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1. Introduction  

Blade dicing is used conventionally for dicing of a semiconductor wafer. Stealth dicing (SD) 

was developed as an innovative dicing method by Hamamatsu Photonics K.K. (Fukuyo et 

al., 2005; Fukumitsu et al., 2006; Kumagai et al., 2007). The SD method includes two 

processes. One is a “laser process” to form a belt-shaped modified-layer (SD layer) into the 

interior of a silicon wafer for separating it into chips. The other is a “separation process” to 

divide the wafer into small chips. A schematic illustration of the laser process is shown in 

Fig. 1. 

 

 

Fig. 1. Schematic illustration of “laser process” in Stealth Dicing (SD) 

When a permeable nanosecond laser is focused into the interior of a silicon wafer and 

scanned in the horizontal direction, a high dislocation density layer and internal cracks 

are formed in the wafer. Fig. 2 shows the pictures of a wafer after the laser process and 

small chips divided through the separation process. The internal cracks progress to the 

surfaces by applying tensile stress due to tape expansion without cutting loss. An 

example of the photographs of divided face of the SD processed silicon wafer is shown in 

Fig. 3. 
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             (a)                            (b) 

Fig. 2. A wafer after the laser process (a) and small chips divided through the separation 
process (b) (Photo: Hamamatsu Photonics K.K.) 

 

20 m20 m20 m

 

Fig. 3. Internal modified layer observed after division by tape expansion 

As the SD is a noncontact processing method, high speed processing is possible. Fig. 4 
shows a comparison of edge quality between blade dicing and SD. In the SD, there is no 
chipping and no cutting loss, so there is no pollution caused by the debris. The advantage of 
using the SD method is clear. Fig. 5 shows an example of SD application to actual MEMS 
device. This device has a membrane structure whose thickness is 2 m, but it is not 
damaged. A complete dry process of dicing technology has been realized and problems due 
to wet processing have been solved. 
 

   
(a) blade dicing                                  (b) stealth dicing 

Fig. 4. Comparison of edge quality between blade dicing and SD (Photo: Hamamatsu 
Photonics K.K.) 
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In this chapter, heat conduction analysis by considering the temperature dependence of the 
absorption coefficient is performed for the SD method, and the validity of the analytical 
result is confirmed by experiment. 
 

 

Fig. 5. SD application to actual MEMS device (Photo: Hamamatsu Photonics K.K.) 

2. Analysis method 

A 1,064 nm laser is considered here, and the internal temperature rise of Si by single pulse 
irradiation is analyzed (Ohmura et al., 2006). Considering that a laser beam is axisymmetric, 
we introduce the cylindrical coordinate system O rz  whose z -axis corresponds to the 

optical axis of laser beam and r -axis is taken on the surface of Si. The heat conduction 

equation which should be solved is 

 p

1T T T
C rK K w

t r r r z z
                    

 (1) 

where T  is temperature,   is density, Cp is isopiestic specific heat, K  is thermal 

conductivity, and w  is internal heat generation per unit time and unit volume. The finite 

difference method based on the alternating direction implicit (ADI) method was used for 
numerical calculation of Eq. (1). The temperature dependence of isopiestic specific heat 
(Japan Society for Mechanical Engineers ed., 1986) and thermal conductivity (Touloukian et 
al. ed., 1970) is considered. 
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Fig. 6. Temperature dependence of absorption coefficient of silicon single crystal for 1,064 nm 

Figure 6 (Fukuyo et al., 2007; Weakliem & Redfield, 1979) shows temperature dependence 
of the absorption coefficient of single crystal silicon for a wavelength 1,064 nm. The 
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absorption coefficient  ,i jT  in a lattice  ,i j  whose temperature is ,i jT  is expressed by 

,i j . 

When the Lambert law is applied between a small depth z  from depth 1jz z   to jz z , 

the laser intensity ,i jI  at the depth jz z  is expressed by 

 ,

, ,
i j z

i j i jI I e
   ， max1, 2, ,i i  , max1, 2, ,j j   (2) 

where ,i jI  is the laser intensity at the depth 1jz z  . The measurement values of Fig. 6 are 

approximated by 

     112.991exp 0.0048244 52.588exp 0.0002262 cmT T        (3) 

The absorption coefficient of molten silicon is 57.61 10 cm-1 (Jellison, 1987). Therefore, this 

value is used for the upper limit of applying Eq. (3). 

The 21 e  radius at the depth z  of a laser beam which is focused with a lens is expressed by 

 er z . In propagation of light waves from the depth 1jz z   to jz z , focusing or 

divergence of a beam can be evaluated by a parameter 

 
 
 1

e j

j

e j

r z

r z




 , max1, 2, ,j j   (4) 

The beam is focused when j  is less than 1, and is diverged when j  is larger than 1. Now, 

the laser intensity ,i jI  at the depth 1jz z   of a finite difference grid  ,i j  can be expressed 

by the energy conservation as follows: 

1. For 1 1j    
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 (6) 

2. For 1 1j    
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Considering Eq. (2), the internal heat generation per unit time and unit volume in the grid 

 ,i j  is given by 

 
 ,

,

,

1 i j z
i j

i j

e I
w

z

 



 (9) 

In addition, the calculation of the total power at the depth 1jz z   by Eqs. (5) to (8) yields 

    2 2 2 2 2 2
0 0, 1 1 , 1 0 0, 1 ,

1 1
j i i i j j i i i j

i i

r I r r I r I r r I   
 

   
 

        (10) 

and it can be confirmed that energy is conserved in the both cases of 1 1j    and 1 1j   . 

3. Analysis results and discussions 

3.1 The formation mechanism of the inside modified layer 

Concrete analyses are conducted under the irradiation conditions that the pulse energy, 

p0E , is 6.5 J, the pulse width (FWHM), p , is 150 ns and the minimum spot radius, 0r , is 

485 nm. The pulse shape is Gaussian. The pulse center is assumed to occur at 0t  . The 

intensity distribution (spatial distribution) of the beam is assumed to be Gaussian.  It is 

supposed that the thickness of single crystal silicon is 100 m and the depth of focal plane 

0z  is 60 m. The initial temperature is 293 K. 

The analysis region of silicon is a disk such that the radius is 100 m and the thickness is 100 

m. In the numerical calculation, the inside radius of 20 m is divided into 400 units at a 

width 50 nm evenly, and its outside region is divided into 342 units using a logarithmic 

grid. The thickness is divided into 10,000 units at 10 nm increments evenly in the depth 

direction. The time step is 20 ps. The boundary condition is assumed to be a thermal 

radiation boundary. 

For comparison with the following analysis results, the temperature dependence of the 

absorption coefficient is ignored at first, and a value of 8.1  cm-1 at room temperature is 

used. In this case, the time variation of the intensity distribution inside the silicon is given 
by 

  
   

2 2
p

2 2 2
p p

4ln 2 2
, , exp 4ln 2

e e

E t r
I r z t z

r z t r z


  

 
    
  

 (11) 

where pE  is an effective pulse energy penetrating silicon and  er z  is the spot radius of the 

Gaussian beam at depth z . 

The time variation of temperature at various depths along the central axis is shown in Fig. 7. 
The maximum temperature distribution is shown in Fig. 8. It is understood from Fig. 7 that 

the temperature becomes the maximum at time 20 ns at depth of 60 m which corresponds 
to the focal position. In Fig. 8, due to reflecting laser absorption, the temperature of the side 
that is shallower than the focal point of the laser beam is slightly higher. However, the 
maximum temperature distribution becomes approximately symmetric with respect to the 
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focal plane. At any rate the maximum temperature rise is about 360 K, which is much 
smaller than the melting point of 1,690 K under atmospheric pressure (Parker, 2004). It is 
concluded that polycrystallization after melting and solidification does not occur at all, if the 
absorption coefficient is independent of the temperature and is the value at the room 
temperature. 
 
 
 

290

300

310

320

330

340

350

360

-150 -100 -50 0 50 100 150 200 250 300

Time    s

T
e

m
p

e
ra

tu
re

  
  

K

E p = 4.45 J

 p = 150 ns

z 0 = 60 m

r 0 = 485 nm

M
2
 =1.1

z = 60 m 59 m

58 m

55 m50 m

40 m

30 m

45 m

 
 
 

Fig. 7. Time variation of temperature at various depths along the central axis when 
temperature dependence of absorption coefficient is ignored 
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Fig. 8. Maximum temperature distribution when temperature dependence of absorption 
coefficient is ignored 
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Fig. 9. Time variation of temperature distribution obtained by heat conduction analysis 
considering the temperature dependence of the absorption coefficient 

When the temperature dependence of absorption coefficient (Eq. (3)) is taken into account, 

the time variation of temperature distribution is shown in Fig. 9. Figure 10 shows the time 

variation of the temperature distribution along the central axis in Fig. 9. It can be understood 

from these figures that laser absorption begins suddenly at a depth of 59z  m at about 

45t   ns and the temperature rises to about 20,000 K instantaneously. The region where 

the temperature rises beyond 10,000 K will be instantaneously vaporized and a void is 

formed. High temperature region of about 2,000 K propagates in the direction of the laser 

irradiation from the vicinity of the focal point as a thermal shock wave. The region where 

the thermal shock wave propagates becomes a high dislocation density layer due to the 

shear stress caused by the very large compressive stress. 
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Fig. 10. Time variation of temperature distribution along the central axis 
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                                                        (a)                                                         (b) 

Fig. 11. The maximum temperature distribution (a) and a schematic of SD layer formation 
(b) 

Figure 11 shows the maximum temperature distribution and a schematic of SD layer 

formation. SD layer looks like an exclamation mark “!”. As a result, a train of the high 

dislocation density layer and void is generated as a belt in the laser scanning direction as 

shown schematically in Fig. 1. When the thermal shock wave caused by the next laser pulse 

propagates through part of the high dislocation density layer produced by previous laser 

pulse, a crack whose initiation is a dislocation progresses. Figure 12 shows a schematic of 

crack generation by the thermal shock wave. Analyses of internal crack propagation in SD 

were conducted later using stress intensity factor (Ohmura et al., 2009, 2011). 
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Fig. 12. Schematic of crack generation 

Figure 13 shows an inside modified-layer observed by a confocal scanning infrared laser 

microscope OLYMPUS OLS3000-IR before division (Ohmura et al., 2009). It is confirmed 

that a train of the high dislocation density layer and void is generated as a belt as estimated 

in the previous studies. It also can be understood that the internal cracks have been already 

generated before division. 
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Fig. 13. Confocal scanning IR laser microscopy image before division 

3.2 Stealth Dicing of ultra thin silicon wafer 

Here heat conduction analysis is performed for the SD method when applied to a silicon 

wafer of 50 m thick, and the difference in the processing result depending on the depth of 

focus is investigated (Ohmura et al., 2007, 2008). Furthermore, the validity of the analytical 

result is confirmed by experiment. In the analysis, the pulse energy, p0E , is 4 J, the pulse 

width, p , is 150 ns, and the pulse shape is Gaussian. The intensity distribution of the beam 

is assumed to be Gaussian.  It is supposed that the depth of focal plane 0z  is 30 m, 15 m 

and 0 m. The initial temperature is 293 K. 

The analysis region of silicon is a disk such that the radius is 111 m and the thickness is 50 

m. In the numerical calculation, the inside radius of 11 m is divided into 440 units at a 

width 25 nm evenly, and its outside region is divided into 622 units using a logarithmic 

grid. The thickness is divided into 10,000 units at 5 nm increments evenly in the depth 

direction. The time step is 10 ps. The boundary condition is assumed to be a thermal 

radiation boundary. 

3.2.1 In the case of focal plane depth 30 µm 

The time variation the temperature distribution along the central axis is shown in Fig.14. 

Figure 14(b) shows the temperature change on a two-dimensional plane of depth and time 

by contour lines. 

It can be understood from Fig. 14(a) that laser absorption begins suddenly at a depth of 

29z  m at about 8t   ns and the temperature rises to about 12,000 K instantaneously. 

The region where the temperature rises beyond 8,000 K will be instantaneously vaporized 

and a void is formed. The high temperature area beyond 2,000 K then expands rapidly in 

the surface direction until 100t  ns as shown in Fig. 14(b). The contour at the leading 

edge of this high temperature area is clear in this figure. Also the temperature gradient is 

steep as shown in Fig. 14(a). Therefore, this high-temperature area is named a thermal 

shock wave as well. It is calculated that the thermal shock wave travels at a mean speed of 

about 300 m/s. 
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Fig. 14. Time variation of temperature distribution along the central axis ( 0 30z  m) 

Propagation of the thermal shock wave is shown in Fig. 15 by a time variation of the two-

dimensional temperature distribution. The contour of the high-temperature area is 

comparatively clear until 50t  ns, because the traveling speed of the thermal shock wave is 

much higher than the velocity of thermal diffusion. The contour of the high temperature 

area becomes gradually vague at 100t  ns when the thermal shock wave propagation is 

finished. Because the temperature history is similar to the case of thickness 100 m, the 

inside modified layer such as Fig. 3 is expected to be generated. 
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Fig. 15. Time variation of temperature distribution ( 0 30z  m) 
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3.2.2 In the case of focal plane depth 15 µm 

The time variation of the temperature distribution along the central axis in case of focal 

plane depth 15 m is shown in Fig. 16. 
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Fig. 16. Time variation of temperature distribution along the central axis ( 0 15z  m) 

It can be understood from Fig. 16(a) that laser absorption begins suddenly at a depth of 

14z  m at about 10t   ns and the temperature rises to about 12,000 K instantaneously. 

As well as the case of focal plane depth 30 m, the region where the temperature rises 
beyond 8,000 K will be instantaneously vaporized and a void is formed. Then the thermal 
shock wave propagates in the surface direction until about 25 ns. 
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Fig. 17. Time variation of temperature distribution ( 0 15z  m) 

It is understood from Fig. 16(b) that laser absorption suddenly begins at the surface, once 

the thermal shock wave reaches the surface. Though the laser power already passes the 

peak, and gradually decreases, the surface temperature rises beyond 20000 K, which is 

higher than the maximum temperature which is reached at the inside. Although the thermal 

diffusion velocity is fairly slower than the thermal shock wave velocity, the internal heat is 

diffused to the surrounding. However, because the heat in the neighborhood of the surface 

is diffused only in the inside of the lower half, the surface temperature becomes very high 

and is maintained comparatively for a long time. Ablation occurs of course in such a high-

temperature state. As a result, it is expected that not only is an inside modified layer 

generated, but also the surface is removed by ablation. Figure 17 shows that the surface 

temperature rises suddenly after the thermal shock wave propagates in the inside of the 

silicon, and reaches the surface, by the time variation of two dimensional temperature 

distribution. 
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3.2.3 In the case of focal plane depth 0 µm 
When the laser is focused at the surface, as shown in Fig. 18, laser absorption begins 
suddenly at the surface at 35t   ns, and the maximum surface temperature in the 

calculation reaches 56 10 K. It is estimated that violent ablation occurs when such an ultra-
high temperature is reached. Because of the pollution of the device area by the scattering of 
the debris and thermal effect, the ablation at the surface is quite unfavorable. 
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Fig. 18. Time variation of temperature distribution along the central axis ( 0 0z  m) 

3.2.4 Comparison of the maximum temperature distributions and the experimental 
results 

The maximum temperature distributions at the focal plane depths of 30 m, 15 m and 0 m 
are shown in Fig. 19 in order to compare the previous analysis results at a glance. 
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Fig. 19. Comparison of the maximum temperature distribution 
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Because high-temperature area stays in the inside of the wafer when 0z  is 30 m, it was 

estimated that the inside modified layer as shown in Fig. 3 will be generated. In the case of 

0 15z  m, it was estimated that the surface is ablated although the modified layer is 

generated inside.  In the case of 0 0z  m, it was estimated that the surface was ablated 

intensely. It is concluded from the above analysis results that the laser irradiation condition 

for SD processing should be selected at a suitable focal plane depth so that the thermal 

shock wave does not reach the surface. 

In order to verify the validity of the estimated results, laser processing experiments were 

conducted under the same irradiation condition as the analysis condition. The repetition 

rate in the experiments was 80 kHz. The results are shown in Fig. 20. Optical microscope 

photographs of the top views of the laser-irradiated surfaces and the divided faces are 

shown in the middle row and the bottom row, respectively. Figures 20 (a), (b) and (c) are 

results in the case of 0 30z  m, 0 15z  m, 0 0z  m, respectively. 
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Fig. 20. Experimental results ( p0 4E  J, p 150  ns, 300v  m/s, p 80f  kHz) 

In the case of 0 30z  m which is shown in Fig. 20 (a), it can be confirmed that voids are 

generated at the place that is slightly higher than the focal plane and the high dislocation 

density layer is generated in those upper parts, which are similar to Fig. 3. In the case of 

0 15z  m which is shown in Fig. 20 (b), it is recognized that voids are generated at the 

place that is slightly higher than the focal plane and the high dislocation density layer is 

generated in those upper parts. However, it is observed that the surface is ablated and holes 

are opened from the photograph of the laser irradiated surface. In the case of 0 0z  m 

which is shown in Fig. 20 (c), it is seen that strong ablation occurs and debris is scattered to 

the surroundings. Voids and the high dislocation density layer are not recognized in the 

divided face. Only the cross section of the hole caused by ablation is seen. These 

experimental results agree fairly well with the estimation based on the previous analysis 
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result. Therefore, the validity of the analytical model, the analysis method, and the analysis 

results of this study are proven. The processing results can be estimated to some extent by 

using the analysis model and the analysis method in the present study. It is useful in 

optimization of the laser irradiation condition. 

4. Conclusion 

In the stealth dicing (SD) method, the laser beam that is permeable for silicon is absorbed 

locally in the vicinity of the focal point, and an interior modified layer (SD layer), which 

consists of voids and high dislocation density layer, is formed. In this chapter, it was 

clarified by our first analysis that the above formation was caused by the temperature 

dependence of the absorption coefficient and the propagation of a thermal shock wave. 

Then, the SD processing results of an ultra thin wafer of 50 m in thickness were estimated 

based on this analytical model and analysis method. Particularly we paid attention to the 

difference in the results depending on the focal plane depth. Furthermore, in order to 

compare with the analysis results, laser processing experiments were conducted with the 

same irradiation condition as the analysis conditions. 

In the case of focal plane depth 0 30z  m, the analysis result of temperature history was 

similar to the case when the wafer thickness is 100 m and the focal plane depth is 60 m. 

Therefore, it was predicted that a similar inside modified layer will be generated.  In the 

case of 0 15z  m, it was estimated that not only the inside modified layer is generated, but 

also the surface is ablated. Because the thermal shock wave reached the surface, remarkable 

laser absorption occurred at the surface. In the case of 0 0z  m, it was estimated that the 

surface is ablated intensely. These estimation results agreed well with experimental results. 

Therefore, the validity of the analytical model, the analysis method and the analysis results 

of this study was proven. 

As conclusion of this chapter, the following points became clear: 
1. When the analytical model and the analysis method of the present study are used, the 

processing mechanism can be understood well, and the processing results can be 
estimated to some extent. It is useful in optimization of the laser irradiation condition. 

2. There is a suitable focal plane depth in the SD processing, and it is necessary to select 
the laser irradiation condition so that the thermal shock wave does not reach the 
surface. 
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