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1. Introduction 

Streptococcus mutans, the major etiological agent in human dental caries, is capable of 
forming a biofilm, or dental plaque, on the tooth surface (Loesche, 1986; Tanzer et al., 2001). 
S. mutans generates large amounts of acid within dental plaque from fermentable dietary 
carbohydrates. During meals, the ingestion of carbohydrates causes the pH of the dental 
plaque to fall below 4.0. Acid accumulation can eventually destroy the crystalline structure 
of teeth that is the hardest tissue in the human body, leading to the formation of a carious 
lesion (Quivey et al., 2001). The ability of S. mutans to survive in such a severe environment 
represents one of the most important virulence factors of this microorganism.  
The mechanisms of acid tolerance that are most common among Gram-positive bacteria 
have been proposed to be: i) proton pumps; ii) protection and/or repair of macromolecules; iii) 
cell-membrane changes; iv) production of alkali; v) regulators; vi) cell density and biofilms; 
and vii) alteration of metabolic pathways (Fig. 1) (Cotter & Hill, 2003). Many researchers have 
sought to explain the mechanisms of acid tolerance in S. mutans, and various genes 
contributing to aciduricity in S. mutans have been identified. In this chapter, we review those 
genes that have been reported to be involved in S. mutans aciduricity, including those 
participating in two-component systems and others, especially targeting the dgk homolog. 

2. Two-component system 

Two-component systems (TCSs), prokaryote-specific signal transduction systems, are 
widespread in prokaryotes and play extensive roles in adaptation to environmental changes. 
The TCS operon (tcs) consists of hk, which encodes a sensory histidine kinase (HK), and rr, 
which encodes its cognate response regulator (RR). The HK undergoes autophosphorylation 
on a histidine residue in response to a specific environmental signal and relays this 
phosphate group to an aspartic acid residue on the cognate RR. The phosphorylated RR 
then binds target DNA elements with greater affinity, inducing or repressing the 
transcription of target genes (Hoch, 2000; Rampersaud et al., 1994). In this way, bacteria are 
able to adapt to the changes in external environment and to modulate gene expression. TCSs 
may be responsible for the acid tolerance of S. mutans. 
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Fig. 1. Acid tolerance mechanisms proposed for gram-positive bacteria. The figure is taken 
from Cotter & Hill (2003) with some modification. 

Analysis of the complete genome sequence of S. mutans UA159 suggested the presence of 13 

hk-rr homologs and one orphan rr homolog (Table 1, smtcs02-15) (Ajdic et al., 2002). The 

roles of some specific tcs genes in acid tolerance have been evaluated. Li et al. showed that 

disruption of smhk13 or smrr13 resulted in a diminished log-phase acid-tolerance response in 

S. mutans BM71 (Li et al., 2001) and that only smhk02 of smtcs02 was involved in the acid-

tolerance response of S. mutans NG8 (Li et al., 2002). Qi et al. (2004) and Ahn et al. (2006) 

reported that the smhk08 mutant exhibited a significant growth defect, whereas the growth 

of both the smrr08 mutant and smhk-rr08 double mutant was similar to that of wild-type 

UA159 when grown at pH 6.4. Ahn et al. (2006) also showed that all smhk08, smrr08, or smhk-

rr08 mutants presented growth defects when grown at pH 5.5. Then, Lévesque et al. (2007) 

systematically inactivated each of the 13 hk, but not rr, genes in S. mutans UA159 and 

evaluated the roles of the hk genes in acid tolerance. They showed that smhk09 and smhk14 

were involved in S. mutans acid tolerance. Furthermore, Biswas et al. (2007) found an 

additional tcs (Table 1, smtcs01) in the genome of S. mutans UA159 and examined the 

involvement of 14 hk genes in acid tolerance. They showed that only smhk08 was involved in 

aciduricity. However, these studies focused only on the role of HKs and so did not provide a 

comprehensive overview of the role of TCSs in acid tolerance.  
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tcs genes 
hk gene,   
rr gene 

GenBank Locus Tag a Gene order 

smtcs01 smhk01 
smrr01 

  SMU.45 
  SMU.46 

hk-rr 

smtcs02 smhk02 
smrr02 

   SMU.486 
    SMU.487 

hk-rr 

smtcs03 smhk03 
smrr03 

    SMU.577c 
     SMU.576c 

hk-rr 

smtcs04 smhk04 
smrr04 

     SMU.660 
     SMU.659 

rr-hk 

smtcs05 smhk05 
smrr05 

 SMU.928 
 SMU.927 

rr-hk 

smtcs06 smhk06 
smrr06 

 SMU.1009 
 SMU.1008 

rr-hk 

smtcs07 smhk07 
smrr07 

 SMU.1037c      
 SMU.1038c 

rr-hk 

smtcs08 smhk08 
smrr08 

 SMU.1128c 
 SMU.1129c 

rr-hk 

smtcs09 smhk09 
smrr09 

 SMU.1145c 
 SMU1146c 

rr-hk 

smtcs10 smhk10 
smrr10 

 SMU.1516c 
 SMU.1517c 

rr-hk 

smtcs11 smhk11 
smrr11 

 SMU.1548c 
 SMU.1547c 

hk-rr 

smtcs12 smhk12 
smrr12 

 SMU.1814c 
 SMU.1815c 

rr-hk 

smtcs13 smhk13 
smrr13 

 SMU.1916c 
 SMU.1917c 

rr-hk 

smtcs14 smhk14 
smrr14 

 SMU.1965c 
 SMU.1964c 

hk-rr 

smtcs15 smrr15  SMU.1924c rr 

tcs, two-component system; hk, histidine kinase; rr, response regulator. 
a GenBank locus tag was associated with the S. mutans genome at the Oral Pathogen Sequence Database 

site (http://www.stdgen.lanl.gov/oragen). 

Table 1. The tcs genes identified in the S. mutans UA159 genome. 

Therefore, we systematically constructed rr deletion mutants and hk-rr double mutants of S. 

mutans UA159 and examined the effect on acid tolerance (Kawada-Matsuo et al., 2009). 

Thirteen rr mutants and twelve hk-rr double mutants were obtained, the exceptions being 

smrr10, smtcs10, smrr12, and smtcs12. The derivation of null mutations of these genes was 

unsuccessful, probably due to a loss of viability of these mutants. To examine the effects of 

these rr mutations on the acid tolerance of S. mutans, wild-type UA159 and the 25 mutants 

were grown in brain–heart infusion (BHI) broth adjusted to pH 7.2 or pH 5.5. Growth curves 

were generated, and the mid-log-phase doubling time was determined. All rr and hk-rr 

mutants grew similarly to wild-type UA159 at pH 7.2. However, as shown in Table 2, 

deletion of four rr genes (smrr03, smrr05, smrr08, and smrr13) caused significantly decreased 
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growth rates compared with that of wild-type UA159 when grown at pH 5.5. The growth 

rates of the hk-rr double mutants were similar to those of the corresponding rr mutants, and 

the differences in doubling time between them were not significant. The finding that smrr08 

and smrr13 were involved in the acid tolerance of S. mutans is consistent with previous 

findings (Ahn et al., 2006; Li et al., 2001). On the other hand, smrr03 and smrr05 were, for the 

first time, demonstrated to be involved in S. mutans UA159 acid tolerance. However, 

Lévesque et al. (2007) and Biswas et al. (2007) showed that inactivation of their cognate hk 

genes did not affect acid tolerance. To confirm whether only the rr gene is involved in acid 

tolerance in the smtcs03 and smtcs05 mutants, the hk genes of smtcs03 and smtcs05 were 

individually inactivated, and the acid tolerance ability of these mutants compared. As 

shown in Table 3, the smhk03 mutant exhibited a decreased growth rate compared with the 

wild type when grown at pH 5.5. This was not consistent with previous results. In contrast, 

the smhk05 mutant grew similarly to wild-type UA159 at pH 5.5, as shown in previous 

studies, whereas the smrr05 mutant and smhk-rr05 double mutant exhibited reduced growth 

rates. 

 

 Doublimg time (min) a in: 

UA159 b 123.8 ± 9.5 

tcs genes hk+rr– hk–rr– 

smtcs01 116.8 ± 10.0 117.7 ± 10.3 

smtcs02 131.5 ± 8.8 132.6 ± 5.9 

smtcs03 146.4 ± 7.5* 148.5 ± 8.3* 

smtcs04 127.4 ± 7.6 122.5 ± 3.7 

smtcs05 160.1 ± 11.6** 155.7 ± 7.8* 

smtcs06 132.8 ± 3.2 125.1 ± 10.2 

smtcs07 131.0 ± 3.2 122.3 ± 7.2 

smtcs08 146.3 ± 11.9* 145.2 ± 7.7* 

smtcs09 126.3 ± 5.2 129.9 ± 5.0 

smtcs11 126.4 ± 7.1 131.7 ± 11.0 

smtcs13 141.5 ± 8.8* 140.9 ± 2.6* 

smtcs14 132.5 ± 3.7 131.7 ± 12.1 

smtcs15 c 127.6 ± 7.1     — 

aDoubling time (Td) was calculated based on the formulas ln Z – ln Z0 = k (t – t0), where k is the growth 

rate, and g = 0.693/k, where g is the doubling time. Values are the mean ± standard deviation obtained 

from three independent experiments.  
bWild-type strain 
cOrphan rr 

* Significant increase from Td of wild-type UA159 by Tukey’s HSD, p < 0.05 

** Significant increase from Td of wild-type UA159 by Tukey’s HSD, p < 0.01 

Table 2. Doubling times of rr or hk-rr deletion mutants at pH 5.5. 
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Generally, a signal sensed by a HK is thought to be transmitted to the cognate RR via 
transfer of phosphoryl groups, and deletion of either the hk or rr should generate a similar 
phenotype. However, we found that only the rr of smtcs05 was involved in S. mutans acid 
tolerance. Furthermore, as mentioned above, Li et al. (2002) reported that the hk, but not the 
rr, of smtcs02 was involved in the acid tolerance of S. mutans NG8. Qi et al. (2004) and Ahn et 
al. (2006) also reported that the smhk08 mutant showed a significant growth defect, whereas 
the growth of both the smrr08 mutant and smhk-rr08 double mutant was similar to that of 
wild-type UA159. These results suggested involvement of several TCSs in S. mutans 
aciduricity via cross-talk between different TCS components. After all, among 15 TCSs, 
seven (Smtcs02, 03, 05, 08, 09, 13, and 14) appear to be involved in S. mutans aciduricity. 
Nevertheless, inactivation of no single TCS caused a complete loss of acid tolerance. 
Therefore, other TCSs that are definitively related to S. mutans acid tolerance may exist, but 
they cannot be identified by homology searching. 
 

tcs genes Strain hk/rr 
Doubling time (min) in: 

BHI pH 7.2 BHI pH 5.5 

smtcs03      SMHK03 –/+  53.6 ± 4.1 153.4 ± 7.9 

      SMRR03 +/–  50.0 ± 2.7 146.4 ± 7.5 

      SMTCS03 –/–  57.1 ± 8.6 148.5 ± 8.3 

smtcs05      SMHK05 –/+  51.0 ± 3.4 128.8 ± 12.9 

      SMRR05 +/–  49.7 ± 2.5 160.1 ± 11.6  

      SMTCS05 –/–  51.5 ± 4.6 155.7 ± 7.8 

*p < 0.05 (Tukey’s HSD) 

Table 3. Doubling times of hk, rr, and hk-rr deletion mutants of smtcs03 and smtcs05 at pH 7.2 
and pH 5.5. 

3. Genes other than TCS involved in S. mutans acid tolerance 

Many studies have implicated genes other than those involved in TCS in S. mutans 
aciduricity. Table 4 summarizes the characteristics of 14 such genes, of which the functions 
of the products of only nine have been experimentally verified.  
These are aguA, encoding an agmatine deiminase that is involved in alkali production 

(Griswold et al., 2004); dltC, involved in the synthesis of D-alanyl-lipoteichoic acid, which is 

associated with alteration of membrane composition (Boyd et al., 2000); gluA, encoding a 

glucose-l-phosphate uridylyltransferase involved in the synthesis of UDP-D-glucose 

(Yamashita et al., 1998); lgl, encoding a lactoylglutathione lyase involved in the 

detoxification of methylglyoxal (Korithoski et al., 2007); luxS, encoding a S-

ribosylhomocysteine lyase involved in autoinducer AI2 synthesis (Wen and Burne, 2004); 

and uvrA, encoding an excinuclease ABC subunit A that is involved in DNA repair (Hanna 

et al., 2001). Mutation of three genes (ffh, ftsY, yidC2 genes) that are involved in the signal 

recognition particle pathway, significantly reduced H+/ATPase specific activity compared 

with that of the wild type (Hasona et al., 2005). However, how these functions contribute to 

S. mutans aciduricity remains unclear. Furthermore, the functions of the five remaining gene 

products were predicted based on DNA sequence homology, and so estimation of their role 

in S. mutans aciduricity is much more difficult.  
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Gene 

GenBank 

Locus  

Tag 

Function Evidence 
Determination of the 

response against low pH 
Reference 

aguA SMU.264 
Agmatine 

deiminase 

Testified

experimentally
Not determined 

Griswold et 

al., 2004 

brpA SMU.410 
Transcriptional 

regulator 
Putative 

Acid tolerance &

Acid killing 

Wen et al., 

2006 

clpP SMU.1672c
Clp protease

(Serine protease) 
Putative Acid tolerance 

Lemos & 

Burne, 2002 

dltC SMU.1689c
D-alanyl carrier 

protein 

Testified 

experimentally

Acid tolerance & Acid 

killing & Acid tolerance 

response 

Boyd et al., 

2000 

ffh SMU.1060c
Signal recognition 

particle 

Testified

experimentally

(partially) 

Acid tolerance 
Kremer et 

al., 2001 

ftsY SMU.744 
Signal recognition 

particle receptor 

Testified

experimentally

(partially) 

Acid tolerance 
Hasona et 

al., 2005 

glrA SMU.1035

ABC transporter

ATP-binding-

protein 

Putative Acid tolerance 
Cvitkovitch 

et al., 2000 

gluA SMU.322c

Glucose-l-

phosphate 

uridylyltransferase 

Testified 

experimentally
Acid tolerance 

Yamashita 

et al., 1998 

htrA SMU.2164 Serine protease Putative 
Acid tolerance 

 (agar plate) 

Biswas & 

Biswas, 

2005 

lgl SMU.1603
Lactoylglutathione 

lyase 

Testified

experimentally

Acid tolerance & 

Acid tolerance response 

Korithoski 

et al., 2007 

luxS SMU.474c
S-ribosylhomo-

cysteine lyase 

Testified 

experimentally

Acid tolerance & Acid 

killing & Acid tolerance 

response 

Wen & 

Burne, 2004 

ropA SMU.91 

Peptidyl-prolyl 

isomerase,  

trigger factor 

Putative Acid killing 
Wen et al., 

2005 

uvrA SMU.1851c
UV repair 

excinuclease 

Testified

experimentally

Acid tolerance & 

Acid tolerance response 

Hanna et 

al., 2001 

yidC2 SMU.1727
Oxa1(or A)-like 

protein 

Testified 

experimentally

(partially) 

Acid tolerance 
Dong et al., 

2008 

 

Table 4. Genes reported to be involved in S. mutans acid tolerance.  
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Fig. 2. Growth curves of S. mutans UA159 and mutant strains grown in BHI medium at pH 

7.4 (    ) or pH 5.5 (    ). Growth was defined as the increase in OD550, and was calculated by 

subtraction of OD550 at the initiation of growth from that at the times indicated. Data 

represent the means of three independent experiments. Graphs of mutant strains also 

represent the growth curves of wild-type UA159 at pH 7.4 (             ) and pH 5.5 (        ) as 

controls.  
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To examine the extent to which a gene contributes to S. mutans acid tolerance, 14 mutants in 

which one of the genes listed in Table 4 was inactivated and the dgk mutant were 

constructed from S. mutans UA159, and their growth at pH 7.4 and at pH 5.5 was compared 

with that of the wild type (Fig. 2) (Shibata et al., 2011). Inactivation of aguA, brpA, glrA, htrA, 

lgl, luxS, ropA, or uvrA did not significantly affect the acid tolerance of S. mutans as 

compared with wild-type UA159 when grown at pH 5.5. Three types of method of assessing 

the acid tolerance of S. mutans are available. Simple acid tolerance is evaluated by a 

procedure in which over-night cultures or log-phase cells grown at neutral pH are 

subcultured in media or on plates at neutral and acidic pH. Another method is acid killing, 

in which log-phase cells grown at neutral pH are incubated at a lethally acidic pH, and then 

viability is determined by plate counts. The final method is determination of the acid 

tolerance response in which viability is estimated by plating after incubation at neutral or 

acidic pH of log-phase cells grown at neutral pH followed by incubation at killing pH. We 

used the first method, and so any discrepancy between this and other studies may derive 

from differences in the method used. However, comparing all of the mutants in terms of the 

most basic characteristics of acid tolerance is a worthwhile endeavor. Of course, a 

comparison using the other criteria is important, and will be performed as part of our next 

effort.   

Notably, the dgk and the gluA mutants grew extremely slowly at pH 5.5, although the clpP, 

dltC, ffh, ftsY, and yidC2 mutants also displayed significant reductions in growth rate at pH 

5.5 compared with the wild-type UA159. However, only the brpA, dgk, dltC, htrA, lgl, luxS, 

ropA, and uvrA mutants showed growth rates comparable to the wild-type strain at pH 7.4. 

These findings suggest that the reduction in growth rates of the clpP, ffh, ftsY, yidC2, and 

gluA mutants at acidic pH values might be derived from reduced viability and not 

specifically related to acid tolerance. Therefore, dltC and dgk are likely specifically involved 

in acid tolerance. Of these two genes, the striking reduction in growth rate of the dgk mutant 

at acidic pH indicates that dgk is of great interest for elucidating the acid-tolerance 

mechanism of S. mutans. 

4. Diacylglycerol kinase 

Diacylglycerol kinase (Dgk) catalyses the ATP-dependent phosphorylation of sn-1,2-

diacylglycerols, resulting in production of phosphatidic acid. In eukaryotic cells, 

diacylglycerol and phosphatidic acid are immediate second cellular messengers responding 

to extracellular signals, suggesting that Dgk is a key enzyme in cellular signal transduction 

(Moolenaar et al., 1986; Murayama & Ui, 1987; Nishizuka, 1984; Topham & Prescott, 1999). 

Among bacterial Dgk, only that of Escherichia coli has been well-characterized, and it is a 

small integral membrane protein with a molecular mass of 13.2 kDa. This enzyme functions 

in the recycling of the diacylglycerol produced during turnover of membrane phospholipids 

(Hasin & Kennedy, 1982; Rotering & Raetz, 1983) and plays an important physiological role 

in responding to environmental stress as well as its role in eukaryotic cells (Raetz & 

Newman, 1979; Walsh et al., 1986). On the other hand, the S. mutans Dgk homolog has a 

molecular mass of 15.3 kDa and comprises 137 amino acids. It is interesting that insertion of 

the transposon Tn916 into the codon for the tenth amino acid from the C terminus of the 

Dgk homolog resulted in defective growth of the mutant (GS5Tn1) at acidic pH values 
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(Yamashita et al., 1993). In addition to attenuation of aciduricity, this mutant possessed 

reduced resistance to high osmolarity and temperature (Yamashita et al., 1993). The C 

terminus of the Dgk homolog may thus play an important role in signal transduction during 

environment stress.  

To evaluate how the C terminus of Dgk contributes to S. mutans acid tolerance, we 

sequentially truncated amino acids from the C terminus of Dgk and finally constructed 11 

mutants termed UADGK0–10, expressing Dgk0–10 (Fig. 3) (Shibata et al., 2009). The mutants 

showed no significant difference in growth rate at neutral pH (doubling times: 53.8 to 61.6 

min; Table 5). Most, with the exception of UADGK0 to UADGK2, showed a reduction in 

growth rate at pH 5.5 compared with the wild type (Table 5 and Fig. 4). UADGK3, in which 

three amino acid residues had been deleted from the C-terminus of Dgk, showed a slight 

reduction in growth rate. Subsequent deletion of amino acids from the C-terminus resulted 

in further reductions in growth rate at acidic pH. Indeed UADGK4, UADGK5, and 

UADGK6 had significantly increased doubling times (p < 0.05, p < 0.001, and p < 0.0001, 

respectively) compared with UADGK0. UADGK7, in which seven amino acid residues had 

been deleted, showed extremely limited growth in the first 9 hours. Further truncation of the 

C-terminus of Dgk (UADGK8 to UADGK10) resulted in no growth at pH 5.5. These results 

suggest that the C-terminal of the Dgk homolog is indispensable for its function in 

aciduricity of S. mutans. We further constructed two additional UA159 dgk mutants, 

UADGK11 and UADGK12 (Fig. 3) to evaluate the function of truncated Dgk. There were 

only negligible differences in the growth rates of these two mutants at pH 5.5, 5.8, or 6.3, 

compared with that of UADGK10. 
 

 

Fig. 3. Representation of the truncated Dgk proteins used. The deduced amino acid 

sequence of the dgk gene from S. mutans UA159 is presented. The terminal amino acid of the 

truncated Dgk expressed in each UA159 dgk mutant and each E. coli RZ transformant is 

indicated along the sequences by a curved arrow, which indicates that the sequence is 

deleted from the right up to this site. All the truncated Dgk proteins names were changed 

from those of previous paper (Shibata et al., 2009) to help readers understand. 
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Fig. 4. Growth curves of S. mutans UA159 dgk mutants grown in BHI medium at pH 5.5. 
Growth was defined as the increase in OD550, and was calculated by subtraction of OD550 at 
the initiation of growth from that at the times indicated. Data represent the means of three 
independent experiments. All the mutants names were changed from those of previous 
paper (Shibata et al., 2009) to help readers understand. 

 

Strain 
Doubling time (min) in: 

BHI pH 7.45 BHI pH 5.5 

UADGK0 57.8 ± 4.4 132.3 ± 12.9 
UADGK1 58.2 ± 6.4 131.2 ± 11.7 
UADGK2 61.2 ± 5.8 133.6 ± 11.7 
UADGK3 61.6 ± 1.8 177.6 ± 19.0 
UADGK4 55.5 ± 3.4 202.5 ± 24.4* 
UADGK5 57.5 ± 2.5 248.9 ± 32.2** 
UADGK6 55.3 ± 5.4 271.3 ± 34.6 *** 
UADGK7 55.1 ± 6.0 > 1000 a 
UADGK8 53.8 ± 3.7 > 1000 a 
UADGK9 58.4 ± 6.7 > 1000 a 
UADGK10 57.0 ± 6.1 > 1000 a 

Differences in the doubling time between UADGK0 and UADGK1-10 were analyzed by Bonferroni 
multiple comparison test (*, p < 0.05; **, p < 0.001; ***, p < 0.0001). 
aStatistical analyses were not carried out because of too slow growth rates. 
All the mutants names were changed from those of previous paper (Shibata et al., 2009) to help readers 
understand. 

Table 5. Effect of low pH on growth of S. mutans UA159 dgk mutants. 
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We next constructed recombinant Dgk proteins corresponding to S. mutans strains 

UADGK10, UADGK7, UADGK5, and UADGK0 utilizing E. coli strains RZDGK10, RZDGK7, 

RZDGK5, and RZDGK0, respectively. The kinase activity in cell lysates of E. coli 

transformants was examined by an octyl glucoside mixed-micelle assay (Preiss et al., 1986), 

using undecaprenol as a substrate because of it has a higher substrate specificity for the S. 

mutans Dgk homolog compared with diacylglycerol (Lis & Kuramitsu, 2003).  

As shown in Fig. 5A, whereas the full-size S. mutans Dgk protein expressed in RZDGK0 

catalyzed a high level of phosphorylation of undecaprenol, the Dgk missing five amino acid 

residues from the C terminus expressed in RZDGK5 exhibited markedly reduced kinase 

activity. Furthermore, RZDGK7 (seven amino acids missing from the C terminus) exhibited 

much weaker kinase activity than did RZDGK5. The deletion of 10 C-terminal amino acid 

residues of Dgk in RZDGK10 resulted in a total lack of kinase activity. These differences 

were confirmed by quantitative analysis (Fig. 5B). These data indicate that the C-terminus of 

the S. mutans Dgk homolog plays an important role in kinase activity and may harbor 

residues required for catalysis. Alternatively, incorrect folding of the protein due to the 

missing C-terminal residues may cause loss of kinase activity. Therefore, its catalysis of 

undecaprenol phosphorylation is closely related to S. mutans acid tolerance. 

 

 

Fig. 5. Effect of deletion of the C-terminal tail of Dgk on undecaprenol kinase activity. (A) 

Comparison of undecaprenol kinase activity of the full-size Dgk and various C-terminally 

truncated forms of Dgk. The undecaprenol kinase activity in the lysates from E. coli RZ cells 

was determined using an octyl glucoside mixed-micelle assay. (B) Quantification analysis of 

the kinase assay. Quantification was carried out by normalization of radioactive bands in 

the kinase assay using the protein level. Vertical bars represent standard deviation. 

Differences in kinase activity between RZDGK0 and RZDGK5, RZDGK7, or RZDGK10 were 

analyzed by Student’s t test (*, p < 0.0001). All the E.coli strains names were changed from 

those of previous paper (Shibata et al., 2009) to help readers understand. 

www.intechopen.com



 
Relevant Perspectives in Global Environmental Change 

 

50

Moreover, the importance of the C-terminal end of Dgk in S. mutans acid tolerance was 
examined in a specific pathogen-free animal model (Table 6). The dgk mutant strain clearly 
displayed a significant reduction in smooth-surface caries compared with the wild type  
(p < 0.005). In contrast, no significant difference in plaque extent was observed between the 
wild-type and dgk mutant strains. These results suggest that aciduricity regulated by the dgk 
gene product might play a critical role in S. mutans virulence.  
 

Treatment 
Plaque 
extent 

(∆) 

Initial 
dentinal 
fissures 

(∆∆)

Advanced 
dentinal 
fissures 

(∆∆)

Smooth-
surface 
caries 
(∆∆∆)

Total 
bacteria 

CFU (107)

Total 
streptococci 
CFU (107) 

Total  
S. mutans 
CFU (107) 

Water 
control 

2.8 ± 0.63a b 9.5 ± 1.72 a 6.6 ± 2.80 a b 0.5 ± 0.97 a 4.4 ± 2.36 a 2.7 ± 2.26 a ND a b 

UA159 (wt) 1.1 ± 0.32 a 11.5 ± 1.27a 10.8 ± 1.62 a 9.5 ± 6.55 a c 7.9 ± 3.21 a 7.4 ± 2.79 a c 4.0 ± 2.11 a c 

UADGK10 
(dgk) 

1.5 ± 0.53 b 10.6 ± 0.84 9.3 ± 1.2 b 2.5 ± 2.68 c 6.4 ± 2.40 4.4 ± 2.53 c 2.3 ± 1.20b c 

ND, Not determined. ∆, 4 units at risk; ∆∆, 12 fissures at risk; ∆∆∆, 20 units at risk. 
aSignificant difference between water control and UA159 (wt), p < 0.05. 
bSignificant difference between UADGK1 (dgk) and water control, p < 0.05. 
cSignificant difference between UA159 (wt) and UADGK1 (dgk), p < 0.05. 
The mutant name was changed from those of previous paper (Shibata et al., 2009) to help readers understand. 

Table 6. Influence of dgk deletion on smooth-surface plaque extent, initial and advanced 
dentinal fissure lesions, smooth-surface caries, and colonization properties. 

5. A potential target for anti-caries chemotherapy 

Development of an effective anti-caries agent is the ultimate goal of our work. Considering 
the characteristics of known mutants, the Dgk homolog seems to be the most promising 
target for anti-caries agents. Dgks have been extensively studied in mammals, and several 
inhibitory compounds, e.g., R59022 and R59949 (Fig. 6), have been reported. In contrast, 
inhibitors of prokaryotic Dgk have not yet been elucidated.  
 

 

Fig. 6. Structures of R59022 and R59949. 

When first attempting to discover inhibitors of prokaryotic Dgk, we tested the effects of 
R59022 and R59949 on the growth of S. mutans (Shibata et al., 2011). Although neither 
R59022 nor R59949 influenced growth at pH 7.4, R59949, but not R59022, showed a 
significant inhibitory effect at acidic pH (Fig. 7). Inhibition by R59949 increased by 13, 29, 58, 
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68, and 78% at pH 5.4, 5.3, 5.2, 5.1, and 5.0, respectively (Fig. 7A). These findings were 
particularly interesting because R59022 and R59949 were used at concentrations of 100 μM 
and 25 μM, respectively, due to the limited solubility of R59949. 
 

 

Fig. 7. Effect of R59949 (A) and R59022 (B) on the growth of S. mutans. Data represent the mean 
± standard deviation. Differences in growth rate between cells cultured in the presence and 
absence of Dgk inhibitor were analyzed using Student’s t test. *, p < 0.05; **, p < 0.0001. 

Furthermore, we examined the inhibitory effects of R59022 and R59949 on the kinase 
activity of S. mutans Dgk. Neither R59022 nor R59949 inhibited kinase activity at pH 7.4; this 
is in agreement with their lack of effect on S. mutans growth at neutral pH. As mentioned 
above, R59949 significantly inhibited the growth of S. mutans at acidic pH values (below 
5.4). When evaluating the effect of R59949 on enzyme activity at acidic pH, it is important to 
know the intracellular pH of S. mutans cells; the intracellular pH of S. mutans cells was 6.4 
when cultured in broth at pH 5.2. Therefore, we determined the inhibitory effect of R59949 
and R59022 on S. mutans Dgk kinase activity at pH 6.4. R59949, but not R59022, inhibited 
kinase activity with undecaprenol as a substrate by around 20% (Fig. 8). 
 

 

Fig. 8. Effect of R59949 on kinase activity with undecaprenol as a substrate. Data represent 
the mean ± standard deviation. Differences in kinase activity between cells cultured in the 
presence and absence of R59949 were analyzed by Student’s t test. *, p < 0.05. 
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S. mutans Dgk is inherently different from mammalian Dgk in terms of its molecular size, 
molecular structure, and substrate specificity. However, it is interesting that R59949 inhibits 
the enzymatic activity of S. mutans Dgk even with undecaprenol as the substrate. 
Additionally, the difference in inhibitory activity between R59949 and R59022 means that a 
comparison of their molecular structure may lead to discovery of further potent Dgk 
inhibitors specific for prokaryotic enzymes, that is, new anti-caries agents. 

6. Conclusion 

The reduction of environmental pH in dental plaque by the cariogenic microorganisms is 
important step in the development of dental caries. The cariogenic microorganisms should 
survive in a relentless environment produced by themselves in order to exhibit their 
maximum virulence. In this chapter, we described the acid tolerance characteristics of the 
cariogenic microorganism, S. mutans. TCSs seem to be the most suitable system for 
adaptation to environmental conditions. However, no TCS seems to be definitively 
responsible for S. mutans acid tolerance. At present, identification of TCS depends on gene 
homology searching, which may not identify all genes encoding TCS that contribute to S. 
mutans acid tolerance. 
We focus on dgk because it is the most promising contributor to S. mutans acid tolerance 
when assessed using a simple acid tolerance assay. Although the precise mechanism by 
which the gene product is involved in acid tolerance has not yet been elucidated, dgk is the 
only gene whose product has been definitively implicated in cariogenicity in an animal 
model. Furthermore, potential specific inhibitors of the gene product have been introduced. 
This fact may aid in development of next-generation anti-caries therapies based on the 
ability of this microorganism to adapt to environmental conditions. 
However, much detail of the acid tolerance mechanisms of S. mutans remains unknown, and 
so further study is required. 
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