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1. Introduction 

Quasicrystal as a new structure of solids as well as a new material, has been studied over 

twenty five years. The elasticity and defects play a central role in field of mechanical 

behaviour of the material, see e.g. Fan [1]. Different from crystals and conventional 

engineering materials, quasicrystals have two different displacement fields: phonon field 

1 2 3( , , )u u u u  and phason field 1 2 3( , , )w w w w , which is a new degree of freedom to 

condensed matter physics as well as continuum mechanics,  this leads to two strain tensors 

such as 
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We call the first of equation (1) as phonon strain tensor, the second as phason strain tensor, 
respectively. The corresponding stress tensor is ij  and ijH .  

The constitutive law is the so-called generalized Hooke’s law as follows 
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in which ijklC  denotes the phonon elastic tensor, ijklK  the phason one, and ijklR  the phonon-

phason coupling one, respectively. It is evident that the appearance of the new degree 
freedom yields a great challenge to the continuum mechanics. 
In the dynamic process of quasicrystals problem presents further complexity. According to 

the point of view of Lubensky et al. [2,3], phonon represents wave propagation, while 

phason represents diffusion in the dynamic process. Following the argument of Lubensky et 

al., Rochal and Lorman [4] and Fan [1,5] put forward the equations of motion of 

quasicrystals as follows 
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Equation (3) is the equation of motion of conventional elastodynamics, and equation (4) is 
the linearized equation of hydrodynamics of Lubensky et al., so equations (3), (4) are elasto-
hydrodynamic equations of quasicrystals. 
The equations (1)-(4) are the basis of dynamic analysis of quasicrystalline material.   

2. The elasto-hydrodynamics of two-dimensional decagonal quasicrystals 
and application to dynamic fracture 

2.1 Statement of formulation and sample problem 
Among over 200 quasicrystals observed to date, there are over 70 two-dimensional 
decagonal quasicrystals, so this kind of solid phases play an important role in the material. 
For simplicity, here only point group 10mm two-dimensional decagonal quasicrystals will 
be considered. We denote the periodic direction as the z  axis and the quasiperiodic plane as 
the x y  plane. Assume that a Griffith crack in the solid along the periodic direction, i.e., 

the z axis. It is obvious that elastic field induced by a uniform tensile stress at upper and 

lower surfaces of the specimen is independent of z , so ( )/ 0z   . In this case, the stress-

strain relations are reduced to 
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where 12 11 12, ( )/2L C M C C   are the phonon elastic constants, 1K and 2K are the phason 

elastic constants, R  phonon-phason coupling elastic constant, respectively.  
Substituting equations (5) into equations (3), (4) we obtain the equations of motion of 
decagonal quasicrystals as following: 
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where  
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Note that constants 1 2,c c and 3c have the meaning of elastic wave speeds, while 1d and 2d do 

not represent wave speed, and 2
1d and 2

2d  are diffusive coefficients in physical meaning. 

A decagonal quasicrystal with a crack is shown in Fig.1. It is a rectangular specimen with a 

central crack of length 2 ( )a t subjected to a dynamic or static tensile stress at its edges ED 

and FC, in which ( )a t represents the crack length being a function of time, and for dynamic 

initiation of crack growth, the crack is stable, so 0( ) constanta t a  , for fast crack 

propagation, ( )a t varies with time. At first we consider dynamic initiation of crack growth, 

then study crack fast propagation. Due to the symmetry of the specimen only the upper 

right quarter is considered. 
 

 

Fig. 1. The specimen with a central crack 

Referring to the upper right part and considering a fix grips case, the following boundary 
conditions should be satisfied:  
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in which 0( ) ( )p t p f t  is a dynamic load if ( )f t  varies with time, otherwise it is a static load 

(i.e., if ( )f t const ), and 0p const  with the stress dimension.  . 

The initial conditions are 
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For implementation of finite difference all field variables in governing equations (6) and 

boundary-initial conditions (7), (8) must be expressed by displacements and their 

derivatives. This can be done through the constitutive equations (2). The detail of the finite 

difference scheme is omitted here but can be referred to Fan [1]. 

For the related parameters in this section, the experimentally determined mass density  for 

decagonal Al-Ni-Co quasicrystal 3 -34.186 10 g mm    is used and phonon elastic moduli 

are 12 2 12 2
11 122.3433 10 dyn/ cm , 0.5741 10 dyn/ cmC C     10 2(10 dyn/ cm GPa) which 

are obtained by resonant ultrasound spectroscopy, refer to Chernikov et al [6], we have also 

chosen phason elastic constants 12 2
1 1.22 10 dyn/ cmK   and 12 2

2 0.24 10 dyn/ cmK    

10 2(10 dyn/ cm GPa)  estimated by Monto-Carlo simulation given by Jeong and Steinhardt 

[7] and 19 3 10 31 / 4.8 10 m s/kg=4.8 10 cm μs /g-
w          which measured by de Boussieu 

and collected by Walz in his master thesis [8].The coupling constant R  has been measured for 
some special cases recently, see Chapter 6 and Chapter 9 of monograph written by Fan [1] 
respectively. In computation we take / 0.01R M   for coupling case corresponding to 

quasicrystals, and / 0R M   for decoupled case which corresponds to crystals. 

2.2 Examination on the physical model 

In order to verify the correctness of the suggested model and the numerical simulation, we 

first explore the specimen without a crack. We know that there are the fundamental 

solutions characterizing time variation natures based on wave propagation of phonon field 

and on motion of diffusion of phason, respectively according to mathematical physics 
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where   is a frequency and c  a speed of the wave, t  the time and 0t a special value of t , x  the 

distance, 0x  a special value of x , and w the kinetic coefficient of phason defined previously. 

Comparison results are shown in Fig.2 (a-c), in which the solid line represents the numerical 

solution of quasicrystals and the dotted line represents fundamental solution given by 

formulas (9). From Fig. 2(a) and (b) we can see that both displacement components of 

phonon field are in excellent agreement to the fundament solutions of mathematical physics. 

However, there are some differences because the phonon field is influenced by phason field 
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Fig. 2. (a) Displacement component of phonon field xu versus time 

 

 

Fig. 2. (b) Displacement component of phonon field yu versus time 
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Fig. 2. (c) Displacement component of phason field xw versus time 

and the phonon-phason coupling effect. From Fig. 2(c), in the phason field we find that the 

phason mode presents diffusive nature in the overall tendency, but because of influence of 

the phonon and phonon-phason coupling, it can also have some characters of fluctuation. So 

the model describes the dynamic behaviour of phonon field and phason field in deed. This 

also shows the mathematical modeling of the present work is valid. 

2.3 Testing the scheme and the computer program  
2.3.1 Stability of the scheme 

The stability of the scheme is the core problem of finite difference method which depends 

upon the choice of parameter 1 /c h  , which is the ratio between time step and space step 

substantively. The choice is related to the ratio 1 2/c c , i.e., the ratio between speeds of elastic 

longitudinal and transverse waves of the phonon field. To determine the upper bound for 

the ration to guarantee the stability, according to our computational practice and 

considering the experiences of computations for conventional materials, we choose 0.8 
in all cases and results are stable. 

2.3.2 Accuracy test 

The stability is only a necessary condition for successful computation. We must check the 
accuracy of the numerical solution. This can be realized through some comparison with 
some well-known classical solutions (analytic as well as numerical solutions) of 
conventional fracture mechanics. For this purpose the material constants in the computation 

are chosen as 1 27.34 mm/μs, 3.92 mm/μsc c   and 3 35 10 kg/m   , 0 1 MPap   which 
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are the same with those given in classical references for conventional fracture dynamics, 
discussed in Fan’s monograph [1] in detail. At first the comparison to the classical exact 

analytic solution is carried out, in this case we put 0x yw w   (i.e., 1 2 0K K R   ) for the 

numerical solution. The comparison has been done with the key physical quantity—
dynamic stress intensity factor, which is defined by 

 
0

0( ) lim ( ) ( ,0, )yy
x a

K t x a x t 



   (10) 

The normalized dynamic stress intensity factor can be denoted as ( ) / static
I IK t K , in which  static

IK  

is the corresponding static stress intensity factor, whose value here is taken as 0 0a p . For the 

dynamic initiation of crack growth in classical fracture dynamics there is the only exact analytic 
solution— the Maue’s solution (refer to Fan’s monograph [1]), but the configuration of whose 
specimen is quite different from that of our specimen. Maue studied a semi-infinite crack in an 
infinite body, and subjected to a Heaviside impact loading at the crack surface. While our 
specimen is a finite size rectangular plate with a central crack, and the applied stress is at the 
external boundary of the specimen. Generally the Maue’s model cannot describe the interaction 
between wave and external boundary. However, consider a very short time interval, i.e., during 
the period between the stress wave from the external boundary arriving at the crack tip (this time 

is denoted by 1t ) and before the reflecting by external boundary stress wave emanating from the 

crack tip in the finite size specimen (the time is marked as 2t ). During this special very short time 

interval our specimen can be seen as an “infinite specimen”. The comparison given by Fig. 3 
shows the numerical results are in excellent agreement with those of Maue’s solution within the 
short interval in which the solution is valid. 
Our solution corresponding to case of 0x yw w   is also compared with numerical 

solutions of conventional crystals, e.g. Murti’s solution and Chen’s solutions (refer to Fan [1] 
and Zhu and Fan [9] for the detail), which are also shown in Fig. 3, it is evident, our solution 
presents very high precise.  

2.3.3 Influence of mesh size (space step) 
The mesh size or the space step of the algorithm can influence the computational accuracy 
too. To check the accuracy of the algorithm we take different space steps shown in Table 1, 

which indicates if 0 /40h a the accuracy is good enough. The check is carried out through 

static solution, because the static crack problem in infinite body of decagonal quasicrystals 
has exact solution given in Chapter 8 of  monograph given by Fan [1], and the normalized 
static intensity factor is equal to unit. In the static case, there is no wave propagation effect, 

0 0/ 3, / 3L a H a   the effect of boundary to solution is very weak, and for our present 

specimen 0 0/ 4, / 8L a H a  , which may be seen as an infinite specimen, so the normalized 

static stress intensity factor is approximately but with highly precise equal to unit. The table 

shows that the algorithm is with a quite highly accuracy when 0 /40.h a   

2.4 Results of dynamic initiation of crack growth 

The dynamic crack problem presents two “phases” in the process: the dynamic initiation of 
crack growth and fast crack propagation. In the phase of dynamic initiation of crack growth, 

the length of the crack is constant, assuming 0( )a t a . The specimen with stationary crack 
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Fig. 3. Comparison of the present solution with analytic solution and other numerical 
solution for conventional structural materials given by other authors 

 

H a0/10 a0/15 a0/20 a0/30 a0/40 

K 0.9259 0.94829 0.9229 0.97723 0.99516 

Errors 7.410% 5.171% 3.771% 2.277% 0.484% 

Table 1. The normalized static S.I.F. of quasicrystals for different space steps 

that are subjected to a rapidly varying applied load 0( ) ( )p t p f t , where 0p  is a constant 
with stress dimension and ( )f t  is taken as the Heaviside function. It is well known the 
coupling effect between phonon and phason is very important, which reveals the distinctive 
physical properties including mechanical properties, and makes quasicrystals distinguish 
the periodic crystals. So studying the coupling effect is significant. 

The dynamic stress intensity factor ( )K t  for quasicrystals has the same definition given by 

equation (10), whose numerical results are plotted in Fig. 4, where the normalized dynamics 

stress intensity factor 0 0( )/K t a p is used. There are two curves in the Fig. 4, one 

represents quasicrystal, i.e., / 0.01R M  , the other describes periodic crystals 

corresponding to / 0R M  , the two curves of the Fig. 4 are apparently different, though 

they are similar to some extends. Because of the phonon-phason coupling effect, the 

mechanical properties of the quasicrystals are obviously different from the classical crystals. 

Thus, the coupling effect plays an important role. 
In Fig. 4, 0t represents the time that the wave from the external boundary propagates to the 
crack surface, in which 0 2.6735 μst  . So the velocity of the wave propagation is 

0 0/ 7.4807 km/sH t   , which is just equal to the longitudinal wave speed 

1 ( 2 )/c L M   . This indicates that for the complex system of wave propagation-motion 
of diffusion coupling, the phonon wave propagation presents dominating role. 
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Fig. 4. Normalized dynamics stress intensity factor (DSIF) versus time 

There are some oscillations of values of the stress intensity factor in the figure. These 
oscillations characterize the reflection and diffraction between waves coming from the crack 
surface and the specimen boundary surfaces. The oscillations are influenced by the material 
constants and specimen geometry including the shape and size very much. 

3. Elasto-/hydro-dynamics and applications to fracture dynamics of three-
dimensional icosahedral quasicrystals 

3.1 Basic equations, boundary and initial conditions  

There are over 50% icosahedral quasicrystals among observed the quasicrystals to date, this 
shows this kind of systems in the material presents the most importance. Within icosahedral 
quasicrystals, the icosahedral Al-Pd-Mn quasicrystals are concerned in particular by 
researchers, for which especially a rich set of experimental data for elastic constants 
accumulated so far, this is useful to the computational practice. So we focus on the elasto-
hydrodynamics of icosahedral Al-Pd-Mn quasicrystals here. From the previous section we 
have known there are lack of measured data for phason elastic constants, the computation 
has to take some data which are obtained by Monte Carlo simulation, this makes some 
undetermined factors for computational results for decagonal quasicrystals. This shows the 
discussion on icosahedral quasicrystals is more necessary, and the formalism and numerical 
results are presented in the following. 
If considering only the plane problem, especially for the crack problems, there are much of 
similarities with those discussed in the previous section. We present herein only the part 
that are different. 
For the plane problem, i.e.,  
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0
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The linearized elasto-hydrodynamics of icosahedral quasicrystals have non-zero 

displacements ,z zu w  apart from , , ,x y x yu u w w , so in the strain tensors 
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it increases some non-zero components compared with those in two-dimensional 
quasicrystals. In connecting with this, in the stress tensors, the non-zero components 
increase too relatively to two-dimensional ones. With these reasons, the stress-strain 
relation presents different nature with that of decagonal quasicrystals though  the 
generalized Hooke’s law has the same form with that in one- and two-dimensional 
quasicrystals, i.e.,  

ij ijkl kl ijkl kl ij klij kl ijkl klC R w H R K w     
 

In particular the elastic constants are quite different from those discussed in the previous 
sections, in which the phonon elastic constants can be expressed such as   

 ( )ijkl ij kl ik jl il jkC           (12) 

and the phason elastic constant matrix [K] and phonon-phason coupling elastic one [R] are 
defined by the formulas of Fan’s monograph [1], which are not listed here again. 
Substituting these non-zero stress components into the equations of motion  
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and through the generalized Hooke’s law and strain-displacement relation we obtain the 
final dynamic equations as follows 
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in which  

 1 2
1 2 3 1 2 3

2
, , , ,  d ,

R K K R
c c c d d

  
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

       (15) 

note that constants 1 2,c c and 3c have the meaning of elastic wave speeds, while 1 2,d d  and 

3d do not represent wave speed, but are diffusive coefficients and parameter   may be 
understood as a manmade damping coefficient as in the previous section.  
Consider an icosahedral quasicrystal specimen with a Griffith crack shown in Fig. 1, all 
parameters of geometry and loading are the same with those given in the previous, but in 
the boundary conditions there are some different points, which are given as below   

 

0, 0, 0, 0, 0, 0 on 0 for 0

0, 0, 0, 0, 0, 0 on for 0

( ), 0, 0, 0, 0, 0 on for0

0, 0, 0, 0, 0, 0 on 0 for 0 ( )

0

x yx zx x yx zx

xx yx zx xx yx zx

yy xy zy yy xy zy

yy xy zy yy xy zy

y

u w H H x y H

H H H x L y H

p t H H H y H x L

H H H y x a t

u

 

  

  

  

        

        

        

        

 , 0, 0, 0, 0, 0 on 0 for ( )xy zy y xy zyw H H y a t x L        

 (16) 

The initial conditions are 

 

0 0 0

0 0 0

0 0 0

( , , ) 0 ( , , ) 0 ( , , ) 0

( , , ) 0 ( , , ) 0 ( , , ) 0

( , , )( , , ) ( , , )
0 0 0

x t y t z t

x t y t z t

yx z
t t t

u x y t u x y t u x y t

w x y t w x y t w x y t

u x y tu x y t u x y t

t t t

  

  

  

  

  

 
  

  

 (17) 

3.2 Some results 

We now concentrate on investigating the phonon and phason fields in the icosahedral Al-
Pd-Mn quasicrystal, in which we take 35.1 g/cm   and 74.2 GPa, 70.4 GPa   of the 
phonon elastic moduli, for phason ones 1 272 MPa, 37 MPaK K   and the  
constant relevant to diffusion coefficient of phason is 

19 3 10 31 / 4.8 10 m s/kg=4.8 10 cm μs/gw          . On the phonon-phason coupling 
constant, there is no measured result for icosahedral quasicrystals so far, we take 

/ 0.01R    for quasicrystals, and / 0R    for “decoupled quasicrystals” or crystals. 
The problem is solved by the finite difference method, the principle, scheme and algorithm are 
illustrated as those in the previous section, and shall not be repeated here. The testing for the 
physical model, scheme, algorithm and computer program are similar to those given in Section 2. 
The numerical results for dynamic initiation of crack growth problem, the phonon and 
phason displacements are shown in Fig. 5.  

The dynamic stress intensity factor ( )K t is defined by 

0

0( ) lim ( ) ( ,0, )yy
x a

K t x a x t 



 

 

and the normalized dynamics stress intensity factor (D.S.I.F.) 0 0( ) ( )/K t K t a p  is used, 
the results are illustrated in Fig. 6, in which the comparison with those of crystals are shown, 
one can see the effects of phason and phonon-phason coupling are evident very much.  
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Fig. 5. Displacement components of quasicrystals versus time.  
(a)displacement component xu ; (b)displacement component yu ;  
(c)displacement component xw ;(d)displacement component yw  

For the fast crack propagation problem the primary results are listed only the dynamic stress 
intensity factor versus time as below  
 

 

Fig. 6. Normalized dynamic stress intensity factor of central crack specimen under impact 
loading versus time 
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Fig. 7. Normalized stress intensity factor of propagating crack with constant crack speed 
versus time. 
Details of this work can be given by Fan and co-workers [1], [10]. 

4. Conclusion and discussion 

In Sections 1 through 3 a new model on dynamic response of quasicrystals based on 

argument of Lubensky et al is formulated. This model is regarded as an elasto-

hydrodynamics model for the material, or as a collaborating model of wave propagation 

and diffusion. This model is more complex than pure wave propagation model for 

conventional crystals, the analytic solution is very difficult to obtain, except  a few simple 

examples introduced in Fan’s monograph [1]. Numerical procedure based on finite 

difference algorithm is developed. Computed results confirm the validity of wave 

propagation behaviour of phonon field, and behaviour of diffusion of phason field. The 

interaction between phonons and phasons are also recorded. 

The finite difference formalism is applied to analyze dynamic initiation of crack growth and 

crack fast propagation for two-dimensional decagonal Al-Ni-Co and three-dimensional 

icosahedral Al-Pd-Mn quasicrystals, the displacement and stress fields around the tip of 

stationary and propagating cracks are revealed, the stress present singularity with order
1/2r , in which r denotes the distance measured from the crack tip. For the fast crack 

propagation, which is a nonlinear problem—moving boundary problem, one must provide 

additional condition for determining solution. For this purpose we give a criterion for 

checking crack propagation/crack arrest based on the critical stress criterion. Application of 

this additional condition for determining solution has helped us to achieve the numerical 

simulation of the moving boundary value problem and revealed crack length-time 

evolution. However, more important and difficult problems are left open for further study. 
Up to now the arguments on the physical meaning of phason variables based on 

hydrodynamics within different research groups have not been ended yet, see e.g. Coddens 

[11], which may be solved by further experimental and theoretical investigations. 
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