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1. Introduction

Here, we present a truly second order time accurate self-consistent IMEX (IMplicit/EXplicit)
method for solving the Euler equations that posses strong nonlinear heat conduction and
very stiff source terms (Radiation hydrodynamics). This study essentially summarizes
our previous and current research related to this subject (Kadioglu & Knoll, 2010;
2011; Kadioglu, Knoll & Lowrie, 2010; Kadioglu, Knoll, Lowrie & Rauenzahn, 2010;
Kadioglu et al,, 2009; Kadioglu, Knoll, Sussman & Martineau, 2010). Implicit/Explicit
(IMEX) time integration techniques are commonly used in science and engineering
applications (Ascher etal., 1997; 1995; Batesetal.,, 2001; Kadioglu & Knoll, 2010; 2011;
Kadioglu, Knoll, Lowrie & Rauenzahn, 2010; Kadiogluetal, 2009; Khan & Liu, 1994;
Kim & Moin, 1985; Lowrie et al., 1999; Ruuth, 1995). These methods are particularly attractive
when dealing with physical systems that consist of multiple physics (multi-physics problems
such as coupling of neutron dynamics to thermal-hydrolic or to thermal-mechanics
in reactors) or fluid dynamics problems that exhibit multiple time scales such as
advection-diffusion, reaction-diffusion, or advection-diffusion-reaction problems. In
general, governing equations for these kinds of systems consist of stiff and non-stiff terms.
This poses numerical challenges in regards to time integrations, since most of the temporal
numerical methods are designed specific for either stiff or non-stiff problems. Numerical
methods that can handle both physical behaviors are often referred to as IMEX methods.
A typical IMEX method isolates the stiff and non-stiff parts of the governing system and
employs an explicit discretization strategy that solves the non-stiff part and an implicit
technique that solves the stiff part of the problem. This standard IMEX approach can be
summarized by considering a simple prototype model. Let us consider the following scalar
model

up = f(u) +g(u), 1)
where f(u) and g(u) represent non-stiff and stiff terms respectively. Then the IMEX strategy
consists of the following algorithm blocks:

Explicit block solves:
u* —yh

)] @
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Implicit block solves:
1l g el

Here, for illustrative purposes we used only first order time differencing. In literature,
although the both algorithm blocks are formally written as second order time discretizations,
the classic IMEX methods (Ascher et al., 1997; 1995; Bates et al., 2001; Kim & Moin, 1985;
Lowrie et al., 1999; Ruuth, 1995) split the operators in such a way that the implicit and explicit
blocks are executed independent of each other resulting in non-converged non-linearities
therefore time inaccuracies (order reduction to first order is often reported for certain
applications). Below, we illustrate the interaction of an explicit and an implicit algorithm
block based on second order time discretizations of Equation(1) in classical sense,

Explicit block:

ul = u" + Atf(u™)
u* = (ul +u") /24 At/2f (u') 4)

Implicit block:

"=t At/2[g(u") + g(u" ], ®)
Notice that the explicit block is based on a second order TVD Runge-Kutta method and the
implicit block uses the Crank-Nicolson method (Gottlieb & Shu, 1998; LeVeque, 1998; Thomas,
1999). The major drawback of this strategy as mentioned above is that it does not preserve the
formal second order time accuracy of the whole algorithm due to the absence of sufficient
interactions between the two algorithm blocks (refer to highlighted terms in Equation (4))
(Bates et al., 2001; Kadioglu, Knoll & Lowrie, 2010).
In an alternative IMEX approach that we have studied extensively in (Kadioglu & Knoll,
2010; 2011; Kadioglu, Knoll & Lowrie, 2010; Kadioglu, Knoll, Lowrie & Rauenzahn, 2010;
Kadioglu et al., 2009), the explicit block is always solved inside the implicit block as part of the
nonlinear function evaluation making use of the well-known Jacobian-Free Newton Krylov
(JENK) method (Brown & Saad, 1990; Knoll & Keyes, 2004). We refer this IMEX approach as
a self-consistent IMEX method. In this strategy, there is a continuous interaction between the
implicit and explicit blocks meaning that the improved solutions (in terms of time accuracy)
at each nonlinear iteration are immediately felt by the explicit block and the improved explicit
solutions are readily available to form the next set of nonlinear residuals. This continuous
interaction between the two algorithm blocks results in an implicitly balanced algorithm in
that all nonlinearities due to coupling of different time terms are consistently converged. In
other words, we obtain an IMEX method that eliminates potential order reductions in time
accuracy (the formal second order time accuracy of the whole algorithm is preserved). Below,
we illustrate the interaction of the explicit and implicit blocks of the self-consistent IMEX
method for the scalar model in Equation (1). The interaction occurs through the highlighted
terms in Equation (6).

Explicit block:
ul = u 4+ Atf(u™)
ut = (b 4+ u") /24 At/2f (u" ) (6)
Implicit block:
"=t At/2[g(u") + g(u" ], )
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Remark: We remark that another way of achieving a self-consistent IMEX integration that
preserves the formal numerical accuracy of the whole system is to improve the lack of
influence of the explicit and implicit blocks on one another by introducing an external iteration
procedure wrapped around the both blocks. More details regarding this methodology can be
found in (Kadioglu et al., 2005).

2. Applications

We have applied the above described self-consistent IMEX method to both
multi-physics and multiple time scale fluid dynamics problems (Kadioglu & Knoll,
2010; 2011; Kadioglu, Knoll, Lowrie & Rauenzahn, 2010; Kadiogluetal,,  2009;
Kadioglu, Knoll, Sussman & Martineau, 2010). The multi-physics application comes
from a multi-physics analysis of fast burst reactor study (Kadioglu et al., 2009). The model
couples a neutron dynamics that simulates the transient behavior of neutron populations
to a mechanics model that predicts material expansions and contractions. It is important to
introduce a second order accurate numerical procedure for this kind of nonlinearly coupled
system, because the criticality and safety study can depend on how well we predict the
feedback between the neutronics and the mechanics of the fuel assembly inside the reactor.
In our second order self-consistent IMEX framework, the mechanics part is solved explicitly
inside the implicit neutron diffusion block as part of the nonlinear function evaluation. We
have reported fully second order time convergent calculations for this model (Kadioglu et al.,
2009).

As part of the multi-scale fluid dynamics application, we have solved multi-phase flow
problems which are modeled by incompressible two-phase Navier-Stokes equations that
govern the flow dynamics plus a level set equation that solves the inter-facial dynamics
between the fluids (Kadioglu, Knoll, Sussman & Martineau, 2010). In these kinds of models,
there is a strong non-linear coupling between the interface and fluid dynamics, e.g, the
viscosity coefficient and surface tension forces are highly non-linear functions of interface
variables, on the other hand, the fluid interfaces are advected by the flow velocity. Therefore,
it is important to introduce an accurate integration technique that converges all non-linearities
due to the strong coupling. Our self-consistent IMEX method operates on this model as
follows; the interface equation together with the hyperbolic parts of the fluid equations are
treated explicitly and solved inside an implicit loop that solves the viscous plus stiff surface
tension forces. More details about the splitting of the operators of the Navier-Stokes equations
in a self-consistent IMEX manner can be found in (Kadioglu & Knoll, 2011).

Another multi-scale fluid dynamics application comes from radiation hydrodynamics that
we will be focusing on in the remainder of this chapter. Radiation hydrodynamics models
are commonly used in astrophysics, inertial confinement fusion, and other high-temperature
flow systems (Batesetal., 2001; Castor, 2006; Dai & Woodward, 1998; Drake, 2007;
Ensman, 1994; Kadioglu & Knoll, 2010; Lowrie & Edwards, 2008; Lowrie & Rauenzahn, 2007;
Mihalas & Mihalas, 1984; Pomraning, 1973). A commonly used model considers the
compressible Euler equations that contains a non-linear heat conduction term in the energy
part. This model is relatively simple and often referred to as a Low Energy-Density Radiation
Hydrodynamics (LERH) in a diffusion approximation limit (Kadioglu & Knoll, 2010). A more
complicated model is referred to as a High Energy-Density Radiation Hydrodynamics (HERH)
in a diffusion approximation limit that considers a combination of a hydrodynamical model
resembling the compressible Euler equations and a radiation energy model that contains a
separate radiation energy equation with nonlinear diffusion plus coupling source terms to
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materials (Kadioglu, Knoll, Lowrie & Rauenzahn, 2010). Radiation Hydrodynamics problems
are difficult to tackle numerically since they exhibit multiple time scales. For instance,
radiation and hydrodynamics process can occur on time scales that can differ from each
other by many orders of magnitudes. Hybrid methods (Implicit/Explicit (IMEX) methods)
are highly desirable for these kinds of models, because if one uses all explicit discretizations,
then due to very stiff diffusion process the explicit time steps become often impractically small
to satisfy stability conditions (LeVeque, 1998; Thomas, 1999). Previous IMEX attempts to solve
these problems were not quite successful, since they often reported order reductions in time
accuracy (Bates et al., 2001; Lowrie et al., 1999). The main reason for time inaccuracies was
how the explicit and implicit operators were split in which explicit solutions were lagging
behind the implicit ones. In our self-consistent IMEX method, the hydrodynamics part
is solved explicitly making use of the well-understood explicit schemes within an implicit
diffusion block that corresponds to radiation transport. Explicit solutions are obtained as
part of the non-linear functions evaluations withing the JENK framework. This strategy has
enabled us to produce fully second order time accurate results for both LERH and more
complicated HERH models (Kadioglu & Knoll, 2010; Kadioglu, Knoll, Lowrie & Rauenzahn,
2010).

In the following sections, we will go over more details about the LERH and HERH models and
the implementation/implications of the self-consistent IMEX technology when it is applied
to these models. We will also present a mathematical analysis that reveals the analytical
convergence behavior of our method and compares it to a classic IMEX approach.

2.1 A Low Energy Density Radiation Hydrodynamics Model (LERH)
This model uses the following system of partial differential equations formulated in
spherically symmetric coordinates.

§+r_2§<r pu) =0, 8)

g(puﬂ—ﬁg(r ou )—l—g—O, )
E 19, 19, T

§+r_2§[r u(E—l—p)]—r—2§(1’ Kg), (10)

where p,u, p, E, and T are the mass density, flow velocity, fluid pressure, total energy density
of the fluid, and the fluid temperature respectively. x is the coefficient of thermal conduction
(or diffusion coefficient) and in general is a nonlinear function of p and T. In this study, we
will use an ideal gas equation of state, i.e, p = RpT = (7 — 1)pe, where R is the specific gas
constant per unit mass, 7 is the ratio of specific heats, and € is the internal energy of the fluid
per unit mass. The coefficient of thermal conduction will be assumed to be written as a power
law in density and temperature, i.e, x = xpp”? T?, where Kp,a and b are constants (Marshak,
1958). This simplified radiation hydrodynamics model allows one to study the dynamics of
nonlinearly coupled two distinct physics; compressible fluid flow and nonlinear diffusion.

2.2 A High Energy Density Radiation Hydrodynamics Model (HERH)

In general, the radiation hydrodynamics concerns the propagation of thermal radiation
through a fluid and the effect of this radiation on the hydrodynamics describing the fluid
motion. The role of the thermal radiation increases as the temperature is raised. At low
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temperatures the radiation effects are negligible, therefore, a low energy density model
(LERH) that limits the radiation effects to a non-linear heat conduction is sufficient. However,
at high temperatures, a more complicated high energy density radiation hydrodynamics
(HERH) model that accounts for more significant radiation effects has to be considered.
Accordingly, the governing equations of the HERH model consist of the following system

J 10
5t Ea e =0 “”
d 19,5, 5 d |
a(pu)+r—2§(r pu )+§(P+PV) =0, (12)
OE 10 1 JE
§+r_2§[ 2u(E+ p)] :—caa(aT4—EV)—§u arv' (13)
O0E, 19 , 10, , 0E 4 1 0Ey
7 +r_2§[r u(EV—i—pV)] = r—zg( CDr or )"‘CUQ(QT —Ev)+§u or ’ (14)

where the flow variables and parameters that also occur in the LERH model are described
above. Here, more variable definitions come from the radiation physics, i.e, E, is the
radiation energy density, p, = % is the radiation pressure, c is the speed of light, a is the
Stephan-Boltzmann constant, ¢, is the macroscopic absorption cross-section, and D, is the

radiation diffusion coefficient. From the simple diffusion theory, D, can be written as
Dy(T)= . (15)

We note that we solve a non-dimensional version of Equations (11)-(14) in order to
normalize large digit numbers (c,05,a etc.) and therefore improve the performance of
the non-linear solver. The details of the non-dimensionalization procedure are given in
(Kadioglu, Knoll, Lowrie & Rauenzahn, 2010). The non-dimensional system is the following,

p 10
a—ft) + ,725(’/2‘0”) =0, (16)
0 10 5 5 0 _
o (W) + 5 o (Ppu”) + 5 (p+Ppy) =0, (17)
OE 193, B ’ 1 9E,
§+72§[7 u(E+p)] = —Poa(T —Ev)—gpuyr (18)
dE, 10, _19,, 9, ] 1 9E,
ot ol WE = g (et mE) bR, (19)

aTy . . . ..
where P = ) S isa non-dimensional parameter that measures the radiation effects on the
0Cs,0

flow and is roughly proportional to the ratio of the radiation and fluid pressures.

3. Numerical procedure

Here, we present the numerical procedure for the LERH model. The extension to the
HERH model is straight forward. First, we split the operators of Equations (8)-(10) into two
pieces one being the pure hydrodynamics part (hyperbolic conservation laws) and the other
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Fig. 1. Flowchart of the second order self-consistent IMEX algorithm

accounting for the effects of radiation transport (diffusion equation). For instance, the pure
hydrodynamics equations can be written as

U J(AF) oG
g + W + y = 0, (20)

where U = (p,pu,E)T, F(U) = (ou,pu?,u(E + p))’, and G(U) = (0,p,0)T. Then the
diffusion equation becomes

oE 0 oT
5 = v Ak )

where V = %7‘(}’3 is the generalized volume coordinate in one-dimensional spherical geometry,

(21)

and A = 47r? is the associated cross-sectional area. Notice that the total energy density,
E, obtained by Equation (20) just represents the hydrodynamics component and it must be
augmented by Equation (21).

Our algorithm consists of an explicit and an implicit block. The explicit block solves Equation
(20) and the implicit block solves Equation (21). We will briefly describe these algorithm
blocks in the following subsections. However, we note again that the explicit block is
embedded within the implicit block as part of a nonlinear function evaluation as it is depicted
in Fig. 1. This is done to obtain a nonlinearly converged algorithm that leads to second order
calculations. We also note that similar discretizations, but without converging nonlinearities,
can lead to order reduction in time convergence (Bates et al., 2001). Before we go into details
of the individual algorithm blocks, we would like to present a flow diagram that illustrates the
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execution of the whole algorithm in the self-consistent IMEX sense (refer to Fig. 1). According
to this diagram, at beginning of each Newton iteration, we have the temperature values based
on the current Newton iterate. This temperature is passed to the explicit block that returns the
updated density, momentum, and a prediction to total energy. Then we form the non-linear
residuals (e.g, forming the IMEX function in Section 3.3) for the diffusion equation out of
the updated and predicted values. With the IMEX function in hand, we can execute the JENK
method. After the Newton method convergences, we get second order converged temperature
and total energy density field.

3.1 Explicit block

Our explicit time discretization is based on a second order TVD Runge-Kutta method
(Gottlieb & Shu, 1998; Gottlieb et al., 2001; Shu & Osher, 1988; 1989). The main reason why we
choose this methodology is that it preserves the strong stability properties of the explicit Euler
method. This is important because it is well known that solutions to the conservation laws
usually involve discontinuities (e.g, shock or contact discontinuities) and (Gottlieb & Shu,
1998; Gottlieb et al., 2001) suggest that a time integration method which has the strong
stability preserving property leads to non-oscillatory calculations (especially at shock or
contact discontinuities).

A second order two-step TVD Runge-Kutta method for (20) can be cast as

Step-1:

1 d
1 _ n_ ~ Y2 .2 9P n
(o)! = (ou)" — Aty = (Ppu) + L7,
d
1 _ rn - Y12 n
E'=E At{rz 5 [ru(E+p)I}",
(22)
Step-2 :
T4l At1 9
pn—|—1 _ P 5 P 7r_zg( 2pu)1,
a1 _ (W) + (o)t AL 13 5 50 9 ipmni
(uyrt = P11 g e P 4 S (pIRT),
« _E'+E' A 19 50, dont1, 11,12 1yt
Er=——— = 5 igg I (cp T + 507 ()" + p RTT )]}
(23)
We used the following equation of state relations in (22)- (23);
1
p = pRTE = cypT + Epuz, (24)
where ¢, = % is the fluid specific heat with R being the universal gas constant. This

explicit algorithm block interacts with the implicit block through the highlighted T"*! terms
in Equation (23). We can observe that the implicit equation (21) is practically solved for T
by using the energy relation. Therefore, the explicit block is continuously impacted by the
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Cell Center Cell Edge
r=0 l
=R
: | I, ril+1/2 =%
| n
| — & | =
A Computational Cell

u? : Represents a Cell Centered Quantity at time level n
U:H N’ Represents a Cell Edge Quantity at time level n
Fig. 2. Computational Conventions.

implicit T"*! solutions at each non-linear Newton iteration. This provides the tight nonlinear
coupling between the two algorithm blocks. Notice that the k' nonlinear Newton iteration of
the implicit block corresponds to T"*1 <— T and k — (n + 1) upon the convergence of the
Newton method (refer to Fig. 1). Also, the * values in Equation (23) are predicted intermediate
values and later they are corrected by the implicit block which is given in the next subsection.
One observation about this algorithm block is that some calculations are redundant related
to Equation (22). In other words, Equation (22) can be computed only once at the beginning
of each Newton iteration, because the non-linear iterations do not impact (22). This can lead
overall less number of function evaluations.

Now we shall describe how we evaluate the numerical fluxes needed by Equations (22) and
(23). For simplicity, we consider (20) to describe our fluxing procedure. Basically, it is based
on the Local Lax Friedrichs (LLF) method (we refer to (LeVeque, 1998; Thomas, 1999) for the
details of the LLF method and for more information in regards to the explicit discretizations
of conservation laws). For instance, if we consider the following simple discretization for
Equation (20),

At At

1

Ui = U/ = gy Wimabilhan = AicpBlap) = 1 (Gl = Giliag), (25)
where AV; = V(riy1/2) = V(ri—1/2), Aix1/2 = A(7i£1/2), and indices i and i 4 1/2 represent
cell center and cell edge values respectively (refer to Fig. 2), then the Local Lax Friedrichs method
defines F; 1/, and G117 as

R L R L
ro_FURp) HEUnp) o U= Uiy 2%
i+1/2 = > Rit1/2 > , (26)

G(UR. )+G(UL, )
Git1/2 = b1/ > b2 (27)

where & = max{|AL|, [AR|, |AL| |AR] |AL], AR ]} inwhich Ay = u — ¢, Ay = u, A3 = u + ¢, and
c is the sound speed. The sound speed is defined by

_ [9p
c= %/ (28)
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where 3—5 = RT in this study. UZRJrl /o and UZ.L+1 /o are the interpolated values at (i+1/2)" cell
edge from the right and left side, i.e,

Ar

Uﬁ_1/2 = Uit — 7Ur,i+1/
Ar
Uy = Ui+ — Uri (29)
where
a if |a| < |b| and ab > 0,
U, ; = minmod(a,b) = ¢ b if |b| < |a| and ab > 0, (30)
0ifab <0,
where
U1 - U
— i+l ™ 1
a IV (31)
U, —U,_
b=t Tl 32
Ar (32)

3.2 Implicit block
The explicit block produces the following solution vector

U" - U = | (pu)**!

This information is used to discretize Equation (21) as follows,

(Cvpn+1Tn+1 4+ %p”+1(u”+1)2 _ E*)i B 1 9 il o7 +1 1 9 naT”
At - EW(AK or )l + EW(AK or )l/ (33)
where
d oT A; K; Ti1 —T))/Ar A, 1K T, —T;_1)/Ar
W(AKy)i 4 i+1/2 z+1/2A(V%+1 1) _ Ai-1/2% 1/2A(V% i 1) . (34)
1 1

Notice that this implicit discretization resembles to the Crank-Nicolson method (Strikwerda,
1989; Thomas, 1998). We solve Equation (33) iteratively for T"+1. The nonlinear solver needed
by Equation (33) is based on the Jacobian-Free Newton Krylov method which is described
in the next subsection. When the Newton method converges all the nonlinearities in this
discretization, we obtain the following fully updated solution vector,

n+1

U* = U = | (pu)"+!
En+1
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3.3 The Jacobian-Free Newton Krylov method and forming the IMEX function

The Jacobian-Free Newton Krylov method (e.g, refer to (Brown & Saad, 1990; Kelley, 2003;
Knoll & Keyes, 2004)) is a combination of the Newton method that solves a system of
nonlinear equations and a Krylov subspace method that solves the Newton correction
equations. With this method, Newton-like super-linear convergence is achieved in the
nonlinear iterations, without the complexity of forming or storing the Jacobian matrix. The
effects of the Jacobian matrix are probed only through approximate matrix-vector products
required in the Krylov iterations. Below, we provide more details about this technique.

The Newton method solves F(T) = 0 (e.g, assume Equation (33) is written in this form)
iteratively over a sequence of linear system defined by

J(TFoTF = —F(TF),
TR = TF 4 6TF, k=01, (35)

where J(T¥) = g—i is the Jacobian matrix and 6T* is the update vector. The Newton iteration
is terminated based on a required drop in the norm of the nonlinear residual, i.e,

IE(T%)||2 < tolyes|[F(TO) | (36)

where tol;s is a given tolerance. The linear system, Newton correction equation (35), is solved
by using the Arnoldi based Generalized Minimal RESidual method (GMRES)(Saad, 2003)
which belongs to the general class of the Krylov subspace methods(Reid, 1971). We note that
these subspace methods are particularly suitable choice when dealing with non-symmetric
linear systems. In GMRES, an initial linear residual, 1, is defined for a given initial guess 6 Tj,

ro = —F(T) — J6T,. (37)

Here we dropped the index k convention since the Krylov (GMRES) iteration is performed
at a fixed k. Let j be the Krylov iteration index. The j* Krylov iteration minimizes
|JOT; + F(T) |2 within a subspace of small dimension, relative to 7 (the number of unknowns),
in a least-squares sense. ¢T; is drawn from the subspace spanned by the Krylov vectors,

{ro,Jr0,J%r0, - - - ,J 11}, and can be written as

j—1

6T; = 6To+ Y Bi(J)'xo, (38)
i=0

where the scalar p; minimizes the residual. The Krylov iteration is terminated based on the
following inexact Newton criteria (Dembo, 1982)

130T + E(T) |2 < v[[F(T)]l2, (39)

where the parameter 7 is set in terms of how tight the linear solver should converge at
each Newton iteration (we typically use 7y = 1073). One particularly attractive feature
of this methodology is that it does not require forming the Jacobian matrix. Instead, only
matrix-vector multiplications, Jv, are needed, where v € {ro,]ro,]2r0, -+~ } . This leads to
the so-called Jacobian-Free implementations in which the action of the Jacobian matrix can be
approximated by

F(T +ev) —F(T)

Jo= c ’ (40)
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where € = m Y. 1 blu;| + b, n is the dimension of the linear system and b is a constant

whose magnitude is within a few orders of magnitude of the square root of machine roundoff
(typically 10~° for 64-bit double precision).

Here, we briefly describe how to form the IMEX function F(T). We refer F(T) as the IMEX
function, since it uses both explicit (hydrodynamics) and implicit (diffusion) information.
Notice that for a method that uses all implicit information, F(T) would correspond to a regular
nonlinear residual function. The following pseudo code describes how to form F(T) (we also
refer to Fig. 1).

Evaluating F(T¥) :

Given T* where k represents the current Newton iteration.
Call Hydrodynamics block with (0", u™, E", T to compute p" 1, u" 1, E*.
Form F(T*) based on the Crank-Nicolson method,

N e e T i (S it - RS Y KaTky 1 @ aT"
F(T) = A — 29v (A Gr) — 257 (A" Gr).

It is important to note that we are not iterating between the implicit and explicit blocks.
Instead we are executing the explicit block inside of a nonlinear function evaluation defined
by F(T¥). The unique properties of JENK allow us to perform a Newton iteration on this
IMEX function, and thus JFNK is a required component of this nonlinearly converged IMEX
approach.

3.4 Time step control

In this section, we describe two procedures to determine the computational time steps that
are used in our test calculations. The first one was originally proposed by (Rider & Knoll,
1999). The idea is to estimate the dominant wave propagation speed in the problem. In
one dimension this involves calculating the ratio of temporal to spatial derivatives of the
dependent variables. In principle, it is sufficient to consider the following hyperbolic equation
rather than using the entire system of the governing equations

O oE
= FUpa =0, (41)

where the unknown v represents the front velocity. This gives

~ dE/ot
Yf T T9Ejor

(42)

As noted in Rider & Knoll (1999), to avoid problems from lack of smoothness the following
numerical approximation is used to calculate v f

L(E! — E} Y[/ At)

v} = . (43)
T LB — EiLy[/287)
Then the new time step is determined by the Courant-Friedrichs-Lewy (CFL) condition
A
a1 = Lol (44)
i
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where || Ar || uses the L1 norm as in Equation (43). We can further simplify Equation (44) by
using Equation (43), i.e,

—1 ‘
ZY(E —EF|/At)

We remark that the time steps determined by this procedure is always compared with the pure
hydrodynamics time steps and the most restrictive ones are selected. The hydrodynamics time
steps are calculated by

Ar

AtHydi’D,i’l+1 L CFL X ,
max;|u +c|;

(46)

where u is the fluid velocity and c is the sound speed (e.g, refer to Equation (28)). The
coefficient CFL is set to 0.5. Alternative time step control criterion are used for radiation
hydrodynamics problems (Bowers & Wilson, 1991). One commonly used approach is based
on monitoring the maximum relative change in E. For instance,

AE/E)H+1
AL = A" (AE/E)™T 47
(AE/E)max’ 47
where
AE 11 [Ef ! — B
— = max;(—+——-"1-), 48
(%) o) 8)

where the parameter Ej is an estimate for the lower bound of the energy density. Comparing
Equation (47) to (45) we observed that Equation (45) is computationally more efficient.
Therefore, we use Equation (45) in our numerical test problems.

4. Computational results

4.1 Smooth problem test

We use the LERH model to produce numerical results for this test problem. In this test,

we run the code until a particular final time so that the computational solutions are free of

shock waves and steep thermal fronts. The problem is to follow the evolution of the nonlinear

waves that results from an initial energy deposition in a narrow region. The initial total energy

density is given by

go exp (—r%/c3)
(cov/m)3® '

where ¢y is a constant and set to 1/4 for this test. Note that cyp — 0 gives a delta function at

origin. We use the cell averaged values of E as in (Bates et al., 2001), i.e., we integrate (49) over
the it cell from ti_1/2 to ri41/2 so that

E(r,0) = (49)

eolerf(rita/a/co) —erf(risyya/co)] — 2mci[rive oE(riv12) — ric1/2E(rica 2)]

E; = ,
1 A‘/l

(50)

where the symbol erf denotes the error function. The initial density is set to p = 1/r. The
initial temperature is calculated by using E = c,pT + %pu where u = 0 initially. The boundary
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Fig. 3. Solution profiles resulting from the smooth problem test. The solutions are calculated
for t fiq = 0.01 with M = 200 cell points.

conditions for the hydrodynamics variables are reflective and outflow boundary conditions at
the left and right ends of the computational domain respectively. The zero-flux boundary
conditions are used for the temperature at both ends (e.g, 0T /9r|,—g = 0). The coefficient of
thermal conduction is set to x(T) = T°/2,

We run the code until ¢ = 0.01 with ¢g = 100 using 200 cell points. The size of the
computational domain is set to 1 (e.g, Rp = 1 in Fig. 2). Fig. 3 shows the computed solutions
for density, pressure, velocity, and temperature. As can be seen, there is no shock formation or
steep thermal fronts occurred around this time. Fig. 4 shows our numerical time convergence
analysis. To measure the rate of time convergence, we run the code with a fixed mesh (e.g,
M = 200 cell points) and different time step refinements to a final time (e.g, t = 0.01). This
provides a sequence of solution data (EAt, EAt/2 pAL/A L ). Then we measure the L, norm of
errors between two consecutive time step solutions (| EAf — EA/2||y, ||[EAY/2 — EA/4|,,- - ) and
plot these errors against to a second order line. It is clear from Fig. 4 that we achieve second
order time convergence unlike (Bates et al., 2001) fails to provide second order accurate results
for the same test.
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Temporal convergence plot for Temperature
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Fig. 4. Temporal convergence plot for the smooth problem test. ;) = 0.01 with M = 200
cell points.

4.2 Point explosion test

We use the HERH model for this test. We note that we have studied this test by using
both of the LERH and HERH models and reported our results in two consecutive papers
(Kadioglu & Knoll, 2010; Kadioglu, Knoll, Lowrie & Rauenzahn, 2010). This section reviews
our numerical findings from (Kadioglu, Knoll, Lowrie & Rauenzahn, 2010). In this test,
important physics such as the propagation of sharp shock discontinuities and steep thermal
fronts occur. This is important, because this test enables us to study/determine the time
accuracy of the strong numerical coupling of two distinct physical processes.

Typically a point explosion is characterized by the release of large amount of energy in a
small region of space (few cells near the origin). Depending on the magnitude of the energy
deposition, weak or strong explosions take place. If the initial explosion energy is not large
enough, the diffusive effect is limited to region behind the shock. However, if the explosion
energy is large, then the thermal front can precede the hydrodynamics front. Both weak
and strong explosions are studied in (Kadioglu & Knoll, 2010) where the LERH model is
considered. Here, we solve/recast the strong explosion test by using the HERH model. The
problem setting is as follows. The initial total energy density is given by

£ eoexp(—rz/cé)
VLS

where ¢y = 235 and ¢y = 1/300. The initial fluid and radiation energies are set to E(r,0) =
E,(r,0) = Eg/2. The fluid density is initialized by p(r,0) = r~19/. The initial temperature is
calculated by using E = c,pT /7y + % pu? with the initial u = 0. The radiation diffusivity (x in
Equation (19)) is calculated by considering the LERH model and comparing it with the sum
of Equation (18) plus P times Equation (19). For instance

(51)

oE, )
or

% (P Px (52)

9 10
§<E + PE,) + r_zg[VZ”(E +p+P(Ev+pv))l =

r
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is compared to Equation (6) of (Kadioglu & Knoll, 2010). Then x becomes
pa Tb

P 9

x(o, T) = xo

where xp = 10%,a = —2 and b = 13/2 as in (Kadioglu & Knoll, 2010). We set P = 10~* and
0, = 10® that appear in Equations (18) and (19).
We compute the solutions until + = 0.02 using 400 cell points. Fig. 5 shows fluid density, fluid
pressure, flow velocity, fluid energy, fluid temperature, and radiation temperature profiles. At
this time (t = 0.02), hydrodynamical shocks are depicted near » = 0.2. In this test case, the
thermal front (located near r = 0.8) propagates faster than the hydrodynamical shocks due
to large initial energy deposition. Fig. 6 shows the time convergence analysis for different
tield variables. Clearly, we have obtained second order time accuracy for all variables. This
convergence result is important, because this problem is a difficult one meaning that the
coupling of different physics is highly non-linear and it is a challenge to produce fully second
order convergence from an operator split method for these kinds of problems. One comment
that can be made about our spatial discretization (LLF method), though it is not the primary
focus of this study, is that our numerical results (figures in Fig. 5) indicate that the LLF fluxing
procedure provides very good shock capturing with no spurious oscillations at or near the
discontinuities.

4.3 Radiative shock test

The problem settings for this test are similar to (Drake, 2007; Lowrie & Edwards, 2008) where
more precise physical definitions can be found. Radiative shocks are basically strong shock
waves that the radiative energy flux plays essential role in the governing dynamics. Radiative
shocks occur in many astrophysical systems where they move into an upstream medium
leaving behind an altered downstream medium. In this test, we assume that a simple planar
radiative shock exists normal to the flow as it is illustrated in Fig. 7. The initial shock profiles
are determined by considering the given values in Region-1 and finding the values in Region-2
of Fig. 7. To find the values in Region-2, we use the so-called Rankine-Hugoniot relations or
jump conditions (LeVeque, 1998; Smoller, 1994; Thomas, 1999). A general formula for the
radiation hydrodynamics jump conditions is given in (Lowrie & Edwards, 2008). For instance

s(p2 — p1) = pau2 — P11, (54)

s(o2uz — pru1) = (p2u3 + po + Ppup) — (0103 + p1 + Ppua), (55)
S(Ey —Eq) = up(Ex + p2 + Ppy2) —u1(E1 +p1 + Ppua), (56)
S(Eyp — Ey1) = ua(Eyp) —u1(Ey 1), (57)

where s is the propagation speed of the shock front. In our test problem, we assume that
the radiation temperature is smooth. Therefore, it is sufficient to use the jump conditions for
the compressible Euler equations to initiate hydrodynamics shock profiles. The Euler jump
conditions can be easily obtained by dropping the radiative terms in Equations (54), (55), (56),
and (57). Then the necessary formulae to initialize the shock solutions are

_ 1+1p2
s_u1+c1\/1+ 2y (p1 1), (58)
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Fig. 5. Point explosion test with t = 0.02 and M = 400 cell points.
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Shock

Region 2

Fig.7. A schematic diagram of a shock wave situation with the indicated density, velocity,
and pressure for each region.
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P2 g4 22, 59)
p1 v+ 1
2 — V1
Uy = Uq + p p s (60)
p1(s —u1)
p2 _ s—i

B (61)

where ¢; = | /’y% is the speed of sound in the fluid at upstream conditions. More details

regarding the derivation of Equations (58)-(61) can be found in (Anderson, 1990; LeVeque,
1998; Smoller, 1994; Thomas, 1999; Wesseling, 2000).

We are interested in solving a left moving radiative shock problem. To achieve this, we set
the initial shock speed s = —0.1 in Equation (58). Other upstream flow variables are set as
follows; p;1 = 1.0, Ty = 1.0, and My = uy/c; = 1.2 as the upstream Mach number. Then
we calculate the pressure from a calorically perfect gas relation (p; = Rp1T7). Using p; and
p1, we calculate the upstream sound speed c; = /yp1/p1 together with u; = Mjc;. With
these information in hand, we can easily calculate the downstream values using Equations
(58)-(61). The total fluid energies in both upstream and downstream directions are calculated
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Fig. 9. Temporal convergence plot for the material and radiation temperature from the
radiative shock test. ¢+ = 0.02 and 400 cell points are used.

by using the energy relation E = c,pT + %puz. The radiation temperature is assumed to be a
smooth function across the shock and equal to T and T, on the left and right boundary of the
computational domain, i.e., we choose

T, - T T, + T
Ty(x,0) = %tanh(lOOOx) + (Zzg (62)
The initial radiation energy is calculated by E, = T.. Other parameters that appear in

Equations (16)-(19) are set as P = 1074, ¢, = 10%, and ¥ = 1. These parameters are chosen
to be consistent with (Lowrie & Edwards, 2008). We solve Equations (16)-(19), the HERH
model, in Cartesian coordinates with the above initial conditions. The solutions use fixed
boundary conditions at both ends. In other words, at each time step, the solutions are reset
to the initial boundary values. The numerical calculations are carried out with 400 cell points
and At = 107°. Fig. 8 shows the time history of the solutions. Notice that the solutions
are highly transient, therefore it is a good test to carry out a time convergence study. Fig. 9
shows time convergence analysis for the fluid and the radiation temperature. Second order
time convergence can be clearly seen in both fields.

5. Convergence analysis

In this section, we present a mathematical analysis (modified equation analysis) to study
the analytical convergence behavior of our self-consistent IMEX method and compare it to a
classic IMEX method. The modified equation analysis (truncation error analysis) is performed
by considering the LERH model (Equations (8)-(10) or (20)-(21)). Also, for simplicity, we
assume that the system given by Equations (20)-(21) is written in cartesian coordinates. In the
introduction, we first described a classic IMEX approach then presented our self-consistent
IMEX method. Therefore, we shall follow the same order in regards to below mathematical
analysis.
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5.1 A classic IMEX method
The classic IMEX method operates on Equations (20)-(21) as follows.

Explicit block:
Step-1:
0
1 _ n e n
pr=p Atax(pu) ,
0
(ou)! = (pu)" = At=—[(pu?)" + p"],
E' = B A (B ), (63)
Step-2:
1 n
nl _ PN AL
T 2 O0x CON
w1 _ ()4 (w)" At D g o1 pin
(o)™ = 5 5 35 10 () +Ro" T,
n 1
Bt ;E - %%Wl[ewwu %Pl(ul)2+RP1T“]}f (64)
Implicit block:
EF B 19 T 10, 9T

At - 20x (1 ox )+ 2 9x (1 ox ) (65)

where we incorporated with the equation of states relations plus we assume that the explicit
block is based on a second order TVD Runga-Kutta method and the implicit block is similar
to the Crank-Nicolson method. Notice that the classic IMEX method is executed in such a
way that the implicit temperature does not impact the explicit block (refer to the highlighted
terms in Equation (64)). We carry out the modified equation analysis for the energy part of
Equations (63)-(65), but the same procedure can easily be extended to the whole system. We
consider

El=EF"— At%{u”[E” + "3, (66)

_E"+E' At 9

1
* =2 Y 1n 2 1,152 17n
E > 5 3 W leop T + 507 (u7)” + Rp T}, (67)
Substituting Equation (66) into (67), we get
At 9 At 9 1
* _ rn __ 20 Y ¢onrpn ny_ =2 Y1 1gn - 1,12 1gn
E*=E > 3x u[E" + p"} Zax{u lcop' T +2p (u™)*+ Rp T"]}. (68)

We let L(E") = —a%{u”[E” + p"]} and use T" = T' — AtT' + O(At?) , then (68) becomes

n

At

At 9 oT
¥ _ n ny 1 11 2
E* =E + L(E™) 5 —ax{u [cop! (T! — At = +0(AF))
+11 1y2 RlTl—AaTn+OA2 9
S0 ()" + Rp( o TOBE))]}- (69)
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Carrying out the necessary algebra, Equation (69) becomes

2 n
E*=E"+ A;L(E”) + A;L(El) + AztplulaaTt (co + R) +0(A1%), (70)
where L(E') = —%{ul[cvplT1 + 3ot (ul)? + Rp'TY]} = —%{ul[E1 + p']}.  Further
simplification comes from the following identity
1 n oL 2
L(E") = L(E") + Atg + O(At9). (71)

Inserting Equation (71) into (70), we get

At2 0L Af? oT"
E* = E" + AtL(E") + — —— + = ply!
HALL(ET) + o+ e

Now, we consider the following Taylor series for the implicit block (Equation (65))

(co +R) +O(AP). (72)

OE"  At?2 9%E"

n+l _ pn Ats 7
E E' + Mt + —- =5 +O0(AF), (73)
T =1 4 AL + AF T +0(AP) (74)

N ot 2 ot? ’
oK™ A2 9%k

n+l _ n . 3 7

K K" 4+ At 5 - > o + O(AF). (75)

Substituting Equations (73), (74), (75), and (72) into Equation (65), we form the truncation term
as

OE"  At? 9*E" At? OL(E™)
n _ rn - _ n n -
" = E" + At 5t [E" + AtL(E") + o
+ A_tz 1u18Tn (co + R)] —Atli (K” _}_Atain + A_tz_aan)
2 PH 2 9x o 2 or
d , oT"  At? *T" 19, ,0T" 3
— — —— )] — Atz — (" —=— . 7
ax<T + At 5 T e )] Atzax(K o )+ O(AF) (76)
Cancelling the opposite sign common terms and grouping the other terms together, we get
OE" At? 9 OE"
n __ = n N A Y
At 9, ,oT" At o, ,oT"
AR A TR R T F
A2 9, 0T}, At? 9, ,0T"
R TR
A2 | oT"
Tplul 5 (co + R) +O(AF%). (77)

This further simplifies by using
noT" 9, ,oT" d , 0T}

st[aax(K ox )= ax(Kt ox )+$(K ox )

(78)
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Then we have
JE" d , ,0T"

n __ _ ny _ 7

At? 9 OE" a0, ,0T"

2ot ar EED T )

At | joT"

- 7plul e (co + R) +O(AF). (79)
From the energy equation (Equation (10)) we have % — L(E") — %(K”aa%) = 0, thus
Equation (79) becomes
. A2 oT" 3

This shows that the classic IMEX method carries first order terms in the resulting truncation
error. This conclusion will be verified by our numerical computations (refer to Fig. 10).

5.2 A self-consistent IMEX method

We have already described how the self-consistent IMEX method operates on Equations
(20)-(21) in Section 3.1. However, to be able to easily follow the analysis, we repeat the
self-consistent operator splitting below.

Explicit block:
Step-1:
Lot At (pu)”
P ox ’
1 n d 2\n n
(pu)™ = (ou)" = At [(ou”)" +p"],
1 n J nien n
E'=E —Atg{u [E" +p"]}, (81)
Step-2:

= pl+p" At d

)l + (ou)* At 0 a
(pu)nJrl A (P ) 3 (P ) — e [pl(uZ)l_l_RplT +1],
s E"+E' A g qanr 1gq0 1rn+1
E* = S ax{u [cop™ T +35p (u")*+Rp T}, (82)

Implicit block:
E"l—E* 19, ,,40T"1 10 ,0T"
a2 e M) (59
Notice that the implicit temperature impacts the explicit block in this case (refer to the
highlighted terms in Equation (82)). Again, we perform the modified equation analysis on
the energy part of Equations (81)-(83). Substituting E! into E*, we get
At o, At

) ? 1
Ef=E"— o Aw'[E"+p"]} — 75{”1[%1017"”“ + EPl(ul)z +Ro' T} (84)
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We let L(E") = — %{u” [E™ 4+ p"]} and use Equation (74) in (84) to get

aT™
B = 4 B ey = A0 e ol (T 4 A -

2
> > 9x + O(At))

n

+ 1pl(ul)erR,ol(T” + L +0(AP))]}. (85)

2 ot

Now, we insert T" = T1 — Atag;n + O(At?) in Equation (85) and perform few algebra to get

B = E"+ SUL(E") + 5 L(EY) + O(aP), (86)

where L(E!) = — % {u[cop' T' + Jp (u')? + Rp! T']}. Equation (86) can be further simplified
by using (71),
At? 9L
E* = E" + AtL(E") + Tt%—t +0(A8). (87)
Making use of the Taylor series given in Equations (73), (74), (75), and Equation (87) in the
implicit discretization (83), we form the truncation error term as

OE"  At? 9*E" " o At? OL(E™)
or T o g T(ETHALLED + )

19, , oK™ A2 %K™ 9 oT" At 3°T"
— At — — + — =5 )=—(T" + At ——
Mgl A T g e (T P T 5 )
19 ,0T" 3
— M- — (k" —— At”).
Atzax(K e )+ O(AF) (88)
Cancelling the opposite sign common terms, grouping the other terms together, and making

use of Equation (78), we get

™ = E" + At

n n 2 n n
T”:At[aaEt Cp(Eny - DDy BEOOER ey = 9 9Ty L oA (89)

— X Nt gl LB - 5 (K,

Again from the energy equation, we know that %" — L(E") — a% (" 887; ) = 0, thus Equation

ot
(89) becomes

T = O(AP), (90)

clearly proving that the self-consistent IMEX method is second order.

Here, we numerically verify our analytical findings about the two IMEX approaches. We solve
the point explosion problem studied in (Kadioglu & Knoll, 2010) by using the LERH model
and M = 200 cell points until the final time t = 0.02. We note that we ran the code twice as
longer final time than the original test in order to allow the numerical methods to depict more
accurate time behaviors. In Fig. 10, we plot the Ly-norm of errors for variety of flow variables
committed by the both approaches. Fig. 10 clearly shows that the classic IMEX method
suffers from order reductions as predicted by our mathematical analysis. We present more
detailed analysis regarding more general IMEX methods (e.g., Strang splitting type methods
(Knoth & Wolke, 1999; Strang, 1968)) in our forthcoming paper (Kadioglu, Knoll & Lowrie,
2010).
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Fig. 10. The self-consistent IMEX method versus a classic IMEX method in terms of the time
convergence.

6. Conclusion

We have presented a self-consistent implicit/explicit (IMEX) time integration technique for
solving the Euler equations that posses strong nonlinear heat conduction and very stiff source
terms (Radiation hydrodynamics). The key to successfully implement an implicit/explicit
algorithm in a self-consistent sense is to carry out the explicit integrations as part of the
non-linear function evaluations within the implicit solver. In this way, the improved time
accuracy of the non-linear iterations is immediately felt by the explicit algorithm block and
the more accurate explicit solutions are readily available to form the next set of non-linear
residuals. We have solved several test problems that use both of the low and high energy
density radiation hydrodynamics models (the LERH and HERH models) in order to validate
the numerical order of accuracy of our scheme. For each test, we have established second
order time convergence. We have also presented a mathematical analysis that reveals the
analytical behavior of our method and compares it to a classic IMEX approach. Our analytical
findings have been supported/verified by a set of computational results. Currently, we are
exploring more about our multi-phase IMEX study to solve multi-phase flow systems that
posses tight non-linear coupling between the interface and fluid dynamics.
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