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1. Introduction 

The electrical explosion of conductors, such as metallic foils and wires, refers to rapid 
changes of physical states when the large pulsed current (tens or hundreds of kA or more, 

the current density j106 A/cm2) flows through the conductors in very short time(sub 
microsecond or several microseconds), which may produce and radiate shock waves, 
electrical magnetic waves, heat and so on. There are many applications using some 
characteristics of the electrical explosion of conductors. 
The Techniques of metallic foil electrical explosion had been developed since 1961, which 
was first put forward by Keller, Penning[1] and Guenther et al[2]. However, it develops 
continually until now because of its wide uses in material science, such as preparation of 
nanometer materials and plating of materials[3,4], shock wave physics[5-7] , high energy 
density physics[8] and so on. Especially the techniques of metallic foil electrically 
exploding driving highvelocity flyers, are widely used to research the dynamics of 
materials, hypervelocity impact phenomena and initiation of explosives in weapon safety 
and reliability. Therefore, in this chapter we focus on the physical process of metallic foil 
explosion and the techniques of metallic foil electrically exploding driving highvelocity 
flyers. Here the explosion of metallic foils are caused by the large current flowing through 

in sub microsecond or 1～2 microsecond or less. During the whole physical process, not 
only does the temperature rising, melting, vaporizing and plasma forming caused by 
instantaneously large current, but also the electrical magnetic force exists and acts on. 
Because the whole process is confined by rigid face and barrel, and the time is very short 
of microsecond or sub microsecond or less, and the phynomena is similar to the explosion 
of explosives, we call the process electrical explosion of metallic foils. This process is a 
typically hydrodynamic phenomena. It is also a magnetohydrodynamic process because 
of the exist and action of the magnetic force caused by large current and self-induction 
magnetic field. 
Magnetically driven quasi-isentropic compression is an relatively new topic, which was 
developed in 1972[9]. At that time the technique of magnetically driven quasi-isentropic 
compression was used to produce high pressure and compress the cylindrical sample 
materials. Until 2000, the planar loading technique of magnetically driven quasi-isentropic 
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compression was firstly presented by J.R. Asay at Sandia National Laboratory[10]. In last 
decade, this planar loading technique had being developed fastly and accepted by many 
researchers in the world, such as France[11], United Kingdom[12],and China[13]. As J.R. Asay 
said, it will be a new experimental technique widely used in shock dynamics, astrophysics, 
high energy density physics, material science and so on. The process of magnetically driven 
quasi-isentropic compression is typical magnetodynamics[14], which refers to dynamic 
compression, magnetic field diffusion, heat conduction and so on. 
As described above, the electrical explosion of metallic foil and magnetically driven quasi-
isentropic compression is typically magnetohydrodynamic problem. Although it develops 
fastly and maybe many difficulties and problems exist in our work, we present our 
important and summary understanding and results to everyone in experiments and 
simulations of electrical explosion of metallic foil and magnetically driven quasi-isentropic 
compression in last decade. 
In the following discussions, more attentions are paid to the physical process, the 
experimental techniques and simulation of electrical explosion of metallic foil and 
magnetically driven quasi-isentropic compression.  

2. Physical process of metallic foil electrical explosion and magnetically 
driven quasi-isentropic compression 

2.1 Metallic foil electrical explosion 
Here we introduce the model of metallic foil electrically exploding driving highvelocity 
flyers to describe the physical process of electrical explosion of metallic foil shown in Fig.1. 
A large pulsed current is released to the metallic foil of the circuit, which is produced by a 
typically pulsed power generator. The circuit can be described by R-C-L electrical circuit 
equations[15]. During the circuit, the metallic foil is with larger resistance than that of other 
part, so the energy is mainly absorbed by the metallic foil, and then the physical states of 
metallic foil change with time. Fig.2 shows the typical current and voltage histories between 
metallic aluminum foil during the discharging process of pulsed power generator.  
 

 

Fig. 1. The model of metallic foil electrically exploding driving highvelocity flyers. 
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Fig. 2. The typically discharging current and voltage histories between bridge Aluminum 
foil. 

According to the density changing extent of metallic foil when the first pulsed current flows 
through it, the whole process of electrical explosion of metallic foil can be classified to two 
stages. The initial stage includes the heating stage , the melting stage and the heating stage 
of liquid metal before vaporizing. During this process, the density of metallic foil changes 
relatively slow. The second stage includes the vaporizing stage and the following plasma 
forming. The typical feature of electrical explosion of metallic foil is that the foil expands 
rapidly and violently, and that the resistance increases to be two or more orders than that of 
initial time (R/R0～100). The resistance increases to be maximum when the state of metallic 

foil is at the vaporizing stage. During this stage, the voltage of between foil also increases to 
be maximum, and then the breakdown occurs and the plamas is forming. The inflection 
point of the discharging current shown in Fig.2 exhibits the feature.  
At the initial satge, the expansion of metallic foil is not obvious, and the change of physical 
states can be described with one thermodynamic variable T (temperature) or specific 
enthalpy. The energy loss of the interaction between the foil and the ambient medium can be 
neglected when there is no surface voltaic arcs. Therefore, some assumptions can be used to 
simplify the problem. We can think that the heating of the metallic foil is uniform and the 
instability, heat conduction and skin effect can not be considered at initial stage. For this 
stage, the physical states of metallic foil vary from solid to liquid, and the model of melting 
phase transition can be used to described it well[16]. 
For the second stage, the physical states varies from liquid to gas, and then from gas to 
plasma. There are several vaporizing mechanisms to describe this transition, such as surface 
evaporation and whole boil[16]. The rapid vaporizing of liquid metal make its resistance 
increases violently, and the current decreases correspondingly. At this time, the induction 
voltage between bridge foil increases fastly. If the induction voltage can make the metallic 
vapor breakdown and the plasma is formed, the circuit is conducted again. Of course, the 
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breakdown of metallic vapor needs some time, which is called relaxation time as shown in 
Fig.3. For different charging voltages, the relaxation time varies, which can be seen from the 
experimental current hostories in Fig.3. 
 

 

Fig. 3. The breakdown relaxation time shown in the discharging current histories at different 
charging voltage for the pulsed power generator. 

One important application of the electrical explosion of metallic foil is to launch 
highvelocity flyers with the rapid expansion of tha gas and plasma from electrical 
explosion of metallic foil. Some metallic materials are with good conductivity and 
explosion property, such as gold, silver, copper, aluminum and so on. The experimental 
results[17] show that the aluminum foil is the best material for the application of metallic 
foil electrically exploding driven highvelocity flyers. There are many models used to 
describe the process, such as eletrical Gurney model[18], Schmidt model[19] and one 
dimensional magnetohydrodynamic model[20]. The electrical Gurney model and Schmidt 
model are two empirical models which are derived from energy conservation equation 
based on some assumptions. For a specific electrical parameters of the circuit of some 
apparatus, the electrical Gurney model can be used to predict the final velocity of the 
flyers when the Gurney parameters are determined based on some experimental results. 
And the Schmidt model can be used to predict the velocity history of the flyers because 
the Gurney energy part is substituted with an energy part with the function of time, 
which is depended on the measured current and voltage histories between bridge foil to 
correct the specific power coefficient. These two models can’t reflect other physical 
variables of electrical explosion of metallic foil except the velocity of the flyer. Therefore, a 
more complex model is put forward based on magnetohydrodynamics, which considers 
heat conduction, magnetic pressure and electrical power. The magnetohydrodynamic 
model can well reflect the physical process of electrical explosion of metallic foil. The 
equations are given below[16,20]. 
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Where, －symmetric exponentȐfor metallic wire or cylindrical foil ＝2，and for planar 

foil ＝1ȑ; /q＝x1-v／x; q－Lagrange mass coordinate;B－transverse component of 

magnetic field;E－axial component of electrical field; j－current density; QV－specific power 

of Joule heating; p－artificial viscosity coefficient；u－transverse moving 

velocity；p－pressure;－internal energy; v－unit volume; －conductivity. 

For this apparatus, the discharging ciruit is a typical RCL circuit, which can be expressed by 
equationȐ2ȑbelow.  
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 (2) 

In the equation (2), when the time t=0, the primary current and voltage IȐ0ȑ=0 and Uc(0)= 

U0, C0 and U0 are the capacitance and charging voltage of capacitor or capacitor bank, L0 and 
R0 are the inductance and efficient resistance of circuit, Ufoil is the voltage between the ends 
of metallic foil, which is related with the length lfoil of metallic foil and the magetic field of 
the space around the foil. the dynamic inductance Lfoil can be obtained by equation (3). 

 '
0 0 0( ) ( / )foil foilL t k l b x X      (3) 

Where 0 is the vacuum magnetic permeability, k is a coefficient related with the length l 
and width b of metallic foil. x is the expanding displacement of metallic foil.  

2.2 Magnetically driven quasi-isentropic compression 

The concept of magnetically driven quasi-isentropic compression is illustrated in Fig.4. A 
direct short between the anode and cathode produces a planar magnetic field between the 
conductors when a pulsed current flows through the electrodes over a time scale of 300～
800ns. The interaction between the current (density J) and the induction magnetic field  
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Fig. 4. The principle diagram of magnetically driven quasi-isentropic compression. 

B produces the magnetic pressure ( J B
 

) proportional to the square of the field. The force is 

loaded to the internal surface that the current flows through. The loading pressure wave is a 

ramp wave, which is a continuous wave. Compared with the shock wave, the increment of 

temperature and entropy is very lower. However, because of the effects of viscosity and 

plastic work, the sample can’t turn back to the original state after the loading wave. That is 

to say, in solids the longitudinal stress differs from the hydrostatic pressure because of 

resolved shear stresses that produce an entropy increase from the irreversible work done by 

deviator[21, 22]. For this reason, the ramp wave loading process is usually assumed to be 

quasi-isentropic compression. Besides the loading force is magnetic pressure, it is called 

magnetically driven quasi-isentropic compression. 
In order to produce high pressure, the amplitude of the current is ususally up to several 

megamperes or tens of megamperes. Because of the effects of Joule heating and magnetic 

field diffusion, the physical states of the loading surface will change from solid to liquid, 

and to gas and plasma. And these changes will propagate along the thickness direction of 

the electrodes originated from the loading surface. These phenomena are typically 

magnetohydrodynamic problems. In order to describe the physical process, the equation of 

magnetic field diffusion is considered besides the equations of mass, momentum and 

energy. The magnetohydrodynamic equations are presented below. 
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Where m is mass density of electrodes, u is velocity, J is current density, B is magnetic field, 

p is pressure, q is artificial viscosity pressure, e is specific internal energy,  is electrical 

conductivity of electrodes and  is thermal conducitivity. 
Similar to the technique of electrical explosion of metallic foil, the large current is also 
produced by some pulsed power generators, for example, the ZR facility at Sandia National 
Laboratory can produce a pulsed current with peak value from 16 MA to 26 MA and rising 
time from 600 ns to 100 ns[23]. In the following part, we will introduce the techniques of 
magnetically driven quasi-isentropic compression based on the pulsed power generators 
developed by ourselves. 

3. Techniques of metallic foil electrically exploding driving highvelocity flyers 
and magnetically driven quasi-isentropic compression 

The techniques of metallic foil electrically exploding driving highvelocity flyers and 
magnetically driven quasi-isentropic compression have been widely used to research the 
dynamic properties of  materials and highvelocity impact phenomena in the conditions of 
shock and shockless(quasi-isentropic or ramp wave) loading. By means of these two 
techniques, we can know the physical, mechnical and thermodynamic properties of 
materials over different state area (phase space), such as Hugoniot and off-Hugoniot states. 

3.1 Metallic foil electrically exploding driving highvelocity flyers
[24,25,26] 

As descibed above, the high pressure gas and plasma are used to launch highvelovity flyer 
plates, which are produced from the electrical explosion of metallic foil. The working 
principle diagram of the metallic foil electrically exploding driving highvelocity flyers is 
presented in Fig.5. Usually we choose the pure aluminum foil as the explosion material 
because of its good electrical conductivity and explosion property. The flyers may be 
polyester films, such as Mylar or Kapton, or complex ones consisted of polyester film and 
metallic foil. The material of barrel for accelerating the flyers may be metals or non-polyester 
films, such as Mylar or Kapton, or complex ones consisted of polyester film and metallic foil. 
The material of barrel for accelerating the flyers may be metals or non-metals, such as  
 

 

Fig. 5. The diagram of working principle of metallic foil electrically exploding driving flyer. 
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ceramics, steel or acryl glass. The base plate is used to confined the high pressure gas and 
plasma and reflect them to opposite direction to propel the flyers. The base plate also 
insulates the anode from the cathode transimission lines. So the material of base plate is 
non-metal and the ceramics is a good one. 
The whole working process is that the large current flows through the metallic foil instantly 
and the metallic foil goes through from solid, to liquid, gas and plasma, and then the high 
pressure gases and plasmas expand to some direction to drive the polyester Mylar flyer to 
high velocity and impacts the targets.  
Based on low inductance technologies of pulsed storaged energy capacitor, detonator switch 
and parallel plate transmission lines with solid films insulation, two sets of experimental 
apparatuses with storaged energy of 14.4 kJ and 40 kJ were developed for launching 
hypervelocity flyer. The first apparatus is only consisted of one storaged energy pulsed 

capcitor with capacitance of 32 F, inductance of 30 nH and rated voltage of 30 kV. The 
parallel plate transmission lines and solid insulation films are used, which are with very low 
inducatnce. The thickness of insulation films is no more than 1 mm, which is composed of 
several or ten pieces of Mylar films with thichness of 0.1 mm. The second apparatus is 

composed of two capacitors with capacitance of 16 F and rated voltage of 50 kV in parallel. 
For two apparatuses, the detonator switch is used, which is with low inductance of about 7 
nH and easy to connected with the parallel plate transmission lines.  
Fig.6 shows the diagram of the detonator switch. The detonator is exploded and the 
explosion products make the aluminum ring form metallic jet and breakdown the insulation 
films between anode and negative electrodes, and then the storaged energy is discharged to 
the load. 

 

 

Fig. 6. Diagram of detonator switch 
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Fig. 7 shows the photoes of two apparatuses and Table 1 gives the electrical parameters of 
these two apparatuses. 
 
 

 
(a) 

 
 

 
(b) 

 

Fig. 7. Experimental apparatuses of metallic foil electrically exploding driving flyers. The 
apparatus with energy of 14.4 kJ (a) and the apparatus with energy of 40 kJ(b). 
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setup C/F U0/kV E/kJ R/m L/nH T/s 
(dI/dt)t=0 
/(A/s) 

Remarks 

1 32 30 14.4 14 40 7.1 7.5×1011 
Single 

capacitor 

2 32 50 40 10 36 6.75 8.4×1011 

Two 
capacitors in 

parallel 

Table 1. Parameter Values of our two apparatuses  

Table 2 gives the performance parameters of our two apparatuses of metallic foil electrically 
exploding driving flyers. 
 

Parameters Setup 

 1 2 
Flyer—Mylar (6～20)mm×(0.1～0.2)mm (10～30)mm×(0.1～0.3)mm 

Foil—Aluminum (6～20)mm×(6～20)mm×0.028 

mm 

(10～30)mm×(10～30)mm×0.05 

mm 
Barrel—PMMA (6～20)mm×(4～15 )mm (10～30)mm×(4～15 )mm 

Flyer velocity 3～10km/s 3～15km/s 

Flyer Simultaneity at 
Impact 

25 ns 35 ns 

Table 2. The performance parameters of our two apparatuses  

The typical velocity histories of the flyers are shown in Fig.8, which are measured by laser 
interferometer, such as VISAR (velocity interferometer system for any reflectors)[27] or 
DISAR(all fibers displace interferometer system for any reflectors)[28]. 

 

 
(a) 
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(b) 

Fig. 8. The experimental results of the velocity of the flyer in different conditions. The 
velocities of the flyers vary from charging voltages (a) and the calculated and measured 
velocities of the flyers (b) 

As described above, the apparatus of metallic foil electrically exploding driving flyers is a 
good plane wave generator for shock wave physics experiments. In the last part, we will 
introduce some important applications of this tool. 

3.2 Magnetically driven quasi-isentropic compression 

The techinques to realize magnetically driven quasi-isentropic compression are based on all 
kinds of pulsed power generators, such as ZR, Veloce[29], Saturn[30] facilities. As shown in 
Fig.9, Current J


 flowing at the anode and cathode surfaces induces a magnetic field B


 in  

 

 

Fig. 9. Experimental configuration of samples for magnetically driven quasi-isentropic 
compression 
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the gap. The resulting J B
 

 Lorentz force is transferred to the electrode material, and a 
ramp stress wave propagates into the samples. The stress normal to the inside surfaces of 
electrods is 2

0(1 2)BP J , where J is the current per unit width. Two identical samples with 
a difference in thickness of h, are compressed by identical B-force and their particle velocity 
profiles u(t) are measured by DISAR or VISAR. 
An inverse analysis technique, i.e, the backward integration technique using difference 
calculation is developed to extract a compression isentrope from free-surface or window-
interface velocity profiles[31]. Different from Lagrangian wave analysis, inverse analysis can 
account for ramp-wave interactions that arise at free surfaces or window interfaces. In this 
method, the profiles of velocity and density are specified as an initial condition at the 
Lagrangian position of the measurement, then the equations of motion from equation (5) 
through equation (7) are integrated in the negative spatial direction to a position inside the 
material that is free of interaction effects during the time of interest. Assuming some 
parametric form shown in equation (8) for the mechanical isentrope of the material such as 
Murnaghan euqation or others, the parameter values are found by iteratively performing 
backward intergration on data from multiple thickness of the sample while minimizing the 
deviation between the results at a common position. 

 0( d , ) ( . ) [ ( , d ) ( , d )]d /(2d )h h t h t u h t t u h t t h t         (5) 

 ( d , ) [ ( d ), )]h h t F h h t     (6) 

 ( d , ) ( , ) [ ( , d ) ( , d )]d /(2d )u h h t u h t h t t h t t h t        (7) 

 

'

0
0( )

B

s s
V

B V B
V

   
 

 (8) 

In order to do quasi-isentropic compression experiments, a compact capacitor bank facility 
CQ-1.5[13] was developed by us, which can produce a pulsed current with peak value of 
about 1.5 MA and rising time of 500 ns～800 ns. The solid insulating films are used to 

insulate the anode electrode plates from the cathode ones. And the facility is used in the air. 
Fig.10 presents the picture of CQ-1.5.Based on CQ-1.5, about 50 GPa pressure is produced 
on the surface of steel samples. The parameter values of CQ-1.5 is given in Table 3. 
 

performance parameters values 

total capacitance 15.88 F 

period in short-circuit 3.40 s 

rise time 500～800 ns 

total inductance about 18 nH 

total resistance ～10 m 

charging voltage 75 kV～80 kV 

peak current ≥1.5 MA 

Table 3. The specifications of CQ-1.5 
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   (a)               (b) 

Fig. 10. The picture of experimental apparatus CQ-1.5 (a) and its load area including sample 
and measuring probe (b). 

Fig. 11. shows the typical loading pressure histories. The pressure is a ramp wave. 
 

 

Fig. 11. The loading pressure histories of CQ-1.5 

4. MHD simulation of metallic foil electrically exploding driving highvelocity 
flyers and magnetically driven quasi-isentropic compression 

4.1 Metallic foil electrically exploding driving highvelocity flyers 
The code used to simulate the electrical explosion of metallic foil is improved based our  SSS 

code[32], which is one dimensional hydrodynamic difference code based on Lagrange 

orthogonal coordinate. For the case of electrical explosion of metallic foil, the power of Joule 
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heating is increase into the energy equation, and the magnetic pressure part is considered. 

In order to calculate the power of Joule heating and magnetic pressure, the discharging 

current history is needed which is detemined by the electric circuit equation (2) and 

equation (3). The resistance of foil varies from different phase states during dicharging 

process, so a precisionly electrical resistivity model is needed to decribe this change. The 

physical model is seen in Figure 1, and the Lagrange hydrodynamic equations are: 
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 (9) 

Where, V is specific volume, M is mass, X is Lagrange coordinate, U is velocity, T is 

temperature,  is thermal conductivity,  is the total pressure and =p+q,  p is heating 

pressure, q is artifical viscosity pressure, fEM is magnetic pressure per mass, E is total specific 

energy and E=e+0.5U2, e is specific internal energy, P is power of Joule heating, B is 

magnetic flux density,  is vacuum permeability, k is shape factor and k=0.65, Rfoil is 

resistance of metallic foil and I is the current flowing through metallic foil in the circuit, 

which can be expressed with equation (10). 
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In the equation (10), C0 is the capacitance of the experimental device, L is the total 
inductance of the circuit, Ls is the fixed inductance of the circuit, Ld is the variable 
inductance of the expansion of metallic foil caused by electrical explosion, R is the total 
resistance of the circuit, and Rs is the fixed resistance and Rfoil is the dynamic resistance of 
the foil caused by electrical explosion, b,h and l is the width, thickness and length of the foil, 

 is the electrical resistivity, which is variable and can be expressed by the model put 

www.intechopen.com



Magnetohydrodynamics of Metallic Foil Electrical  
Explosion and Magnetically Driven Quasi-Isentropic Compression 

 

361 

forward by T.J. Burgess[33]. The Burgess’s model can describe the electrical resistivity of the 
foil at different phase states. 
For solid state, there is 

 3

( )

1 2
0

( )

F
C

s
V

C C T
V




 

    
 

 (11) 

In equation (11), C1, C2 and C3 are fitting constants,  is Gruneisen coefficient, for many 

materials ,F()=2-1. 
For liquid state, there is 

  
4
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L s T
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T

T
  

 
     

 
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In equation (12), for many materials, 0.069 /F mL Tke  , k is a constant, LF is the melting 
latent heat, Tm is melting point temperature and C4 is fitting constant. 
For gas state, the electrical resistivity is related with both the impact between electrons and 
ions and between electrons and neutrons. so,  
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In equation (13), i is the ionization fraction, C5, C6 , C7, C8 and C9 are fitting constants. 
In fact, there is mixed phase zone between liquid and gas states, a mass fraction m is 
defined. When m=0, all mass is condensed, and m=1, all mass is gas, and 0<m<1, the mass is 
mixture states. Two mixture variants are also defined besides mass fraction. 
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Where C10, C11 and C12 are fitting constants. 
The electrical resistivity of mixed phase zone can be expressed 
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 (16) 

Table 4 gives the parameters values of Burgess’s model for Aluminum, which is used in our 
experiments. 
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C1(m-cm) C2 C3 C4 C5 C6 0 
LF(Mbar-
cm3/mole 

-5.35e-5 0.233 1.210 0.638 1.5 1.20e-2 2.13 0.107 
C7 C8 C9 C10 C11 C12 k Tm,0 (ev) 

3.80e-3 18.5 5.96 0.440 3.58e-2 3.05 0.878 0.0804 

Table 4. The parameters values of Burgess’s model for Aluminum 

The calculated results are presented in from Fig.12 through Fig.15. In Fig.14 and Fig.15, the 
experimental and calculated results are compared. 
 

 

Fig. 12. The calculated pressure and flyer velocity history results of electrical explosion of 
Aluminum and Copper foils. 

 

 

Fig. 13. The calculated results of pressure and specific volume of aluminum foil when 
exploding. 
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Fig. 14. The calculated and experimental results of flyer velocities for different flyer sizes. 

 

 

Fig. 15. The experimental and calculated results of discharging current. 

The results presented in Fig.12 through Fig.15 show that the physical model here is 

appropriate to the electrical explosion of metallic foils.  

4.2 Magnetically driven quasi-isentropic compression 
In order to simplify the problem, the one dimensional model of magnetically driven quasi-
isentropic compression can be described by the model shown in Fig.16. The changes of 

www.intechopen.com



 
Hydrodynamics – Advanced Topics 

 

364 

electrical parameters caused by the motion of loaded electrode are not considered, and the 
heat conduction is neglected because it is slow in sub microsecond or one microsecond. A 
standardly discharging current in short circuit is as input condition presented in Fig.17. The 

relative magnetic permeability is supposed tobe 1, that is to say , 0. 
 
 

 
 

Fig. 16. Physical model of simulation 

 

 

Fig. 17. Loading current curves 

Al

J×B 

J 

B

Vacuum

x=0x=1
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The controlling equations are one dimensionally magnetohydrodynamic ones, which 
include mass conservation equation, momentum conservation equation, energy 
conservation equation and magnetic diffusion equation, as shown in equation (4). The 
original boundary conditions are, 

For t=0 , 
0 : 0, 0

1 : 0, 0

x B P

x B P

  
   

, and for t=tn at some time , 
0

0 : 0, 0

1 : ( ), 0

x B P

x B J t P
  

   
. 

The calculation coordinate are Lagrangian ones, and for the Lagrangian coordinate, the 
equation (4) can be converted to equations from (17) through (19). 
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The equation of electrical resistivity is also very important for the case of magnetically 
driven quasi-isentropic compression. In order to simplify the problem, a simple model is 
considered. 

  0 1 Q     (20) 

In equation (20),0 is the electrical resistivity of conductors at temperatureof 0 ºC, is 

heating factor, Q is the heat capacity or increment of internal energy relative to that at 

temperatureof 0 ºC, which is related with temprature at the condensed states. 

 vQ c T  (21) 

In equation (21), cv is specific heat at constant volume, which is close to constant from 0 ºC to 
the temperature of vaporazation point. 

For aluminum， is 0.69×10-9 m3/J, 0 is 2.55×10-8 m. Before vaporazation point, the 

equation (20) is suitable. After that, more complex electrical resisistivity model is needed. 

In this simulation, the stress wave front is defined when the amplitude of pressure reaches 

to 0.1 GPa, and thediffusion front of magnetic field is determined when the magnetic flux 

density is up to 0.2 T[34]。 

Fig.18 gives the distribution of density and temperature of Aluminum sample along 

Lagrangian coordinates for different times in the condition of loading current density 1.5 

MA/cm. 

The results in Fig.18 show that the density and temperature of aluminum sample vary with 

the loading time along the direction of sample thickness because of the Joule heating and 

magnetic field diffusion.  
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            (a)      (b) 
 
 

 
            (c)               (d) 
 
 

 
(e) 

Fig. 18. Distribution of density and temperature of Aluminum sample along Lagrangian 
coordinates for different times under the condition of loading current density 1.5 MA/cm at 

time of 0.09 s (a), 0.18 s (b), 0.27 s (c), 0.36 s (d) and 0.54 s (e) 
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Fig.19 gives the calculated results of distribution of magnetic induction strength along 
Lagrangian coordinates for different times in the condition of loading current density 
1.5MA/cm. 
 
 

 
 

Fig. 19. Distribution of magnetic induction strength along Lagrangian coordinates for 
different times in the condition of loading current density 1.5MA/cm 

And Fig.20 gives the physical characteristics of hydrodynamic stress wave front and 

magnetic diffusion front under the Lagrangian coordinates. The velocity of stress wave front 

is far more than that of the magnetic diffusion front, which is the prerequisite of 

magnetically driven quasi-isentropic compression. And the velocity of magnetic diffusion 

front increases gradually with the increasing of loading current density. 

 
 

  
 (a) current density of 1MA/cm                        (b) current density of 3MA/cm 

Fig. 20. Physical characteristics of hydrodynamic stress wave front and magnetic diffusion 
front under the Lagrangian coordinates 

www.intechopen.com



 
Hydrodynamics – Advanced Topics 

 

368 

Fig.21 presents the relationships between the velocity of magnetic diffusion front and 
loading current density. The results show that an inflection poin occurs at the loading 
current density of 1 MA/cm, and that the results can be expressed with two linear equations 
(22) 

 

0.008 0.46 , 1.0 3 MA/cm

0.36 0.06 , 0.5 1.0 MA/cm

D J J

D J J


   



    

 (22) 

In equation (22), D is the velocity of magnetic diffusion, and J is loading current density. 
 
 
 
 
 
 

 
 
 
 
 

Fig. 21. The relationship of magnetic diffusion velocity varying with loading current 
densities. 

Fig.22 is the case of copper samples under magnetically driven quasi-isentropic 
compression. The calculated results show that the particle velocity curves become steeper 
with the increasing of sample thickness, and that the shock is formed when the thickness is 
more than 2.5 mm for this simulating condition. 
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Fig. 22. The particle velocities of copper sample at different thickness in the condition of 
loading current density of 3 MA/cm. 

5. Applications of metallic foil electrically exploding driving highvelocity 
flyers and magnetically driven quasi-isentropic compression 

5.1 Metallic foil electrically exploding driving highvelocity flyers 
5.1.1 Short-pulse shock initiation of explosive 
The apparatus of metallic foil electrically exploding driving high velocity flyer offers an 
attractive means of performing shock initiation experiments. And the impact of an 
electrically exploding driven flyer produces a well-defined stimulus whose intensity and 
duration can be independently varied. Experiments are low-cost and there is fast turn-
around between experiments. 
Short-pulse shock initiation experiments will be very useful in developing more realistic 
theoretical shock initiation models. For the present, the models predicting shock initiation 
thresholds is short of, where very short pulses are employed . The technique can provide 
data to test the capability of improved models. 
Based on our experimental apparatus, the shock initiation characteristics of TATB and 
TATB-based explosives are studied[35,36]. Fig.23 and Fig.24 show the experimental results of 
shock initiation thresholds and run distance to detonation of a TATB-based explosive. 
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Fig. 23. Shock initiation threshold of 50% probability of initiation 

 

 

Fig. 24. Run distance to detonation in a TATB-based explosive 

These experiments have the additional advantage of being applicable to relatively small 
explosive samples, an important consideration for evaluating and ranking new explosives. 

5.1.2 Spallation experiments of materials 
Compared with gas gun and explosively driven loading, The apparatus of metallic foil 
electrically exploding driving high velocity flyer is also a good tool used to research 
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dynamic behaviors of materials. The loading strain rates and stress duration vary easily. In 
order to study damage properties of materials using the apparatus of metallic foil 
electrically exploding driving high velocity flyer, a concept of two-stage flyer is put 
forward[37]. The Mylar flyer flies some distance to impact a buffer plate such as PMMA or 
nylon with different thickness, and the pressure produced in the buffer is attenuated to the 
expected value, and then the attenuated pressure propels the impactor on the buffer to some 
velocity to impact the target. The impactor is the same material as the target. Fig.25 is the 
diagram of the two-stage flyer based on the apparatus of metallic foil electrically exploding 
driving high velocity flyer. 
 

 

Fig. 25. Sketch of two-stage flyer based on the apparatus of metallic foil electrically 
exploding driving high velocity flyer 

By means of the two-stage flyer, the spallations of steel and copper samples were 
researched. Fig.26 is the experimental results[38]. 
 

    
           (a)                   (b) 

Fig. 26. Experimental results of spallation , steel target (a) and copper target (b). 

It is also convenient to study other dynamic behaviors of materials using the electric gun. 
Further experimental researches about materials are being done by our research group. 

www.intechopen.com



 
Hydrodynamics – Advanced Topics 

 

372 

5.1.3 Potential applications 
Equation of state (EOS) measurement is an important potential application for our 
apparatus. In order to increase the loading pressure of this apparatus, two improvements 
should be done. Firstly, the flyer should be Mylar-metal foil laminate flyer . The metal layer 
increases the flyer’s shock impedance and thus the pressure produced in the target. 
Secondly, the storaged energy of apparatus should be increased. The expected pressure 
should be up to 200 GPa or more. 
Impact experiment on the structure is also an important application for the apparatus of 
metallic foil electrically exploding driving high velocity flyer. For the apparatus of metallic 
foil electrically exploding driving high velocity flyer, its environment is well-controlled and 
instrumented, so it is suitable for studying impact phenomena in the fields of space science. 
Fig.27 shows a result of flyer of our apparatus impacting multi-layer structure. 
 

 

Fig. 27. Experimental result of flyer impact multi-layer structure 

5.2 Magnetically driven quasi-isentropic compression 
5.2.1 Compression isentropes of copper and aluminum 
The experimental compression isentropes of T1 copper andL1 pure aluminum(Al content 
more than 99.7%) were measured on the CQ-1.5. The free-surface velocities were measured by 
DISAR, and the data were processed with the backward integration code developed by us. For 
the design of sample sizes, it is necessary that shock should not be formed in the samples and 
the side rarefaction wave should not affect the center regime to meet the requirements of one 
dimensional strain loading. Table 5 are the sizes of experimental samples.  
 

 

Table 5. Experimental conditions 
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Fig.28(a) are the typical free-surface velocity histories measured by DISAR, which show that 
the slope become steeper for thicker sample. The experimental compression isentropes, 
theoretical compression isentropes and shock Hugoniots data are presented in Fig.28(b) and 
Fig.28 (c). 
 

  
          (a)             (b) 

 
(c) 

Fig. 28. Results of ICEs.(a) typical histories of free-surface velocity. (b) experimental, 
theoretical isentropes and Hugoniots data of T1 copper. (c) experimental isentrope of L1 
pure aluminum, isentrope ang Hugoniot data of 6061-T6 aluminum from reference [39]. 

The results show that the experimental compression isentropes are consistent with the 
theoretical ones within a deviation of 3%, and are close to the shock Hugoniot data under 
the pressure of 40GPa and lies under them. Different from the shock method, the whole 
isentrope can be obtained in one shot, and tens of shots are needed to gain one shock 
Hugoniot curve. The calculation results[40] show that the compression isentropes gradually 
deviate from the shock Hugoniots with the increasement of loading pressure over 50 GPa. 
Therefore, the compression isentropes mainly reflect the off- Hugoniot properties of 
materials. Under 50 GPa, the compression isentropes are close to the shock Hugoniots, so 
we can use the isentrope data to check the validity or precision of shock Hugoniots. 
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5.2.2 Phase transition of 45 steel 
Since the quasi-isentropic compression loading technique actually follows the P-v response 
of the material under investigation, the actual evolution of the phase trnasition can be 
observed. The classical polymorphic transtion of iron at 13 GPa has been studied under 
quasi-isentropic compression. The two free-surface velocity profiles recorded in our 
experiments are shown in Fig.28. The elastic precursor wave is clearly seen in the lower 
pressure region of the two profiles. And the plastic wave and phase change wave occur, 

which show that the polymorphic transition() takes place. The velocity profiles in Fig.29 
indicates that the onset of the phase transition is at velocity of 681 m/s, and the pressure of 
phase transition is also about 11.4 GPa. 
 

 

Fig. 29. Velocity profiles of 45 steel under quasi-isentropic compression 

5.2.3 Spallation and elasto-plastic transition of pure tantalum 
Fig.29 shows the results of the spalling experiments for pure tantalum (Ta contents 99.8%). 
The loading strain rate is 2.53×105 1/s. For the sample with thickness of 1.66 mm, the 
spallation is not obvious, perhaps the mirco-damage occurs. For the sample with thickness 
of 1.06 mm, the spallation is obvious, and the pull-back velocity is 129.6 m/s. According to 
the formular (23), the spall strength is 4.49 GPa. 

 spall 0 l pb
1

2
C U    (23) 

where 0 is the initial density of sample, Cl is the Larangian sound speed, Upb is the pull-

back velocity as shown in Fig.4, and spall is the spall strength of materials. 
Under quasi-isentropic compression, the elasto-plastic transition are clearly shown in the 

velocity profiles of 45 steel and pure tantalum in Figure 28 and Fig.30. Here a concept of 

isentropic elastic limit(IEL, IEL) is introduced. For the 45 steel sample, the IEL is 2.26 GPa at 

the loading strain rate of 6.73×105 1/s, and for the pure tantalum sample, the IEL is 2.42 GPa  
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Fig. 30. Velocity profiles of Tantalum samples 

at the loading strain rate of 2.53×105 1/s. Because of the difference of loading strain rates, the 
IEL ranges from 2.26 to 2.35 GPa for 45 steel, and from 2.42 to 2.70 GPa for pure tantalum in 
our experiments, correspondingly, the yield strength ranges from 1.29 to 1.34 GPa for 45 
steel and from 1.12 to 1.25 GPa for pure tantalum. 

5.2.4 Magnetically driven high-velocity flyers 
It is an important application to launch high-velocity flyer plates using the techniques of 
magnetically driven quasi-isentropic compression. For the present, the reseachers has 
launched the aluminum flyer plate with the size of 15 mm×11 mm×0.9 mm to the velocity of 
43 km/s using this technique[23], and can produce 1～2 TPa shock pressure on the heavy 
metallic or quartz samples. Based on CQ-1.5, the aluminum flyer plate with the size of 8 
mm×6 mm×0.9 mm was launched to about 9 km/s by us. Figure 31 shows the experimental 
results of the velocities of the flyers. 
 

  
                   (a)                                                   (b)  

Fig. 31. The velocities of the aluminum flyer plates driven by magnetic ressure.The velocities 
measured by VISAR (a) and the averaged velocity measured by optical fibres pins (b) 
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6. Summary 

The physical processes of electrical explosion of metallic foil and magnetically driven quasi-
isentropic compression are very complex. This chapter dicusses these problem simply from 
the aspect of one dimensionally magnetohydrodyamics. The key variable of electrical 
resistivity was simplified, which is very improtant. Especially for the problem of 
magnetically driven quasi-isentropic compression, only the resistivity is considered before 
the vaporazation point of the matter. In fact, the phase states of the loading surface vary 
from solid to liquid, gas and plasma when the loading current density becomes more and 
more. In order to optimize the structural shapes of electrodes and the suitable sizes of 
samples and windows in the experiments of magnetically driven quasi-isentropic 
compression, two dimensionally magnetohydrodynamic simulations are necessary. 
The applications of the techniques of electrical explosion of metallic foil and magnetically 
driven quasi-isentropic compression are various, and the word of versatile tools can be used 
to describe them. In this chapter, only some applications are presented. More applications 
are being done by us, such as the quasi-isentropic compression experiments of un-reacted 
solid explosives, the researches of hypervelocity impact phenomena and shock Hugoniot of 
materials at highly loading strain rates of 105～107 1/s. 
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