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1. Introduction

1.1 Droplet in space

It is considered that our solar system 4.6 billion years ago was composed of a proto-sun
and the circum-sun gas disk. In the gas disk, originally micron-sized fine dust particles
accumulated by mutual collisions to be 1000 km-sized objects like as planets. Therefore, to
understand the planet formation, we have to know the evolution of the dust particles in the
early solar gas disk. One of the key materials is a millimeter-sized and spherical-shaped grain
termed as “chondrule" observed in chondritic meteorites.

Chondrules are considered to have been formed from molten droplets about 4.6 billion
years ago in the solar gas disk (Amelin et al., 2002; Amelin & Krot, 2007). Fig. 1 is a
schematic of the formation process of chondrules. In the early solar gas disk, aggregation
of the micron-sized dust particles took place before planet formation (Nakagawa et al., 1986).
When the dust aggregates grew up to about 1 mm in size (precursor), some astrophysical
process heated them to the melting point of about 1600 − 2100 K (Hewins & Radomsky,
1990). The molten dust aggregate became a sphere by the surface tension (droplet),
and then cooled again to solidify in a short period of time (chondrule). The formation
conditions of chondrules, such as heating duration, maximum temperature, cooling rate,
and so forth, have been investigated experimentally by many authors (Blander et al., 1976;
Fredriksson & Ringwood, 1963; Harold C. Connolly & Hewins, 1995; Jones & Lofgren, 1993;
Lofgren & Russell, 1986; Nagashima et al., 2006; Nelson et al., 1972; Radomsky & Hewins,
1990; Srivastava et al., 2010; Tsuchiyama & Nagahara, 1981-12; Tsuchiyama et al., 1980; 2004;
Tsukamoto et al., 1999). However, it has been controversial what kind of astronomical event
could have produced chondrules in early solar system. The chondrule formation is one of the
most serious unsolved problems in planetary science.

The most plausible model for chondrule formation is a shock-wave heating model, which
has been tested by many theoreticians (Ciesla & Hood, 2002; Ciesla et al., 2004; Desch & Jr.,
2002; Hood, 1998; Hood & Horanyi, 1991; 1993; Iida et al., 2001; Miura & Nakamoto, 2006;
Miura et al., 2002; Morris & Desch, 2010; Morris et al., 2009; Ruzmaikina & Ip, 1994; Wood,
1984). Fig. 2 is a schematic of dust heating mechanism by the shock-wave heating model.
Initially, the chondrule precursors were floating in the gas disk without any large relative
velocity against the ambient gas (panel (a)). When a shock wave was generated in the gas disk,
the gas behind the shock front was accelerated suddenly. On the other hand, the chondrule
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2 Will-be-set-by-IN-TECH

Fig. 1. Schematic of formation process of a chondrule. The precursor of chondrule is an
aggregate of µm-sized cosmic dusts. The precursor is heated and melted by some
mechanism, becomes a sphere by the surface tension, then cools to solidify in a short period
of time.

precursors remain un-accelerated because of their inertia. Therefore, after passage of the shock
front, the large relative velocity arises between the gas and dust particles (panel (b)). The
relative velocity can be considered as fast as about 10 km s−1 (Iida et al., 2001). When the gas
molecule collides to the surface of chondrule precursors with such large velocity, its kinetic
energy thermalizes at the surface and heats the chondrule precursors, as termed as a gas drag
heating. The peak temperature of the precursor is determined by the balance between the gas
drag heating and the radiative cooling at the precursor surface (Iida et al., 2001). The gas drag
heating is capable to heat the chondrule precursors up to the melting point if we consider a
standard model of the early solar gas disk (Iida et al., 2001).

1.2 Physical properties of chondrules

The chondrule formation models, including the shock-wave heating model, are required not
only to heat the chondrule precursors up to the melting point but also to reproduce other
physical and chemical properties of chondrules recognized by observations and experiments.
These properties that should be reproduced are summarized as observational constraints
(Jones et al., 2000). The reference listed 14 constraints for chondrule formation. To date, there
is no chondrule formation model that can account for all of these constraints.

Here, we review two physical properties of chondrules; size distribution and
three-dimensional shape. The latter was not listed as the observational constraints in
the literature (Jones et al., 2000), however, we would like to include it as an important
constraint for chondrule formation. As discussed in this chapter, these two properties
strongly relate to the hydrodynamics of molten chondrule precursors in the gas flow behind
the shock front.

1.2.1 Size distribution

Fig. 3 shows the size distribution of chondrules compiled from measurement data in some
literatures (Nelson & Rubin, 2002; Rubin, 1989; Rubin & Grossman, 1987; Rubin & Keil, 1984).
The horizontal axis is the diameter D and the vertical axis is the cumulative fraction of
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Fig. 2. Schematic of the shock-wave heating model for chondrule formation. (a) The
precursors of chondrules are in a gas disk around the proto-sun 4.6 billion years ago. The gas
and precursors rotate around the proto-sun with almost the same angular velocity, so there is
almost no relative velocity between the gas and precursors. (b) If a shock wave is generated
in the gas disk by some mechanism, the gas behind the shock front is suddenly accelerated.
In contrast, the precursor is not accelerated because of its large inertia. The difference of their
behaviors against the shock front causes a large relative velocity between them. The
precursors are heated by the gas friction in the high velocity gas flow.

chondrules smaller than D in diameter. Table 1 shows the mean diameter and the standard
deviation of each measurement. It is found that the chondrule sizes vary according to
chondrite type. The mean diameters of chondrules in ordinary chondrites (LL3 and L3) are
from 600 µm to 1000 µm. In contrast, ones in enstatite chondrite (EH3) and carbonaceous
chondrite (CO3) are from 100 µm to 200 µm.

It should be noted that the true chondrule diameters are slightly larger than the data shown
in Fig. 3 and Table 1 because of the following reason. This data was obtained by observations
on thin-sections of chondritic meteorites. The chondrule diameter on the thin-section is not
necessarily the same as the true one because the thin-section does not always intersect the
center of the chondrule. Statistically, the mean and median diameters measured on the thin
section are, respectively,

√
2/3 and

√
3/4 of the true diameters (Hughes, 1978). However,

we do not take care the difference between true and measured diameters because it is not a
substantial issue in this chapter.

It is considered that in the early solar gas disk the dust aggregates have the size distribution
from ≈ µm (initial fine dust particles) to a few 1000 km (planets). In spite of the wide
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Fig. 3. Size distributions of natural chondrules in various types of chondritic meteorites (LL3,
L3, EH3, and CO3). The vertical axis is the normalized cumulative number of chondrules
whose diameters are smaller than that of the horizontal axis. Each data was compiled from
the following literatures; LL3 chondrites (Nelson & Rubin, 2002), L3 chondrites
(Rubin & Keil, 1984), EH3 chondrites (Rubin & Grossman, 1987), and CO3 chondrites (Rubin,
1989), respectively. The total number of chondrules measured in each literature is 719 for
LL3, 607 for L3, 689 for EH3, and 2834 for CO3, respectively.

size range of solid materials, sizes of chondrules distribute in a very narrow range of
about 100 − 1000 µm. Two possibilities for the origin of chondrule size distribution can
be considered; (i) size-sorting prior to chondrule formation, and (ii) size selection during
chondrule formation. In the case of (i), we need some mechanism of size-sorting in the early
solar gas disk (Teitler et al., 2010, and references therein). In the case of (ii), the chondrule
formation model must account for the chondrule size distribution. The latter possibility is
what we investigate in this chapter.

1.2.2 Deformation from a perfect sphere

It is considered that spherical chondrule shapes were due to the surface tension when they
melted. However, their shapes deviate from a perfect sphere and the deviation is an important
clue to identify the formation mechanism. Tsuchiyama et al. (Tsuchiyama et al., 2003)
measured the three-dimensional shapes of chondrules using X-ray microtomography. They
selected 20 chondrules with perfect shapes and smooth surfaces from 47 ones for further
analysis. Their external shapes were approximated as three-axial ellipsoids with axial radii of
a, b, and c (a ≥ b ≥ c), respectively. Fig. 4 shows results of the measurement. The horizontal
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chondrite meteorite chondrule number diam. D ref.
type type type∗ [µm]
L3 Inman BO 173 1038±937 (Rubin & Keil, 1984)
L3 Inman RP+C 201 852±598 (Rubin & Keil, 1984)
L3 ALHA77011 BO 163 680±625 (Rubin & Keil, 1984)
L3 ALHA77011 RP+C 70 622±453 (Rubin & Keil, 1984)

LL3 total of 5 types all 719 574+405
−237 (Nelson & Rubin, 2002)

EH3 total of 3 types all 689 219+189
−101 (Rubin & Grossman, 1987)

CO3 total of 11 types all 2834 148+132
−70 (Rubin, 1989)

Table 1. Diameters of chondrules from various types of chondritic meteorites and the
standard deviations. ∗BO = barred olivine, RP = radial pyroxene, C = cryptocrystalline. all =
all types are included.

and vertical axes are axial ratios of b/a and c/b, respectively. A point (b/a, c/b) = (1, 1)
means a perfect sphere because all of three axes have the same length. As going downward
from the point, the shape becomes oblate (disk-like shape) because a = b > c. On the other
hand, the shape becomes prolate (rugby-ball-like shape) as going leftward because a > b = c.
The chondrule shapes in the measurement are classified into two groups: spherical chondrules
in group-A and prolate chondrules in group-B. Chondrules in group-A have axial ratios of
c/b >∼ 0.9 and b/a >∼ 0.9. In contrast, chondrules in group-B have smaller values of b/a as
≈ 0.7 − 0.8.

It is considered that the deviation from a perfect sphere results from the deformation of a
molten chondrule before solidification. For example, if the molten chondrule rotates rapidly,
the shape becomes oblate due to the centrifugal force (Chandrasekhar, 1965). However,
the shapes of chondrules in group-B are prolate rather than oblate. Tsuchiyama et al.
(Tsuchiyama et al., 2003) proposed that the prolate chondrules in group-B can be explained
by spitted droplets due to the shape instability with high-speed rotation. However, it is not
clear whether the transient process such as the shape instability accounts for the range of axial
ratio of group-B chondrules or not.

1.3 Hydrodynamics of molten chondrule precursors

If chondrules were melted behind the shock front, the molten droplet ought to be exposed
to the high-velocity gas flow. The gas flow causes many hydrodynamics phenomena on the
molten chondrule droplet as follows. (i) Deformation: the ram pressure deforms the droplet
shape from a sphere. (ii) Internal flow: the shearing stress at the droplet surface causes
fluid flow inside the droplet. (iii) Fragmentation: a strong gas flow will break the droplet
into many tiny fragments. Hydrodynamics of the droplet in high-velocity gas flow strongly
relates to the physical properties of chondrules. However, these hydrodynamics behaviors
have not been investigated in the framework of the chondrule formation except of a few
examples that neglected non-linear effects of hydrodynamics (Kato et al., 2006; Sekiya et al.,
2003; Uesugi et al., 2005; 2003).

To investigate the hydrodynamics of a molten chondrule droplet in the high-velocity gas flow,
we performed computational fluid dynamics (CFD) simulations based on cubic-interpolated
propagation/constrained interpolation profile (CIP) method. The CIP method is one of the
high-accurate numerical methods for solving the advection equation (Yabe & Aoki, 1991;

385Hydrodynamics of a Droplet in Space

www.intechopen.com



6 Will-be-set-by-IN-TECH

Fig. 4. Three-dimensional shapes of chondrules (Tsuchiyama et al., 2003, and their
unpublished data). a, b, and c are axial radii of chondrules when their shapes are
approximated as three-axial ellipsoids (a ≥ b ≥ c), respectively. The textures of these
chondrules are 16 porphyritic (open circle), 3 barred-olivine (filed circle), and 1
crypto-crystalline (filled square). The radius of each symbol is proportional to the effective
radius of each chondrule r∗ ≡ (abc)1/3; the largest circle corresponds to r∗ = 1129 ¯m. For
the data of crypto-crystalline, r∗ = 231 ¯m. Chondrule shapes are classified into two groups:
group-A shows the relatively small deformation from the perfect sphere, and group-B is
prolate with axial ratio of b/a ≈ 0.7 − 0.8.
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Yabe et al., 2001). It can treat both compressible and incompressible fluids with large density
ratios simultaneously in one program (Yabe & Wang, 1991). The latter advantage is important
for our purpose because the droplet density (≈ 3 g cm−3) differs from that of the gas disk
(≈ 10−8 g cm−3 or smaller) by many orders of magnitude.

In addition, we should pay a special attention how to model the ram pressure of the gas flow.
The gas around the droplet is so rarefied that the mean free path of the gas molecules is an
order of about 100 cm if we consider a standard gas disk model. The mean free path is much
larger than the typical size of chondrules. This means that the gas flow around the droplet is
a free molecular flow, so it does not follow the hydrodynamical equations. Therefore, in our
model, the ram pressure acting on the droplet surface per unit area is explicitly given in the
equation of motion for the droplet by adopting the momentum flux method as described in
section 3.2.2.

1.4 Aim of this chapter

The hydrodynamical behaviors of molten chondrules in a high-velocity gas flow are important
to elucidate the origin of physical properties of chondrules. However, it is difficult for
experimental studies to simulate the high-velocity gas flow in the early solar gas disk,
where the gas density is so rarefied that the gas flow around droplets does not follow the
hydrodynamics equations. We developed the numerical code to simulate the droplet in a
high-velocity rarefied gas flow. In this chapter, we describe the details of our hydrodynamics
code and the results. We propose new possibilities for the origins of size distribution and
three-dimensional shapes of chondrules based on the hydrodynamics simulations.

We describe the governing equations in section 2 and the numerical procedures in section
3. In section 4, we describe the results of the hydrodynamics simulations regarding the
deformation of molten chondrules in the high-velocity rarefied gas flow and discuss the
origin of rugby-ball-like shaped chondrules. In section 5, we describe the results regarding
the fragmentation of molten chondrules and consider the relation to the size distribution of
chondrules. We conclude our hydrodynamics simulations in section 6.

2. Governing equations

The governing equations are the equation of continuity and the Navier-Stokes equation as
follows;

∂ρ

∂t
+ �∇ · (ρ�u) = 0, (1)

∂�u

∂t
+ (�u · �∇)�u =

−�∇p + µ∇2�u + �Fs + �Fg

ρ
+�g, (2)

where ρ is the density of fluid, �u is the velocity, p is the pressure, and µ is the viscosity. The
ram pressure of the high-velocity gas flow, �Fg, is exerted on the surface of the droplet and
given by (Sekiya et al., 2003)

�Fg = −pfm(�ni ·�ng)�ngδ(�r −�ri) for�ni ·�ng ≤ 0, (3)

where �ni is the unit normal vector of the surface of the droplet,�ng is the unit vector pointing
the direction in which the gas flows, and �ri is the position of the liquid-gas interface. The
delta function δ(�r −�ri) means that the ram pressure works only at the interface. The ram
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pressure does not work for �ni ·�ng > 0 because it indicates the opposite surface which does
not face the molecular flow. The ram pressure causes the deceleration of the center of mass
of the droplet. In our coordinate system co-moving with the center of mass, the apparent
gravitational acceleration �g should appear in the equation of motion. The surface tension, �Fs,
is given by (Brackbill et al., 1992)

�Fs = −γsκ�niδ(�r −�ri), (4)

where γs is the fluid surface tension and κ is the local surface curvature. Finally, we consider
the equation of state given by

dp

dρ
= c2

s , (5)

where cs is the sound speed.

3. Numerical methods in hydrodynamics

To solve the equation of continuity (Eq. (1)) numerically, we introduce a color function φ that
changes from 0 to 1 continuously. For incompressible two fluids, a density in each fluid is
uniform and has a sharp discontinuity at the interface between these two fluids if the density
of a fluid is different from another one. By using the color function, we can distinguish these
two fluids as follows; φ = 1 for fluid 1, φ = 0 for fluid 2, and a region where 0 < φ < 1 for the
interface. The density of a fluid element is given by

ρ = φρ1 + (1 − φ)ρ2, (6)

where ρ1 and ρ2 are the inherent densities for fluid 1 and fluid 2, respectively. The governing
equation for φ is given by

∂φ

∂t
+ �∇ · (φ�u) = 0. (7)

The conservation equation for φ (Eq. (7)) is approximately equivalent to the original one
(Eq. (1)) through the relationship between ρ and φ given by Eq. (6) (Miura & Nakamoto, 2007).
Therefore, the problem to solve Eq. (1) results in to solve Eq. (7). We solve Eq. (7) using
R-CIP-CSL2 method with anti-diffusion technique (sections 3.1.2 and 3.1.3).

In this study, the fluid 1 is the molten chondrule and the fluid 2 is the disk gas around the
chondrule. The inherent densities are given by ρ1 = ρd and ρ2 = ρa, where subscripts “d"
and “a" mean the droplet and ambient gas, respectively. The other physical values of the
fluid element (viscosity µ and sound speed cs) are given in the same manner as the density ρ,
namely, µ = φµd + (1 − φ)µa and cs = φcs,d + (1 − φ)cs,a, respectively.

The Navier-Stokes equation (Eq. (2)) and the equation of state (Eq. (5)) are separated into two
phases; the advection phase and the non-advection phase. The advection phases are written
as

∂�u

∂t
+ (�u · �∇)�u = 0,

∂p

∂t
+ (�u · �∇)p = 0. (8)

388 Hydrodynamics – Advanced Topics
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Parameter Sign Value
Momentum of gas flow pfm 4000 dyn cm−2

Surface tension γs 400 dyn cm−1

Viscosity of droplet µd 1.3 g cm−1 s−1

Density of droplet ρd 3 g cm−3

Sound speed of droplet cs,d 2×105 cm s−1

Density of ambient ρa 10−6 g cm−3

Sound speed of ambient cs,a 10−5 cm s−1

Viscosity of ambient µa 10−2 g cm−1 s−1

Droplet radius r0 500 µm

Table 2. Canonical input physical parameters for simulations of molten chondrules exposed
to the high-velocity rarefied gas flow. We ought to use these parameters if there is no special
description.

We solve above equations using the R-CIP method, which is the oscillation preventing method
for advection equation (section 3.1.1). The non-advection phases can be written as

∂�u

∂t
= −

�∇p

ρ
+

�Q

ρ
,

∂p

∂t
= −ρc2

s
�∇ ·�u, (9)

where �Q is the summation of forces except for the pressure gradient. The problem intrinsic
in incompressible fluid is in the high sound speed in the pressure equation. Yabe and Wang
(Yabe & Wang, 1991) introduced an excellent approach to avoid the problem (section 3.2.1). It
is called as the C-CUP method (Yabe & Wang, 1991). The numerical methods to calculate ram
pressure of the gas flow and the surface tension of droplet in �Q are described in sections 3.2.2
and 3.2.3, respectively.

The input parameters adopted in this chapter are listed in Table 2.

3.1 Advection phase

3.1.1 CIP method

The CIP method is one of the high-accurate numerical methods for solving the advection
equation (Yabe & Aoki, 1991; Yabe et al., 2001). In one-dimension, the advection equation is
written as

∂ f

∂t
+ u

∂ f

∂x
= 0, (10)

where f is a scaler variable of the fluid (e.g., density), u is the fluid velocity in the x-direction,
and t is the time. When the velocity u is constant, the exact solution of Eq. (10) is given by

f (x; t) = f (x − ut; 0), when u is constant, (11)

which indicates a simple translational motion of the spatial profile of f with the constant
velocity u.

Let us consider that the values of f on the computational grid points xi−1, xi, and xi+1 are
given at the time step n and denoted by f n

i−1, f n
i , and f n

i+1, respectively. In Fig. 5, f n are shown

389Hydrodynamics of a Droplet in Space
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Fig. 5. Interpolate functions with various methods: CIP (solid), Lax-Wendroff (dashed), and
first-order upwind (dotted). The filled circles indicate the values of f defined on the digitized
grid points xi−1, xi , and xi+1 before updated.

by filled circles. From Eq. (11), we can obtain the values of fi at the next time step n + 1 by
just obtaining f n

i at the upstream point x = xi − u∆t, where ∆t is the time interval between
tn and tn+1. If the upstream point is not exactly on the grid points, which is a very usual
case, we have to interpolate f n

i with an appropriate mathematical function composed of f n
i−1,

f n
i , and so forth. There are some variations of the numerical solvers by the difference of the

interpolate function Fi(x). One of them is the first-order upwind method, which interpolates
f n
i by a linear function and satisfies following two constraints; Fi(xi−1) = f n

i−1 and Fi(xi) = f n
i

(here we assume that u > 0 and the upstream point for f n
i locates left-side of xi). The other

variation is the Lax-Wendroff method, which uses a quadratic polynomial satisfying three
constraints; Fi(xi−1) = f n

i−1, Fi(xi) = f n
i , and Fi(xi+1) = f n

i+1. We show these interpolation
functions in Fig. 5.

On the contrary, the CIP method interpolates using a cubic polynomial, which satisfies
following four constraints; Fi(xi−1) = f n

i−1, Fi(xi) = f n
i , ∂Fi/∂x(xi−1) = f n

x,i−1, and
∂Fi/∂x(xi) = f n

x,i, where fx ≡ ∂ f /∂x is the spatial gradient of f . The interpolation function is
given by

Fi(x) = ai(x − xi)
3 + bi(x − xi)

2 + ci(x − xi) + di, (12)

where ai, bi, ci, and di are the coefficients determined from f n
i−1, f n

i , f n
x,i−1, and f n

x,i. The
expressions of these coefficients are shown in (Yabe & Aoki, 1991). We show the profile of
Fi(x) in Fig. 5 with f n

x,i−1 = f n
x,i = 0. In the CIP method, therefore, we need the values of f n

x in
addition of f n for solving the advection phase.

390 Hydrodynamics – Advanced Topics
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In the CIP method, fx is treated as an independent variable and updated independently from
f as follows. Differentiating Eq. (10) with respect to x, we obtain

∂ fx

∂t
+ u

∂ fx

∂x
= − fx

∂u

∂x
, (13)

where the second term of the left-hand side indicates the advection term and the right-hand
side indicates the non-advection term. The interpolate function for the advection of fx is given
by ∂Fi/∂x. The non-advection term can be solved analytically by considering that ∂u/∂x is
constant.

Additionally, there is an oscillation preventing method in the concept of the CIP method, in
which the rational function is used as the interpolate function. The rational function is written
as (Xiao et al., 1996)

Fi(x) =
ai(x − xi)

3 + bi(x − xi)
2 + ci(x − xi) + di

1 + αiβi(x − xi)
, (14)

where αi and βi are coefficients. The expressions of these coefficients are shown in (Xiao et al.,
1996). Usually, we adopt αi = 1 to prevent oscillation. This method is called as the R-CIP
method. The model with αi = 0 corresponds to the normal CIP method.

3.1.2 CIP-CSL2 method

The CIP-CSL2 method is one of the numerical methods for solving the conservative equation.
In one-dimension, the conservative equation is written as

∂ f

∂t
+

∂(u f )

∂x
= 0. (15)

Integrating Eq. (15) over x from xi to xi+1, we obtain

σi+1/2

∂t
+ [u f ]xi+1

xi
= 0, (16)

where σi+1/2 ≡
∫ xi+1

xi

f dx. For f being density, σi+1/2 corresponds to the mass contained in a

computational cell between i and i + 1, so it should be conserved during the time integration.
Since the physical meaning of u f in the second term of the left-hand side is the flux of σ per
unit area and per unit time, the time evolution of σ is determined by

σn+1
i+1/2 = σn

i+1/2 − Ji+1 + Ji, (17)

where Ji ≡
∫ tn+1

tn
u f dt is the transported value of σ from a region of x < xi to that of x > xi

within ∆t. The CIP-CSL2 method uses the integrated function Di(x) ≡
∫ x

xi−1

Fi(x)dx for the

interpolation when ui > 0. The function Di(x) is a cubic polynomial satisfying following
four constraints; Di(xi−1) = 0, Di(xi) = σi−1/2, ∂Di/∂x(xi−1) = Fi(xi−1) = fi−1, and
∂Di/∂x(xi) = Fi(xi) = fi. Moreover, since Eq. (15) can be rewritten as the same form of
Eq. (13), we can obtain the updated value f n+1 as well as f n+1

x in the CIP method.

Additionally, there is an oscillation preventing method in the concept of the CIP-CSL2 method,
in which the rational function is used for the function Di(x) (Nakamura et al., 2001). This
method is called as the R-CIP-CSL2 method.
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3.1.3 Anti-diffusion

To keep the sharp discontinuity in the profile of φ, we explicitly add an diffusion term with a
negative diffusion coefficient α (anti-diffusion) to the CIP-CSL2 method (Miura & Nakamoto,
2007). In our model, we have an additional diffusion equation about σ as

∂σ

∂t
=

∂

∂x

(

α
∂σ

∂x

)

. (18)

Eq. (18) can be separated into two equations as

∂σ

∂t
= − ∂J′

∂x
, (19)

J′ = −α
∂σ

∂x
, (20)

where J′ indicates the anti-diffusion flux per unit area and per unit time. Using the finite
difference method, we obtain

σ∗∗
i+1/2 = σ∗

i+1/2 − ( Ĵ′i+1 − Ĵ′i ), (21)

Ĵ′i = −α̂i × minmod(Si−1, Si, Si+1), (22)

where Ĵ ≡ J′/(∆x/∆t) is the mass flux which has the same dimension of σ, α̂ ≡ α/(∆x2/∆t)
is the dimensionless diffusion coefficient, and Si ≡ σi+1/2 − σi−1/2. The superscripts * and
** indicate the time step just before and after the anti-diffusion. The minimum modulus
function (minmod) is often used in the concept of the flux limiter and has a non-zero value of
sign(a)min(|a|, |b|, |c|) only when a, b, and c have the same sign. The value of the diffusion
coefficient α̂ is also important. Basically, we take α̂ = −0.1 for the anti-diffusion. Here, it
should be noted that σ takes the limited value as 0 ≤ σ ≤ σm, where σm is the initial value
for inside of the droplet. The undershoot (σ < 0) or overshoot (σ > σm) are physically
incorrect solutions. To avoid that, we replace α̂i = 0.1 only when σi−1/2 or σi+1/2 are out
of the appropriate range. We insert the anti-diffusion calculation after the CIP-CSL2 method
is completed.

3.1.4 Test calculation

In order to demonstrate the advantage of the CIP method, we carried out one-dimensional
advection calculations with various numerical methods. Fig. 6 shows the spatial profiles of
f of the test calculations. The horizontal axis is the spatial coordinate x. The initial profile
is given by the solid line, which indicates a rectangle wave. We set the fluid velocity u = 1,
the intervals of the grid points ∆x = 1, and the time step for the calculation ∆t = 0.2. These
conditions give the CFL number ν ≡ u∆t/∆x = 0.2, which indicates that the profile of f
moves 0.2 times the grid interval per time step. Therefore, the right side of the rectangle wave
will reach x = 80 after 300 time steps and the dashed line indicates the exact solution. The
filled circles indicate the numerical results after 300 time steps.

The upwind method does not keep the rectangle shape after 300 time steps and the profile
becomes smooth by the numerical diffusion (panel a). In the Lax-Wendroff method, the
numerical oscillation appears behind the real wave (panel b). Comparing with above two
methods, the CIP method seems to show better solution, however, some undershoots ( f < 0)
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Fig. 6. Numerical solutions of the one-dimensional advection or conservation equation
solved by various methods: (a) first-order upwind, (b) Lax-Wendroff, (c) CIP, (d) R-CIP, (e)
R-CIP-CSL2 without anti-diffusion, and (f) R-CIP-CSL2 with anti-diffusion.

or overshoots ( f > 1) are observed in the numerical result (panel c). In the R-CIP method,
although the faint numerical diffusion has still remained, we obtain the excellent solution
comparing with the above methods.

We also show the numerical results of the one-dimensional conservative equation. We use the
same conditions with the one-dimensional advection equation. Note that Eq. (15) corresponds
to Eq. (10) when the velocity u is constant. The panel (e) shows the result of the R-CIP-CSL2
method, which is similar to that of the R-CIP method. In the panel (f), we found that the
combination of the R-CIP-CSL2 method and the anti-diffusion technique shows the excellent
solution in which the numerical diffusion is prevented effectively.
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3.2 Non-advection phase

3.2.1 C-CUP method

Using the finite difference method to Eq. (9), we obtain (Yabe & Wang, 1991)

�u∗∗ −�u∗

∆t
= −

�∇p∗∗

ρ∗
+

�Q

ρ∗
,

p∗∗ − p∗

∆t
= −ρ∗c2

s
�∇ ·�u∗∗, (23)

where the superscripts * and ** indicate the times before and after calculating the
non-advection phase, respectively. Since the sound speed is very large in the incompressible
fluid, the term related to the pressure should be solved implicitly. In order to obtain the
implicit equation for p∗∗, we take the divergence of the left equation and substitute �u∗∗ into
the right equation. Then we obtain an equation

�∇ ·
(

�∇p∗∗

ρ∗

)

=
p∗∗ − p∗

ρ∗c2
s ∆t2 +

�∇ · �u∗

∆t
+ �∇ ·

(

�Q

ρ∗

)

. (24)

The problem to solve Eq. (24) resolves itself into to solve a set of linear algebraic equations
in which the coefficients becomes an asymmetric sparse matrix. After p∗∗ is solved, we can
calculate �u∗∗ by solving the left equation in Eq. (23).

3.2.2 Ram pressure of free molecular flow

The ram pressure of the gas flow is acting on the droplet surface exposed to the high-velocity
gas flow. It should be noted that the gas flow around a mm-sized droplet does not follow
the hydrodynamical equations because the nebula gas is too rarefied. The mean free path
of the nebula gas can be estimated by l = 1/(ns), where s is the collisional cross section
of gas molecules and n is the number density of the nebula gas. Typically, we adopt n ≈
1014 cm−3 based on the standard model of the early solar system at a distance from the sun
of an astronomical unit (Hayashi et al., 1985). Substituting s ≈ 10−16 cm−2 for the hydrogen
molecule (Hollenbach & McKee, 1979), we obtain l ≈ 100 cm. On the other hand, the typical
size of chondrules is about a few 100 µm (see Fig. 3). Since the object that disturbs the gas
flow is much smaller than the mean free path of the gas, the free stream velocity field is not
disturbed except of the direct collision with the droplet (free molecular flow).

Consider that the molecular gas flows for the positive direction of the x-axis. The x-component
of the ram pressure Fg,x is given by

Fg,x = pfmδ(x − xi), (25)

where xi is the position of the droplet surface. This equation can be separated into two
equations as

Fg,x = − ∂M

∂x
,

∂M

∂x
= −pfmδ(x − xi), (26)

where M is the momentum flux of the molecular gas flow. The right equation in Eq. (26) means
that the momentum flux terminates at the droplet surface. The left equation in Eq. (26) means
that the decrease of the momentum flux per unit length corresponding to the ram pressure
per unit area.
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Fig. 7. Spatial distributions of the momentum flux M (a) and the ram pressure Fg (b) of the
free molecular gas flow around a spherical droplet in xy-plane. The dashed circles are
sections of the droplet surfaces in xy-plane. Units of the gray scales are pfm for the panel (a)
and dyn cm−3 for the panel (b), respectively. We adopt pfm = 5000 dyn cm−2 in this figure.

Using the finite difference method to the right equation in Eq. (26), we obtain

Mi+1 = Mi − pfm(φ̄i+1 − φ̄i) for φ̄i+1 ≥ φ̄i, (27)

where φ̄ is the smoothed profile of φ (see section 3.2.4), and Mi+1 = Mi for φ̄i+1 < φ̄i because
the momentum flux does not increase when the molecular flow goes outward from inside of
the droplet. Similarly, we obtain

Fg,xi
= − Mi − Mi+1

∆x
, (28)

from the left equation in Eq. (26). The momentum flux at upstream is M0 = pfm . First, we
solve Eq. (27) and obtain the spatial distribution of the molecular gas flow in all computational
domain. Then, we calculate the ram pressure by Eq. (28).

Fig. 7(a) shows the distribution of momentum flux M around two droplets in xy-plane. The
dashed circles are the external shapes of large and small droplets. The gray scale is normalized
by pfm, so unity (white region) means undisturbed molecular flow and zero (dark region)
means no flux because the free molecular flow is obstructed by the droplet. It is found that
the gas flow is obstructed only behind the droplets. Fig. 7(b) shows the distribution of the ram
pressure Fg,x calculated from the momentum flux distribution. The ram pressure is acting at
the droplet surface where M changes steeply. Note that no ram pressure acts at bottom half of
the smaller droplet because the molecular flow is obstructed by the larger one. As shown in
Fig. 7, the model of ram pressure shown here well reproduces the property of free molecular
flow.

We calculate the momentum flux M and the ram pressure Fg at every time step in numerical
simulations. Therefore, these spatial distributions are affected by droplet deformation.

3.2.3 Surface tension

The surface tension is the normal force per unit interfacial area. Brackbill et al. (Brackbill et al.,
1992) introduced a method to treat the surface tension as a volume force by replacing the
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discontinuous interface to the transition region which has some width. According to them,
the surface tension is expressed as

�Fs = γsκ�∇φ/[φ], (29)

where [φ] is the jump in color function at the interface between the droplet and the ambient
gas. In our definition, we obtain [φ] = 1. The curvature is given by

κ = −(�∇ ·�n), (30)

where
�n = �∇φ/|�∇φ|. (31)

The finite difference method of Eq. (31) is shown in (Brackbill et al., 1992). When we calculate
the surface tension, we use the smoothed profile of φ (see section 3.2.4).

3.2.4 Smoothing

We can obtain the numerical results keeping the sharp interface between the droplet and the
ambient region. However, the smooth interface is suitable for calculating the smooth surface
tension. We use the smoothed profile of φ only at the time to calculate the surface tension and
the ram pressure acting on the droplet surface. In this study, the smoothed color function φ̄ is
calculated by

φ̄ =
1
2

φi,j,k +
1
2

φi,j,k + C1 ∑
6
L1

φL1 + C2 ∑
12
L2

φL2 + C3 ∑
8
L3

φL3

1 + 6C1 + 12C2 + 8C3
, (32)

where L1, L2, and L3 indicate grid indexes of the nearest, second nearest, and third nearest
from the grid point (i, j, k), for example, L1 = (i + 1, j, k), L2 = (i + 1, j + 1, k), L3 = (i + 1, j +
1, k + 1), and so forth. It is easily found that in the three-dimensional Cartesian coordinate
system, there are six for L1, twelve for L2, and eight for L3, respectively. The coefficients are
set as

C1 = 1/(6 + 12/
√

2 + 8/
√

3), C2 = C1/
√

2, C3 = C1/
√

3. (33)

We iterate the smoothing five times. Then, we obtain the smooth transition region of about
twice grid interval width. We use the smooth profile of φ only when calculating the surface
tension and the ram pressure. It should be noted that the original profile φ with the sharp
interface is kept unchanged.

4. Deformation of droplet by gas flow

4.1 Vibrational motion

We assume that the gas flow suddenly affects the initially spherical droplet. Fig. 8 shows
the time sequence of the droplet shape and the internal velocity. The horizontal and vertical
axes are the x- and y-axes, respectively. The solid line is the section of the droplet surface in
xy-plane. Arrows show the velocity field inside the droplet. The gas flow comes from the
left side of the panel. The panel (a) shows the initial condition for the calculation. The panel
(b) shows a snapshot at t = 0.55 msec. The droplet begins to be deformed due to the gas
ram pressure. The fluid elements at the surface layer, which is directly facing the gas flow,
are blown to the downstream. In contrast, the velocity at the center of the droplet turns to
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Fig. 8. Time evolution of molten droplet exposed to the gas flow. The gas flow comes from
the left side of panels. We use pfm = 104 dyn cm−2, r0 = 500 ¯m, and µd = 1.3 poise for
calculations.

upstream of the gas flow because the apparent gravitational acceleration takes place in our
coordinate system. The droplet continues to be deformed further, and after t = 1.0 msec, the
degree of deformation becomes maximum (see panel (c)). After that, the droplet begins to
recover its shape to the sphere due to the surface tension. The recovery motion is not all but
almost over at the panel (d). The droplet repeats the deformation by the ram pressure and the
recovery motion by the surface tension until the viscosity dissipates the internal motion of the
droplet.

Fig. 9 shows the time variation of axial ratio c/b of the droplet. Each curve shows the
calculation result for the different value of the ram pressure pfm. The droplet is compressed
unidirectionally by the gas flow, so the length of minor axis c corresponds to the half
length of droplet axis in the direction of the gas flow. The axial ratio c/b is unity at the
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Fig. 9. Vibrational motions of molten droplet; the deformation by the ram pressure and the
recovery motion by the surface tension. The horizontal axis is the time since the ram pressure
begins to affect the droplet and the vertical axis is the axial ratio of the droplet c/b. Each
curve shows the calculation result for the different value of the ram pressure pfm. We use
r0 = 500 ¯m and µd = 1.3 poise for calculations.

beginning because the initial droplet shape is a perfect sphere. The axial ratio decreases as
time goes by because of the compression. After about 1 msec, c/b reaches minimum and
then increases due to the surface tension. After this, the axial ratio vibrates with a constant
frequency and finally the vibrational motion damps due to viscous dissipation. The calculated
frequency of the vibrational motion is about 2 msec not depending on pfm. The calculated
frequency is consistent with that of a capillary oscillations of a spherical droplet given by

Pvib = 2π
√

ρdr3
0/8γs ≈ 2.15 msec (Landau & Lifshitz, 1987).

4.2 Overdamping

Fig. 10 shows the time variation of the axial ratio c/b when the viscosity is 100 times larger
than that in Fig. 9. It is found that the axial ratio converges on the value at steady state without
any vibrational motion. This is an overdamping due to the strong viscous dissipation.

4.3 Effect of droplet rotation

We carried out the hydrodynamics simulations of non-rotating molten droplet in previous
sections. However, the rotation of the droplet should be taken into consideration as the
following reason. A chondrule before melting is an aggregate of numerous fine particles,
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Fig. 10. Same as Fig. 9 except of µd = 100 poise.

so the shape is irregular in general. The irregular shape causes a net torque in an uniform
gas flow. Therefore, it is naturally expected that the molten chondrule also rotates at a certain
angular velocity.

The angular velocity ω f can be roughly estimated by Iω f ≈ N∆t, where I is the moment of
inertia of chondrule and ∆t is the duration to receive the net torque N. Assuming that the
small fraction f of the cross-section of the precursor contributes to produce the net torque
N, we obtain N ≈ f πr3

0 pfm. We can set ∆t ≈ π/ω f (a half-rotation period) because the
sign of N would change after half-rotation. Substituting I = (8/15)πr5

0ρd, which is the
moment of inertia for a sphere with an uniform density ρd, we obtain the angular velocity
(Miura, Nakamoto & Doi, 2008)

ω f ≈
√

15 f πpfm/8r2
0ρd

= 140
(

f

0.01

)1/2 ( pfm

104 dyn cm−2

)1/2 ( r0

1 mm

)−1
rad s−1. (34)

Therefore, in the shock-wave heating model, the droplet should be rotating rapidly if most of
the angular momentum is maintained during melting.

In addition, it should be noted that the rotation axis is likely to be perpendicular to the
direction of the gas flow unless the chondrule before melting has a peculiar shape as windmill.

Fig. 11 shows the deformation of a rotating droplet in gas flow in a three-dimensional view.
The rotation axis is set to be perpendicular to the direction of the gas flow. We use µd =
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Fig. 11. Three-dimensional view of a rotating molten droplet exposed to a high-velocity gas
flow. The object shows the external shape of the droplet (iso-surface of the color function of
φ = 0.5). The gas flow comes from the left side (arrow). The rotation axis of the droplet is
perpendicular to the direction of the gas flow. After t = 1.0 sec, the droplet shape becomes a
prolate. We use µd = 103 poise, pfm = 104 dyn cm−2, ω = 100 rad s−1, and r0 = 1 mm.

103 poise, pfm = 104 dyn cm−2, ω = 100 rad s−1, and r0 = 1 mm. It is found that the droplet
elongates in a direction of the rotation axis as the time goes by. Fig. 12 shows the time variation
of the axial ratios b/a (solid) and c/b (dashed). The major axis a corresponds to the droplet
radius in a direction of the gas flow, so the decrease of b/a means the droplet elongation. The
axial ratio b/a reaches a steady value of 0.76 after 1 sec. The axial ratio c/b is kept at a constant
value of ≈ 0.95 during the calculation, which means that two droplet radius perpendicular to
the rotation axis is almost uniform. The droplet shape at the steady state is prolate, in other
words, a rugby-ball-like shape.

4.4 Origin of prolate chondrule

Why did the droplet shape become prolate? The reason, of course, is due to the droplet
rotation. If there is no rotation on the droplet, its shape is only affected by the gas which
comes from the fixed direction (see Fig. 13a). In this case, the droplet shape becomes disk-like
(oblate) shape because only one axis, which corresponds to the direction of the gas flow,
becomes shorter than the other two axes (Sekiya et al., 2003). In contrast, let us consider
the case that the droplet is rotating. If the rotation period is much shorter than the viscous
deformation timescale, the gas flow averaged during one rotation period can be considered to
be axis-symmetrical about the rotation axis (see Fig. 13b). Therefore, the droplet shrinks due to
the axis-symmetrical gas flow along directions perpendicular to the rotation axis and becomes
prolate if the averaged gas ram pressure is strong enough to overcome the centrifugal force.

Doi (Doi, 2011) derived the analytic solution of deformation of a rotating droplet in gas flow
in a case that the gas flow can be approximated as axis-symmetrical around the rotation axis
as shown in Fig. 13(b). He considered that the droplet radius is given by r(θ) = r0 + r1(θ),
where r0 is the unperturbed droplet radius and r1 is the deviation from a perfect sphere. θ is
the angle between the position (the origin is the center of the droplet) and the rotation axis.
According to his solution, the droplet deformation is given by

r1(θ)

r0
=

We

12

(

19
20

− R

)

P2(cos θ), (35)
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Fig. 12. Time evolutions of axial ratios b/a and c/b in the case of Fig. 11.

Fig. 13. The reason why the rotating droplet exposed to the gas flow is deformed to a prolate
shape is illustrated. (a) If the droplet does not rotate, it is deformed only by the effect of the
gas ram pressure. (b) If the droplet rotates much faster than the deformation due to the gas
flow, the time-averaged gas flow can be approximated as axis-symmetrical around the
rotation axis.
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where We (Weber number) is the ratio of the ram pressure of the gas flow to the surface tension
of the droplet defined as

We =
pfmr0

γs
, (36)

R is the ratio of the centrifugal force to the ram pressure defined as

R =
ρdr2

0ω2

pfm
, (37)

ω is the angular velocity of the rotation, and Pl(cos θ) is Legendre polynomials. This solution
is applicable under the assumption of r1 ≪ r0. Eq. (35) shows that the particle radius becomes
the maximum at θ = 0, and minimum at θ = π/2. R = 19/20 is a critical value for the droplet
shape to be prolate (R < 19/20) or oblate (R > 19/20). The droplet shape is sphere when
R = 19/20 because the ram pressure balances with the centrifugal force.

Fig. 14 shows the droplet shape as functions of the Weber number We and the normalized
centrifugal force R using Eq. (35). R = 19/20 (vertical dashed line) is a critical value for the
droplet shape to be prolate (R < 19/20) or oblate (R > 19/20). In the prolate region, the
axial ratio b/a is less than unity for We > 0 as shown by contours, but c/b = 1. On the other
hand, in the oblate region, the axial ratio c/b is less than unity for We > 0, but b/a = 1. As
We increases, the degree of deformation increases as shown in decrease of axial ratio b/a or
c/b. The blue and red regions show ranges of axial ratios of group-A spherical chondrules
and group-B prolate chondrules, respectively. We carried out the hydrodynamics simulations
for a wide range of parameters and displayed on this diagram by symbols. It is found that
the hydrodynamics simulation results show a good agreement with the analytic solution for
a wide range of We and R.

Let us consider the shape of chondrule expected from the shock-wave heating model.
Adopting ram pressure of the gas flow of pfm = 104 dyn cm−2 and the radius of chondrule
of r0 = 1 mm, we obtain We = 2.5 for γs = 400 erg cm−2. According to Eq. (34), we
evaluate R = 0.06 for f = 0.01. The evaluated value of R is smaller than the critical value
of 19/20, so the expected droplet shape is prolate. In addition, the axial ratio b/a comes into
a range of group-B prolate chondrules (see Fig. 14). This suggests that the origin of group-B
prolate chondrules can be explained by the shock-wave heating model. Of course, it should be
noted that the shock-wave heating model does not reproduce the group-B prolate chondrules
for arbitrary conditions because We and R depend on many factors, e.g., pfm, r0, and f .
Namely, it is possible that different shock conditions produce different chondrule shapes,
even out of the range of group-A or -B. This fact, on the contrary, indicates that the chondrule
shapes constrain shock conditions suitable for formation of these chondrules. The data of
three-dimensional chondrule shapes measured by Tsuchiyama et al. (Tsuchiyama et al., 2003)
is definitely valuable, however, the number of samples is twenty at most. We need more data
to constrain the chondrule formation mechanism from their three-dimensional shapes.

5. Fragmentation

5.1 Direct fragmentation

When the droplet size is too large for the surface tension to keep the droplet shape against the
gas ram pressure, the fragmentation will occur. Fig. 15 shows the three-dimensional views of
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Fig. 14. Shapes of rotating droplets in gas flow. The horizontal axis is the centrifugal force
normalized by ram pressure of the gas flow R. The vertical axis is the Weber number We.
R = 19/20 (vertical dashed line) is a critical value for the droplet shape to be prolate
(R < 19/20) or oblate (R > 19/20). Solid lines are contours of axial ratios of b/a (R < 19/20)
or c/b (R > 19/20). A ranges of axial ratios of chondrules are shown by colored regions for
group-A spherical chondrules (blue) and for group-B prolate chondrules (red), respectively.
Symbols are results of hydrodynamics simulations (see legends in figure). Grayed region
shows a condition in which the droplet will be fragmented by rapid rotation.

the break-up droplet. The droplet radius is r0 = 2 cm, which corresponds to We = 20. The gas
flow comes from the left side of the view along the x-axis. It is found that the droplet shape is
deformed as the time goes by (panels (a) and (b)), and leads to fragmentation (panel (c)). The
parent droplet breaks up to many smaller pieces.

Susa & Nakamoto (Susa & Nakamoto, 2002) suggested that the fragmentation of the droplets
in high-velocity gas flow limits the sizes of chondrules (upper limit). They considered the
balance between the surface tension and the inhomogeneity of the ram pressure acting on
the droplet surface, and derived the maximum size of molten silicate dust particles above
which the droplet would be destroyed by the ram pressure of the gas flow using an order
of magnitude estimation. In their estimation, they adopted the experimental data in which

403Hydrodynamics of a Droplet in Space

www.intechopen.com



24 Will-be-set-by-IN-TECH

Fig. 15. Three-dimensional view of the fragmentation of molten droplet. We use
µd = 1 poise, pfm = 4000 dyn cm−2, and r0 = 2 cm. The calculation was performed on a
100 × 100 × 100 grid.

the droplets suddenly exposed to the gas flow fragment for We >∼ 6 (Bronshten, 1983, p.96).
This results into the fragmentation of droplet for r0 >∼ 6 mm if we adopt our calculation
conditions: pfm = 4000 dyn cm−2 and γs = 400 dyn cm−1. Our hydrodynamics simulations
agree with the criterion for fragmentation.

5.2 Fragmentation via cavitation

Fig. 16 shows the internal pressure inside the droplet for various droplet sizes: r0 = 3, 4, and
5 mm from panels (a) to (c). We use µd = 1.3 poise and pfm = 4000 dyn cm−2. These droplets
reach steady states, so their hydrodynamics do not change significantly after these panels. We
found a high pressure region at the front of the droplet, and low pressure regions at centers
of eddies in all cases. The high pressure is due to the ram pressure of the gas flow. The
low pressure in eddy is clearly due to the non-linear effect caused by the advection term in
Eq. (2). Surprisingly, the pressure in eddy decreases to almost zero in panels (b) and (c). In the
“zero"-pressure region, the vaporization (or boiling) of the liquid would take place because the
vapor pressure of the liquid exceeds the internal pressure. This phenomenon is well known as
cavitation. We did not take into account the cavitation in our simulations, so no vaporization
occurred in the calculation. If the cavitation was taken into consideration, the eddies are no
longer maintained because of the cavitation, which would cause the fragmentation of the
droplet.

Miura & Nakamoto (Miura & Nakamoto, 2007) proposed the condition for the “zero"-pressure
region to appear by considering the balance between the centrifugal force and the pressure
gradient force around eddies as ρdv2

circ/reddy ≈ p/reddy, where vcirc is the fluid velocity
around the eddy, reddy is the radius of the eddy, and p is the pressure inside the droplet.
Substituting p = 2γs/r0 from the Young-Laplace equation and vcirc ≈ vmax = 0.112pfmr0/µd
(Sekiya et al., 2003), we obtain

r0,cav ≈
(

2γsµ2
d

0.1122ρd p2
fm

)1/3

. (38)

This equation gives the critical radius of the droplet above which the cavitation takes place
in the center of the eddy. We obtain r0,cav = 1.3 mm for the calculation condition. In our
hydrodynamic simulations, we observed the “zero"-pressure region for r0 = 4 mm or larger.

404 Hydrodynamics – Advanced Topics

www.intechopen.com



Hydrodynamics of a Droplet in Space 25

Fig. 16. Internal pressure inside droplet for different droplet radius r0: (a) 3 mm, (b) 4 mm,
and (c) 5 mm. The pressure at a region surrounded by a white line decreases to almost zero
by the eddy. We use µd = 1.3 poise and pfm = 4000 dyn cm−2.

The inconsistency of cavitation criterion between hydrodynamics simulation and Eq. (38)
might come from the fact that we substitute the linear solution into vcirc. The Sekiya’s solution
did not take into account the non-linear term in the Navier-Stokes equation. On the other
hand, the cavitation would be caused by the non-linear effect. The substitution of the linear
solution into the non-linear phenomenon might be a reason for the inconsistency. However,
Eq. (38) provide us an insight of the cavitation criterion qualitatively.

5.3 Comparison with chondrule properties

It was found from the chondrule size distribution (see Fig. 3) that chondrules larger than
a few mm in radius are very rare. The origin of the chondrule size distribution has been
considered as some size-sorting process prior to chondrule formation in the early solar gas
disk (Teitler et al., 2010, and references therein). On the other hand, in the framework of
the shock-wave heating model, the upper limit of chondrule sizes can be explained by the
fragmentation of a molten chondrule in high-velocity gas flow. The criterion of fragmentation
is given by We = pfmr0/γs ≈ 6. Since the ram pressure of the gas flow is typically
pfm ≈ 103 − 105 dyncm−2, we obtain the upper limit of chondrule sizes as rmax ≈ 0.2− 20 mm.
This is consistent with the fact that chondrules larger than a few mm in radius are very rare.

In addition, our hydrodynamics simulations show a new pathway to the fragmentation by
cavitation. The cavitation takes place for We < 6 if viscosity of the molten chondrule is
small. The viscosity decreases rapidly as temperature of the droplet increases. This suggests
the following tendency: chondrules that experienced higher maximum temperature during
melting have smaller sizes that that experienced lower maximum temperature. On the other
hand, the data obtained by Nelson & Rubin (Nelson & Rubin, 2002) showed the tendency
opposite from our prediction. They considered the reason of the difference in mean sizes
among chondrule textural types being due mainly to parent-body chondrule-fragmentation
events and not to chondrule-formation processes in the solar nebula. Therefore, to date,
there is no evidence regarding the dependence of chondrule sizes on the maximum
temperature. The relation between the chondrule sizes and the maximum temperature should
be investigated in the future.
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How about the distribution of sizes smaller than the maximum one? Kadono and
his colleagues carried out aerodynamic liquid dispersion experiments using shock tube
(Kadono & Arakawa, 2005; Kadono et al., 2008). They showed that the size distributions
of dispersed droplets are represented by an exponential form and similar form to that of
chondrules. In their experimental setup, the gas pressure is too high to approximate the gas
flow around the droplet as free molecular flow. We carried out the hydrodynamics simulations
of droplet dispersion and showed that the size distribution of dispersed droplets is similar to
the Kadono’s experiments (Yasuda et al., 2009). These results suggest that the shock-wave
heating model accounts for not only the maximum size of chondrules but also their size
distribution below the maximum size.

In addition, we recognized a new interesting phenomenon relating to the chondrule
formation: the droplets dispersed from the parent droplet collide each other. A set of droplets
after collision will fuse together into one droplet if the viscosities are low. In contrary, if
the set of droplets solidifies before complete fusion, it will have a strange morphology that
is composed of two or more chondrules adhered together. This is known as compound
chondrules and has been observed in chondritic meteorites in actuality. The abundance
of compound chondrules relative to single chondrules is about a few percents at most
(Akaki & Nakamura, 2005; Gooding & Keil, 1981; Wasson et al., 1995). The abundance sounds
rare, however, this is much higher comparing with the collision probability of chondrules in
the early solar gas disk, where number density of chondrules is quite low (Gooding & Keil,
1981; Sekiya & Nakamura, 1996). In the case of collisions among dispersed droplets, a high
collision probability is expected because the local number density is high enough behind the
parent droplet (Miura, Yasuda & Nakamoto, 2008; Yasuda et al., 2009). The fragmentation
of a droplet in the shock-wave heating model might account for the origin of compound
chondrules.

6. Conclusion

To conclude, hydrodynamics behaviors of a droplet in space environment are key processes
to understand the formation of primitive materials in meteorites. We modeled its
three-dimensional hydrodynamics in a hypervelocity gas flow. Our numerical code based on
the CIP method properly simulated the deformation, internal flow, and fragmentation of the
droplet. We found that these hydrodynamics results accounted for many physical properties
of chondrules.
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