sediments as trace metal sinks and sources 

Water analyses proposed in the WFD (Directive 2000/60/CE) are the most obvious way to 
quantify the degree of metal contamination in an area. However, these analyses are not easy 
because concentrations of metals in solution are very low, contamination can occur during 
collection and analysis, and sampling needs to be repeated in specific time intervals (weeks, 
months, and seasons). Moreover, most metals transported in aquatic ecosystems quickly set 
on the solid material, due to their low solubility (Forstner & Wittman, 1981). Binding of 
metals in suspension will eventually lead to their incorporation into the sediment (Fig. 1).  
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Fig. 1. Schematic representation of metals reservoirs and their interactions in coastal 
systems.  
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Therefore, sediments are a sink of metals with concentrations several orders of magnitude 
higher than those in the adjacent waters, both interstitial and overlying (Tessier & Campbell, 
1988). Nevertheless, sediments are dynamic reservoirs subject to rapidly changing 
conditions. When the environmental variables change, remobilization of metals can occur. 
Although there are different mechanisms of metal binding to sediments, adsorbed metals 
appear to be more readily available, and therefore can be recycled. In these cases, the 
sediment acts as a source of metals to other biotic and abiotic compartments (Fig. 1). 
In addition, sediments can be considered as archives of environmental information due to 
their "memory capacity", so that the sedimentary record allows us to reconstruct the recent 
historical record of coastal pollution (Álvarez-Iglesias et al., 2007; Rubio et al., 2001, 2010; 
Valette-Silver, 1993; among others). 

3. Incorporation of metals to the sediment 

Human activities have drastically altered the biogeochemical cycles and equilibria of some 
trace metals. These metals cannot be degraded or destroyed and become stable and 
persistent contaminants that tend to accumulate in sediments. Metals can be transferred 
from sediments to benthic organisms and then become a potential risk to human consumers 
by incorporation through the food web (Soto-Jiménez et al., 2011).  
The main anthropogenic metals sources are industrial point sources, including present 
and former mining activities, foundries and smelters, shipbuilding, chemical industries, 
metallic industries, and diffuse sources such as combustion by-products. Dispersion of 
metals in the particulate phase is usually small, but relatively volatile metals and those 
that become attached to air-borne particles can be widely dispersed over very large scales. 
Trace metals carried in dissolved or particulate forms (e.g., river run-off) enter the normal 
coastal biogeochemical cycle and are largely retained within near-shore and shelf regions 
(Fig. 1).  

3.1 Processes affecting the cycles of metals in coastal zones 
Trace elements may suffer varying degrees of internal recycling before they are buried in the 
sediment and/or carried into the ocean (Fig.1). Such recycling may involve processes such 
as flocculation, precipitation, release from living or dead particulate phases, and subsequent 
regeneration when these particles undergo redissolution. Recycling of metals in suspended 
solids takes place by coprecipitation, adsorption, desorption and flocculation (Fig. 1). The 
suspended matter and deposited sediments are linked through processes of sedimentation 
and erosion. Diagenetic processes release high concentrations of trace metals to interstitial 
waters, which can influence metal concentrations in the overlying waters through diffusion, 
consolidation and bioturbation. This element recycling can occur within the water column 
or within the sediment. If the metal residence time is short an element can be recycled 
several times.  
In addition to physical processes, recycling in the sediment can also be biologically 
mediated (i.e. methylation) (Fig. 1). The concentration of suspended matter may also 
influence these processes, especially in estuaries and rías, where suspended matter 
concentration is much larger than in other systems of the hydrologic cycle, such as most 
lakes and oceans.  
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3.2 The interaction between trace metals and aquaculture 
In the last decades, marine aquaculture has experienced an important development around 
the world. Galicia is the second largest producer of mussels in the world after China. They 
are cultivated in wood frames called mussel rafts. Most of these are concentrated in the Rías 
Baixas, with more than 3,000 rafts located in Arousa, Pontevedra and Vigo rías.  
An important environmental impact of these activities is the high amount of particulate 
matter discharged by mussels from faeces. Although the concentration of heavy metals in 
these particles is relatively low, the amount of solids is so high that the total accumulation of 
metals in the sediments may become an important problem. This fact has been mentioned in 
previous works (Otero et al., 2005; Prego et al., 2006), but it has not been studied in depth. 
Table 1 compares the accumulation of some trace metals (especially Pb, Ni, and V) in 
sediments collected below mussel rafts and in adjacent areas in the Ría de Pontevedra. 
Despite intensive marine aquaculture these results indicate that the differences are not very 
high, and they seem to be more related to textural differences than to aquaculture 
activitities. However, there are very significant differences in the elements and ratios of the 
organic matter characterization (table 1). Sediments collected below mussel rafts areas 
showed higher contents of total organic carbon (TOC), total N (TN) and total S (TS) than 
those collected in adjacent areas (table 1). Significant differences were also observed in the 
mean values for the ratios C/N and S/C, showing that the increase in TOC in mussel rafts 
areas influences the redoxomorphic organic matter degradation. C/N ratios are, on average, 
higher than those reported for biodeposits by other authors (<10; Calvo de Anta, 1999; Otero 
et al., 2006). S/C ratios are below the global average in normal marine sediments (Raiswell 
& Berner, 1986), indicating a moderate stage of diagenetic evolution. 
 

Trace elements (µg g-1) Mussel rafts areas Adjacent areas 

Sr 865 ± 504 1888 ± 438 
Rb 210 ± 31 169 ± 41 
Ba 403 ± 73 341 ± 58 
Co 13 ± 2 14 ± 1 
Cu 20 ± 7 29 ± 20 
Zn 77 ± 20 89 ± 32 
Ni 34 ± 12 24 ± 4 
Pb 18 ± 15 3 ± 8
Cr 65 ± 12 66 ± 11 
V 89 ± 29 65 ± 17 

Other parameters (%)
TOC 3.69 ± 1.76 2.42 ± 0.68 
TN 0.24 ± 0.13 0.13 ± 0.77 
TS 0.95 ± 0.62 0.37 ± 0.16 

C/N 19.83 ± 10.18 25.19 ± 13.33 
S/C 0.25 ± 0.13 0.16 ± 0.09 

Table 1. Comparison of trace elements concentration obtained by X-ray Fluorescence (XRF) 
and other sediment parameters (TOC, TN, TS, C/N and S/C) for a group of sediment cores 
(101 samples) collected below mussel rafts and in adjacent areas (35 samples) in the Ría de 
Pontevedra. 
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4. The ría environment - Factors controlling trace metal contents in ría 
sediments 

The Rías Baixas are a characteristic geomorphological coastal feature of the Northwest 
Iberian Margin consisting of four deep and narrow V-shaped Tertiary river valleys that have 
been flooded during the last sea-level transgression. 
Most regional studies in rías have shown that although the hydrodynamic processes are 
similar to those identified in estuaries, the rías are clearly dominated by the waves while the 
estuarine circulation is restricted to the innermost areas (Piedracoba et al., 2005; Ruiz-
Villarreal et al., 2002; Souto et al., 2003; Vilas et al., 2005). These environments are also 
characterized by a lesser continental freshwater input, and a higher primary productivity 
due to seasonal upwelling (Fraga, 1981) in comparison to estuarine environments. 
In addition, the sediment characteristics and distribution of the Galician Rías Baixas (Vilas et 
al., 2005) also show significant differences from the facies models of wave- or tide-
dominated estuaries (Vilas et al., 2010) as we will discuss in the following sections. 

4.1 Factors and forcings controlling grain-size distributions 
Wave conditions exert an important control on sediment distribution (Rey et al., 2005; Vilas 
et al., 2005, 2010). Organic-rich fine-grained sediments accumulate in low-energy areas 
along the deep central axis, and in protected areas of the inner ría sector with maximum 
mud percentages near 100% (Fig. 2).  
Mud accumulation is also promoted by the agglutinating effect of organic matter. As a 
result, organic matter content is higher in muds, and increases towards the inner ría to 
values in excess of 10% (Vilas et al., 2005).  
Sediment composition inside the rías is predominantly siliciclastic, as a result of the granitic 
and metamorphic rocks of their catchment areas. As an example, figure 2 shows the 
similarities between quartz distribution and mud contents. On the contrary, biogenic 
carbonates are predominant in the sand and gravel fractions. Production of these coarse 
calcareous bioclastic sediments is favoured by upwelling fertilization of the rías. CaCO3 
abundance is greatest at the margins of the ría and towards the outer areas (Fig. 2), where 
wave energy is stronger. In these areas CaCO3 contents can reach values higher than 90%. 
Many authors have recognized the sediment grain size as a factor directly related to the 
ability for retaining trace elements (Horowitz & Elrick, 1987). This relationship is clearly 
observed in the sediments of the rías by the surficial distribution of Pb (Fig. 2) and other 
trace elements. This is also shown by the strong positive correlations between mud 
percentage and trace elements concentrations (Fig. 3). This correlation is explained by a 
combination of physico-chemical factors, since materials with a higher capacity to retain 
contaminants have smaller particle sizes and therefore also have higher specific surfaces and 
cation exchange capacities. 
In addition, the effect of grain size is enhanced by organic matter, which is a complexing 
agent for some pollutant metals and is concentrated in fine-grained particles (Wangersky, 
1986). Note in figure 3 the typical association of Pb and Cu with organic matter and the 
strong relationship of Co with finer fractions. The diluent effect, expressed as a negative 
correlation, caused by coarser fractions and/or carbonates, is exemplified by the 
concentration of Zn vs the percentage of CaCO3 or the concentration of Cu vs the percentage 
of sand. 
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Fig. 2. Distribution maps of quartz, calcium carbonate, lead and mud concentrations in 
surface sediments of the Rías de Vigo and Pontevedra (NW Spain) measured on more than 
100 samples (black dots). 
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Fig. 3. Relationships between some trace elements and some properties of about one 
hundred of surficial sediment samples located in the Rías de Vigo and Pontevedra (data 
from Ría de Vigo from Rubio et al., 2000a). Sample location in figure 2 (black dots). 

4.2 Grain-size effect: Proxies and normalization procedures 
A very simple method used to detect whether a sediment is contaminated is to map the 
surface concentration of the target element and try to detect geochemical anomalies (Chester 
& Voutsinou, 1981) that highlight areas or regions with anomalous contents. For instance, 
too high values of Pb were detected in the inner part of the Ría de Vigo (San Simón Bay) 
(Fig. 2). In addition, the distribution patterns of conservative elements indicative of grain 
size should be compared to the distribution of trace metals in order to detect whether or not 
these metals are supplied by anthropogenic activities. 
However, a first approach to determine the presence of contamination is to analyze the 
relationships between a normalizer element or grain-size proxy (Al, Ti, Rb, among others) 
and the potential contaminant element. If there is no linear relationship between them, this 
is usually due to contamination. For example for the relationship between Zn and mud (Fig. 
3), those data points that are far from the correlation line are indicative of contamination.  

5. Anthropogenic evidences on metal concentration in ría sediments 

Several indexes (contamination factor, enrichment factor, geoaccumulation index, among 
others) have been developed to assess the degree of metal contamination in a given area. 
These indexes compare the metal content of the samples with natural values for each metal. 
The determination of these so-called background levels is a key factor in assessing the 
degree of contamination or the anthropogenic effect in a given area. Rubio et al. (2000a) 
showed how the choice of these values determines the geochemical interpretation of a given 
area, hence the importance of establishing background values adequately.  
Also the comparison with Sediment Quality Guidelines (SQGs) that allows calculating the 
effects range low (ERL), effects range medium (ERM) and probable effect levels according to 
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Long et al. (1995) has been used by several authors (Mucha et al., 2003; Pekey et al., 2004). In 
the following sections we will review some examples for the sediments of the Rías Baixas. 

5.1 Background levels 
The background value or "background" of a given trace metal in sediments is the natural 
content of the metal without human intervention. This value will depend on the 
geochemistry of the source area sediment. Several possibilities have been set up to establish 
background values for trace metals (Forstner &Wittmann, 1981): 
1. Mean values of metals in the crust (Taylor, 1964) or average shale values (Turekian & 

Wedepohl, 1961; Wedepohl, 1971, 1991). 
2. Values determined by various methods, in the same study area, including: 

a. Selection of presumably clean stations (Barreiro et al., 1988; Subramanian & 
Mohanachandran, 1990). 

b. Statistical methods, among others, include: multiple regression techniques 
(Summers et al., 1996a), principal component analysis (Rubio et al., 2000), selection 
of the first percentile of the cumulative distributions of the concentration of metals 
(Barreiro et al., 1988), and determination of homogeneous populations based on the 
analysis of frequency distribution curves (Carral et al., 1995). 

3. Analysis of sediment cores deep enough to contain the preindustrial record in the 
sediment (Angelidis & Aloupi, 1995), which is the best recommended technique for 
establishing background values for a particular area. For example, Rubio et al. (2000b) 
proposed background values for the Ría de Vigo from a core about 3 m long, with an 
approximate age of over 1000 years BP enough to reach preindustrial levels (Table 2). 

Table 2 gives some examples of background concentrations obtained for several authors for 
typical trace metals found in the rías compared with global background values. In many 
cases background values at the global level can be inadequate for a particular area and it is 
necessary to obtain background values at local or regional level. 
 

Metal B (1) C (2) R(3) R (4) A (5) T (6) 

Al -- -- 6.48 6.48 9.82 8.0 
Fe 2.69 2.95 3.51 3.51 3.53 4.72 
Ti -- -- 0.34 0.34 0.36 0.46 

Mn 225 273 244 244 216 850 
Zn 100 133 105 105 110 95 
Cu 25 22 29 20 21 45 
Pb 25 73 51 25 51 20 
Cr 43 34 34 55 65 90 
Ni 30 32 30 30 33 68 
Co 16 12 12 12  19 

(1) Barreiro 1991. (2) Carral et al., 1995. (3) Rubio et al., (2000a). (4) Rubio et al. (2000b). (5) Álvarez-
Iglesias et al., 2006. (6) Average shale values from Turekian & Wedepohl (1961).  

Table 2. Regional background values obtained by different authors for ría sediments, and its 
comparison to average shale values from Turekian & Wedepohl (1961). Shadowed values 
are similar between the different authors. 
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5.2 Studies on sediment cores in the rías: The need of dating with 
137

Cs and 
210

Pb 
During the last decade, radionuclide dating of sediment cores has been used to establish 
sources and input rates of pollutants such as trace metals (Lee & Cundy, 2001; Ligero et al., 
2002). However they have been very rarely used in sediments for the Galician Rías (Álvarez-
Iglesias et al., 2007; Rubio et al., 2001). Among the latest methods to determine these rates 
the depth distribution of 210Pb and 137Cs specific activities have proven to be valid. 137Cs is a 
good tracer for erosion and sedimentation because there are no natural sources of this 
radioisotope that is produced during nuclear fission. Its presence in the environment, 
therefore, is due to nuclear testing or release from nuclear reactors. The distribution of this 
radioisotope in a sediment core would reflect variations in their inputs to the environment. 
Average sedimentation rates are obtained by identifying their maximum inputs in the 
activity profiles if mixing or radionuclide diffusion has not occurred. 210Pb can be used for 
dating sediments because it is a natural daughter radionuclide in the decay series of 238U. 
The decay of 226Ra (half-life 1600 years) in soils and sediments produces the rare gas 222Rn 
(half-life of 3.8 days) which partially diffuses into the atmosphere or into the water column 
where it decays to 210Pb (half-life of approximately 22 years). 210Pb becomes absorbed onto 
particles and finally deposits in the bottom sediments (Allen et al., 1993). The 210Pb method 
is very useful for dating events that have occurred over the last 100-150 years. It has been 
successfully applied in the sediments of the Ría de Vigo by Álvarez-Iglesias et al. (2007) to 
obtain sedimentation rates of about 5 mm yr-1 in intertidal sediments, whereas Rubio et al. 
(2001) determined values between 1 and 3 mm yr-1 for sediments in inner areas of the Ría de 
Pontevedra. The analysis of dated sediment cores is tremendously useful because it 
provides a historical record of natural background levels while it also records the 
anthropogenic accumulation of metals over the last century. 

5.3 The assessment of metal pollution 
In order to assess metal pollution in sediment cores it is essential to account for grain-size 
effects first. The two basic procedures for this purpose are to make analytical determinations 
on a separate grain-size fraction (Ackerman et al., 1983), or use a normalizing factor to 
correct the results so that regardless of the sediment size distribution, the analytical results 
can be compared. 
Some authors disagree with the grain-size separation because they think that some metals 
are associated with the coarser fractions, either as aggregates or pellets composed of fine-
grained particles and organic matter, or as grain coatings, that may contain high 
concentrations of metals. For instance, Rubio et al. (1999) have confirmed the occurrence of 
pellets and coatings enriched in metals in the sediments of the Rías Baixas. On the contrary, 
other authors (Araujo et al., 1988; Salomons & Forstner 1984) recommend the use of the 
fraction smaller than 63 µm in order to minimize grain-size biases on the results of heavy 
metal content. However, Rubio et al. (1996) concluded that the analysis of this fraction could 
not compensate for the grain size effect in sediments of the Ría de Pontevedra. For this 
reason it is always recommended to normalize the metal content to a conservative element 
such as Al or Rb. In the case of the Galician Rías, the best results for sediments have been 
obtained with aluminium (Nombela et al. 1994; Marcet Miramontes et al., 1997, Rubio et al., 
2000a, 2001). An example for a sediment core from San Simón Bay (inner Ría de Vigo) is 
shown in figure 4. The similarity of the profiles of the absolute metal concentrations and the 
Al-normalized results confirm that the increase of Cu, Pb and Zn concentration towards the 
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top of the core is not due to textural effects but anthropogenic inputs. Therefore, the 
effectiveness of standardization is itself a way to detect metal contamination. 
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Fig. 4. Left: Location of the core SS3 in the inner area of Ría de Vigo (San Simón Bay). Right: 
Top, concentrations of Cu, Pb and Zn (orange; data from Álvarez-Iglesias et al., 2006) in a core 
from San Simón Bay and corresponding metal/Al ratios (black). Middle, enrichment factors 
(EF) for the same elements and classification of the level of contamination. Bottom, depth 
distribution of reactive, organic, silicate and pyrite fractions of Cu, Pb and Zn obtained from 
sequential extractions according to the procedure of Huerta-Díaz & Morse (1990). 
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Normalized enrichment factors (EF) (Zoller et al., 1974) are also a useful tool where 
EF = (M/Al)sample/(M/Al)background. EFs for Zn, Pb and Cu in core SS3 are shown in figure 4. 
These results show high contamination for Pb, and moderate for Cu and Zn in the upper 
part of the core, whereas for the core bottom contamination is moderate for Pb and absent, 
for Cu and Zn. 

5.4 The need to carry out sequential extractions 
The total amount of metals in the sediment is unrepresentative of the potential toxicity of 
the metal. To assess the toxicity appropriately it is essential to know the chemical forms in 
which a metal is presented, i.e. speciation. The chemical form (as dissolved, adsorbed, 
bound or precipitated) of an element will not only regulate its degree of toxicity but also its 
availability. 
Total concentrations are still used very frequently in studies of contamination due to its easy 
measurement and reproducibility, in spite of the fact that the type of contaminant and the 
form in which it appears (soluble, exchangeable, bound, adsorbed, occluded, etc.) will 
decisively influence the pollution effect. For this reason, sequential extractions are usually 
performed and several operationally defined fractions obtained, which depend on the 
ability of the chemical extractant to remove certain components. These extractions allow us 
to determine the chemical forms in which each element is found in the sediment. However, 
very few studies on trace metals in the Galician Rías have considered the forms adopted by 
different metals. One example of a sequential extraction following the method of Huerta-
Díaz & Morse (1990) is shown in figure 4 for inner Ría de Vigo sediments (core SS3). Here 
we distinguish operationally defined reactive, organic, pyrite and silicate-bound fractions 
for several trace elements. Pb appeared mostly in the reactive fraction (average, 68.5%), Cu 
in the pyrite fraction (81.0% on average) and Zn in the silicate-bound fraction (68.7% on 
average), being the organic fraction very low in all cases (usually lower than 4%). In terms of 
toxicity these results show that the most problematic trace elements are Pb, because it is 
found in more biovailable forms, and Cu, because it is found in oxidizable forms. Zn toxicity 
will mostly come from its reactive fraction. These detailed interpretations confirms the 
interest of the determination of chemical forms when contamination is suspected in a target 
area. 

5.5 The magnetic properties as a proxy for trace metals in sediments 
The measurement of trace elements in sediments is very laborious and expensive and, 
therefore, the use of fast and economic alternative techniques is desirable. Environmental 
magnetism –the use of magnetic properties for environmental applications- can be used to 
estimate contamination levels and assess possible patterns of dispersion of contaminants. 
Some authors have shown that certain magnetic properties such as magnetic susceptibility (χ) 
or the isothermal remanent magnetization (IRM) show significant positive correlations with 
the concentrations of trace metals in the fine-grained fraction of sediments (Chan et al., 1998, 
2001; Scoullos & Oldfield, 1984; Spassov et al., 2004), whereas other researchers (Petrovsky et 
al., 1998) have reported the contrary. In some studies both behaviours are observed depending 
on the element considered (Berry & Plater 1998; Georgeaud et al., 1997). A positive association 
is explained by these authors in terms of the preferent absorption of the metals by the clay 
fraction and Fe oxides, whereas a negative correlation is sometimes explained in terms of 
diversity of sources of contamination or due to diagenetical processes.  
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Some studies in the Rías Baixas pointed out that the distribution of magnetic susceptibility 
in surficial sediments could be explained mostly by the textural and hydrodynamic 
interplay (Rey et al., 2000, 2005; Mohamed et al., 2011). The increase in diamagnetic 
carbonate content toward the ría margins, where coarse-grained material accumulates, 
results in generally low susceptibility values. The highest susceptibilities lie along the 
central axis, where the clay content is high and carbonate bioclasts are scarce; and also 
toward the outer sector of the ría, where oxygenation is more intense and formation of 
authigenic Fe oxides and oxyhydroxides is favoured. The analysis of the susceptibility of the 
mud fraction (χmud) that was correlated with trace metals and other properties of the 
sediments (Fig. 5) revealed a strong negative correlation of susceptibility with Pb. The 
organic matter content is also correlated with the distribution of elements like Pb, as it is 
shown in figure 3. Magnetic susceptibility gradually decreases toward the inner part of the 
central axis because the organic matter decomposition causes reducing conditions and the 
establishment of an anoxic/sulphidic environment where the magnetic oxides and 
oxyhydroxides that carry out the susceptibility signal in the outer part of the ría are 
dissolved. Therefore, low magnetic susceptibility values in sediments of the rías can be a 
good indicator of reducing conditions, related to organic-rich fine-grained sediments in low-
energy environments where trace metals tend to accumulate. 
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Fig. 5. Relationships between magnetic suspectibility of the mud fraction (χmud) vs Pb 
concentration and vs organic matter (O.M.) in surficial sediments from the Rías de 
Pontevedra and Vigo (modified from López-Rodríguez et al., 1999). 

6. Early diagenesis of metals in ría sediments 

The early diagenetic reactions that control the formation of authigenic minerals are driven 
by the oxidation of organic matter, initially by aerobic respiration and subsequently by a 
series of reactions controlled by anaerobic bacteria, such as reduction of Fe and Mn oxides, 
reduction of nitrates and sulfates and methanogenesis (Canfield et al., 1993). These reactions 
release products (e.g., HCO3-, HS-, Fe+2, Mn+2) to the sediment pore waters, which will 
precipitate forming new minerals when the saturation is reached (Gaillard et al., 1989). 
These processes occur ideally sequentially starting with oxic, suboxic, sulfidic and finally 
methanogenic reactions (Berner, 1981). This diagenetic sequence of events can be evaluated 
from the analysis of pore-waters and the mineral concentration of typical diagenetic mineral 
phases in sediment cores, or by using sequential extractions in the sediments.  
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6.1 Diagenetic zonation in ría environments: The hydrodynamic role 
Previous studies in the Rías Baixas allowed the definition of a diagenetic zonation model in 
these environments by using a combination of geochemical sequential extractions and 
magnetic properties (Mohamed et al., 2011; Rey et al., 2005; Rubio et al., 2001, 2010). In 
particular, speciation data of redox sensitive elements such as Fe and Mn are indicative of 
the different reducing conditions in sediments. Magnetic properties are useful to identify the 
magnetic minerals and their concentration, which can be used as proxies for the different 
diagenetic environments. Figure 6 shows the deepening of the redox boundaries from inner 
to outer ría. The oxic zone expands as it gets deeper toward the outer ría, in a similar way as 
the suboxic, anoxic and methanic zones. The observed redoxcline deepening can also be 
related to the different depths at which shallow gas fields have been described in the Ría de 
Vigo sediments (García-Gil et al., 2002; Kitidis et al., 2006; Iglesias and García-Gil, 2007). 
This spatial trend can be explained by several factors: 1) A progressive change in the 
hydrodynamic conditions along the ría, 2) The different origin (marine or terrestrial) of the 
organic matter and their aging in the water column.  
Regarding hydrodynamics the outermost ría areas are affected by severe storms in winter 
that remobilize and oxygenate the top sediments due to wave action. This process buffers 
sulphate reduction and contributes to the formation of authigenic iron oxides by 
precipitation of dissolved iron diffusing from underlying anoxic layers (Rubio et al., 2001). 
This process also seems to contribute to the gradual depletion of organic matter in fine-
grained sediments observed toward the outer areas of the ría mouth. 
As for the organic matter characteristics, the decrease in terrestrial sedimentary organic 
matter toward the outer-ría (Álvarez-Iglesias 2006; Andrade et al. 2011), in addition to the 
longer aging of organic matter in deeper waters of the outer-ría areas compared to the inner-
ría, could contribute to explain the mentioned diagenetic zonation. 
 

Inner ríaOuter ría

Oxic

Suboxic
Anoxic-sulphidic

 
Fig. 6. Block diagram illustrating the variation in depth of the diagenetic zones in the 
different sectors of the ría. 

6.2 Diagenetic mobilization of trace metals: Influence of mussel rafts 
In the last fifty years mussel culture in the Rías Baixas has caused significant changes in the 
sediment due to the large amounts of detritus originated by these filter feeders, which are 
deposited mostly as pellets enriched in organic matter on the ría bottoms. Each mussel raft 
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produces approximately 190 kg day-1 of dry biodeposit that contains between 31 and 32 kg 
day-1 of organic matter (Cabanas et al., 1979). In addition, sedimentation rate is increased 
significantly in areas below mussel rafts, with values that range between 5 and 15 mm yr-1 
(Tenore & González, 1975; Cabanas et al., 1979). This elevated sediment accumulation 
together with its high concentration of organic matter has led to a change in the physico-
chemical properties of sediments towards more anoxic environments (Cabanas et al., 1982; 
León et al., 2004). 
In these sediments, anoxic degradation of organic matter is responsible for the early 
diagenesis of sedimentary Fe sulfides that eventually are transformed into pyrite (FeS2), 
which is thermodynamically the more stable compound (Luther, 1991; Morse & Luther, 
1999).  
The study of diagenesis and organic matter degradation can provide very important 
information about retention and/or mobility of contaminants such as trace metals. Some 
authors considered that formation of insoluble sulfides under reducing conditions would 
immobilize and trap trace metals such as Cu, Zn and Pb. On the contrary, other studies 
(Álvarez-Iglesias & Rubio, 2008, 2009; Rae & Allen, 1993; Rubio et al., 2010; Varekamp, 1991) 
indicated that these elements can be mobilized or relocated during the degradation of 
organic matter. It is also important to distinguish between the fraction of the elements 
incorporated in detrital phases and the fraction which may be available in response to 
changes in redox conditions, such as variations in the chemical conditions of the bottom 
water or interstitial water. The two main approaches to make this separation are: 1) The use 
of statistical techniques of separation of these phases (Calvert, 1976; Dymond, 1981). 2) The 
application of chemical treatments to remove certain phases or fractions of elements 
(Huerta- Díaz & Morse, 1990; Tessier et al., 1979; Ure et al., 1993, among others). As we have 
seen in section 5.4 the latter approach, sequential extractions, are a key tool to assessing the 
bioavailability of a particular metal. 
The availability of trace metals in the sediment depends on the fractions to which they are 
associated to (carbonates, organic matter, sulfides, silicates, oxyhydroxides of Fe and Mn). 
When conditions are favorable for the formation of pyrite, metals can co-precipitate with it, 
and pyrite becomes an important metal sink. If environmental conditions change (i.e. 
oxidation of sediments) metals can be released and pyrite becomes a source. 

6.3 Degree of pyritization (DOP) and degree of trace metal pyritization (DTMP) as 
proxies for predicting mobilization of metals 
Two parameters (DOP and DTMP) can be used as proxies for predicting mobilization of 
metals. The DOP has been used to classify sedimentary marine environments because it is a 
useful paleoenvironmental geochemical index that has been correlated and corroborated 
with paleoecological data (Raiswell et al., 1988). The DOP is calculated from the reactive 
fractions (extracted with HCl) and pyrite (Berner, 1970) as DOP = [Fepyr/ (Fereact + 
Fepyr)]*100. Similarly we can determine DTMP according to Huerta-Díaz & Morse (1990) 
asDTMP = [Mpyr/(Mreact + Mpyr)]*100, where M is the metal of interest. 
In order to homogenize the differences in nomenclatures, León et al. (2004) proposed a new 
classification that combines the Berner’s (1981) pioneering geochemical classification of 
sedimentary environments and the above mentioned work of Raiswell et al. (1988) based on 
the DOP. This new classification establishes that the sedimentary environments are oxic when 
DOP is <42%, dioxic or suboxic (42% - 55%), anoxic (55%- 75%), and euxinic (DOP >75%). 
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Based on this classification we compared the DOP for sediment cores in inner and middle 
sectors of the Ría de Pontevedra (Fig. 7). The cores of the middle sector, on average, have 
lower DOP values and fall into the oxic category, whilst the redox status of the cores of the 
inner sector, vary from suboxic to anoxic. The presence of anoxic areas in the rías is an 
unusual situation in an ecosystem where the dissolved oxygen in the water column is not 
completely exhausted, in spite of the high biological productivity in these areas resulting 
from the upwelling process (Figueiras et al., 1986). However, due to the high sedimentation 
rate of organic-rich material, especially under mussel rafts, anoxic environments can be 
developed at the sediment-water interface. Regarding the DTMP (Fig. 7), and its differences 
between mussel rafts areas and adjacent sediments the highest values correspond to Hg in 
both cases. The sources of Hg in the Ría de Pontevedra are paper pulp and electrochemical 
companies (ELNOSA-ENCE complex), in operation since the 1950's. This is a typical 
example of point-source contamination, where total Hg concentrations in sediments above 2 
µg g-1 (Fig. 8) are detected close to the discharge area of this industrial complex. However, 
Hg was mainly associated with pyrite phases (Hgpyr), while reactive Hg (Hgreact) is only 
detected in the upper 25 cm of the core and in much lower concentrations than Hgpyr. 
 

 
Fig. 7. a) Sediment distribution map of the Ría de Pontevedra (modified from Vilas et al., 
1995) and core location. b) Sedimentary environments of the Ría de Pontevedra based on the 
degree of pyritization (DOP, % mean values) for these cores. The limits for oxic, suboxic, 
anoxic and euxinic are from León et al. (2004). c) Mean DTMP (%) values for cores both 
influenced by mussel rafts and from adjacent areas with no mussel rafts. 

The Hgreact is weakly adsorbed to the components of the sediment matrix and can be 
released, relatively easily, into the water column due to changes in environmental 
conditions such as sediment resuspension. In addition, pyrite can be oxidized and release 
the Hg bound to its structure, constituting a serious threat to aquatic fauna, especially fish 

www.intechopen.com



 
Relevant Perspectives in Global Environmental Change 

 

80

and filter feeders. In general terms, the action of water currents, bioturbation, or human 
activities can provoke remobilization of trace metals associated with organic matter or 
reduced forms (Otero et al., 2000, 2005; Rubio et al., 2008) that may eventually contaminate 
the interstitial and suprajacent waters. For a more precise assessment of the water pollution 
risks that such events can produce, aerobic oxidation experiments such as the one shown in 
the next section are needed.  
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Fig. 8. Depth-distribution of Hg concentrations in reactive, silicate, organic and pyrite 
fractions according to Huerta-Diaz & Morse (1990) in a core from the Ría de Pontevedra 
(core PC). Core location in figure 7.  

6.4 Solubility of heavy metals during controlled aerobic oxidation of anoxic 
sediments: Some laboratory experiments 
As we have seen in previous sections the concentration levels of certain metal and 
metalloids in the sediments of the Galician Rías Baixas have shown an increasing trend in 
the last decades. It is likely that a transfer of these elements to the water column may occur 
during remobilization of sediments caused by natural events or anthropogenic activities. 
The inner areas of the rías are exposed to activities that remobilize the sediment such as 
intense maritime traffic or dredging and cleaning operations. Selected samples of surficial 
sediments from inner and middle ría sediments of Ría de Pontevedra were subjected to an 
aerobic oxidation procedure to determine the concentration of some elements (Fe, Mn, Cu, 
Cr, Pb and Hg) released from the sediment to the aqueous phase. The experiment was done 
over five days and measurements of pH and total metal concentrations were made both in 
water and in sediment samples. Metal concentrations were lower in the sediments during 
aerobic oxidation due to their release to the aqueous phase. 
The net release of metals was higher in sediments form the inner sector than those from the 
middle sector of the Ría de Pontevedra (Fig. 9), with the exception of Cu. The high standard 
deviation of Fe and Mn in the inner sector samples is mainly due to the high redox 
sensitivity of these two metals and their high abundance as sulphides, as we have 
mentioned concering the DOP values, which are rapidly oxidized causing the release of 
these metals to the aqueous phase. The concentrations of these metals together with those of 
Cu, Cr and Zn increased significantly in the aqueous phase after the experiment. This 
demonstrates that remobilization of marine sediments tends to increase the mobility and 
availability of those trace metals. 
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Metal concentrations in the aqueous phase varied between elements (Fig. 9). Hg and Pb 
concentrations were below the detection limits in all cases. Cr and Zn concentrations were in 
general quite low and remained almost constant over time. In contrast, Fe and Mn were 
released very rapidly although their concentrations decreased sharply to reach undetectable 
limits, because they precipitated as oxides and oxyhydroxides. Finally, the release of Cu 
increased with time for most of the samples, with a maximum concentration of total 
dissolved Cu of 8.9 mg L-1. This concentration is higher than the toxicity threshold for 
organisms of the Galician Rías reported by other authors (Beiras & Albentosa, 2004).  
 

 
Fig. 9. Mean concentrations of trace metals in water after oxidation of sediments from inner 
and middle areas of Ría de Pontevedra. Sampling location in figure 7. 

7. Conclusion 

The main factors controlling the incorporation of metals to the sediments in transitional 
coastal environments like the Galician Rías Baixas in the NW Spain have been revised in this 
chapter. It is essential to understand the behaviour of trace metals in the sediments from the 
ría bottoms in order to improve coastal risks prevention and management, as well as to 
reach a good status in water quality as one of the great challenges for the European Union in 
the new millennium.  
In the rías, wave conditions exert an important control on sediment distribution and in the 
subsequent diagenetic evolution of the sediments, and thus on trace metal accumulation and 
immobilization. A strong positive correlation is found between fine–grained sediments and 
trace metals. Organic matter enhances the grain-size effect on metal concentration, 
especially in areas influenced by mussel culture. The procedures for normalizing and 
minimizing grain-size effects have also been revised in order to distinguish natural from 
anthropogenic metal signals in the sediments.  
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Inner ría sediments are highly contaminated by Pb, and moderately by Cu and Zn, 
especially in the most recent sedimentary record. Some examples of point-source Hg 
contamination have also been shown for the Ría de Pontevedra. The importance of 
distinguishing and quantifying the various metal forms by using sequential extractions have 
also been demonstrated with several examples for sediment cores, highlighting the role of 
the diagenetic processes in the inmobilization and/or relocation of trace metals. A 
characteristic diagenetic zonation in ría environments is attributed to the local water depth, 
the distribution of wave energy and the subsequent sediment grain-size distribution. The 
diagenetic processes have also been emphasized by the results of the magnetic properties, 
showing that low magnetic susceptibility values in sediments of the rías can be a good 
indicator of reducing conditions. In such conditions, trace metals are mostly concentrated in 
sulfide fractions. The degrees of pyritization of iron and trace elements can be valid 
indicators of the redox status and heavy metal risk, respectively. Experimental aerobic 
oxidation results have show that the sediments of inner sectors of the rías show a higher 
release of metals to the aqueous phase than those of the middle sector. However, from an 
environmental point of view, Cu is the only metal released in quantities that may be toxic 
for the organisms in the area. 
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