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1. Introduction 

The mathematical treatment of phenomena that oscillate randomly in space and time, 
generating the so called “statistical governing equations”, is still a difficult task for scientists 
and engineers. Turbulence in fluids is an example of such phenomena, which has great 
influence on the transport of physical proprieties by the fluids, but which statistical 
quantification is still strongly based on  ad hoc models. In turbulent flows, parameters like 
velocity, temperature and mass concentration oscillate continuously in turbulent fluids, but 
their detailed behavior, considering all the possible time and space scales, has been 
considered difficult to be reproduced mathematically since the very beginning of the studies 
on turbulence. So, statistical equations were proposed and refined by several authors, 
aiming to describe the evolution of the “mean values” of the different parameters (see a 
description, for example, in Monin & Yaglom, 1979, 1981).  
The governing equations of fluid motion are nonlinear. This characteristic imposes that the 
classical statistical description of turbulence, in which the oscillating parameters are 
separated into mean functions and fluctuations, produces new unknown parameters when 
applied on the original equations. The generation of new variables is known as the “closure 
problem of statistical turbulence” and, in fact, appears in any phenomena of physical nature 
that oscillates randomly and whose representation is expressed by nonlinear conservation 
equations. The closure problem is described in many texts, like Hinze (1959), Monin & 
Yaglom (1979, 1981), and Pope (2000), and a general form to overcome this difficulty is 
matter of many studies. 
As reported by Schulz et al. (2011a), considering scalar transport in turbulent fluids, an 
early attempt to theoretically predict RMS profiles of the concentration fluctuations using 
“ideal random signals” was proposed by Schulz (1985) and Schulz & Schulz (1991). The 
authors used random square waves to represent concentration oscillations during mass 
transfer across the air-water interface, and showed that the RMS profile of the 
concentration fluctuations may be expressed as a function of the mean concentration 
profile. In other words, the mean concentration profile helps to know the RMS profile. In 
these studies, the authors did not consider the effect of diffusion, but argued that their 
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equation furnished an upper limit for the normalized RMS value, which is not reached 
when diffusion is taken into account.  
The random square waves were also used by Schulz et al. (1991) to quantify the so called 
“intensity of segregation” in the superficial boundary layer formed during mass transport, 
for which the explanations of segregation scales found in Brodkey (1967) were used. The 
time constant of the intensity of segregation, as defined in the classical studies of Corrsin 
(1957, 1964), was used to correlate the mass transfer coefficient across the water surface with 
more usual parameters, like the Schmidt number and the energy dissipation rate. Random 
square waves were also applied by Janzen (2006), who used the techniques of Particle Image 
Velocimetry (PIV) and Laser Induced Fluorescence (LIF) to study the mass transfer at the 
air-water interface, and compared his measurements with the predictions of Schulz & 
Schulz (1991) employing ad hoc concentration profiles. Further, Schulz & Janzen (2009) 
confirmed the upper limit for the normalized RMS of the concentration fluctuations by 
taking into account the effect of diffusion, also evaluating the thickness of diffusive layers 
and the role of diffusive and turbulent transports in boundary layers. A more detailed 
theoretical relationship for the RMS of the concentration fluctuation showed that several 
different statistical profiles of turbulent mass transfer may be interrelated.  
Intending to present the methodology in a more organized manner, Schulz et al. (2011a) 
showed a way to “model” the records of velocity and mass concentration (that is, to 
represent them in an a priori simplified form) for a problem of mass transport at gas-liquid 
interfaces. The fluctuations of these variables were expressed through the so called 
“partition, reduction, and superposition functions”, which were defined to simplify the 
oscillating records. As a consequence, a finite number of basic parameters was used to 
express all the statistical quantities of the equations of the problem in question. The 
extension of this approximation to different Transport Phenomena equations is 
demonstrated in the present study, in which the mentioned statistical functions are derived 
for general scalar transport (called here “scalar-velocity interactions”). A first application for 
velocity fields is also shown (called here “velocity-velocity interactions”). A useful 
consequence of this methodology is that it allows to “close” the turbulence equations, 
because the number of equations is bounded by the number of basic parameters used. In 
this chapter we show 1) the a priori modeling (simplified representation) of the records of 
turbulent variables, presenting the basic definitions used in the random square wave 
approximation (following Schulz et al., 2011a); 2) the generation of the usual statistical 
quantities considering the random square wave approximation (scalar-velocity interactions); 
3) the application of the methodology to a one-dimensional scalar transport problem, 
generating a closed set of equations easy to be solved with simple numerical resources; and 
4) the extension of the study of Schulz & Johannes (2009) to velocity fields (velocity-velocity 
interactions).  
Because the method considers primarily the oscillatory records itself (a priori analysis), and 

not phenomenological aspects related to physical peculiarities (a posteriori analysis, like the 

definition of a turbulent viscosity and the use of turbulent kinetic energy and its dissipation 

rate), it is applicable to any phenomenon with oscillatory characteristics.  

2. Scalar-velocity interactions 

2.1 Governing equations for transport of scalars: Unclosed statistical set 

The turbulent transfer equations for a scalar F are usually expressed as 
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 i F i
i i i

F F F
V D v f g

t x x x

   
    

    
, i = 1, 2, 3. (1) 

where F  and f are the mean scalar function and the scalar fluctuation, respectively. iV  (i = 

1, 2, 3) are mean velocities and vi are velocity fluctuations, t is the time, xi are the Cartesian 

coordinates, g  represents the scalar sources and sinks and DF is the diffusivity coefficient of 

F. For one-dimensional transfer, without mean movements and generation/consumption of 

F, equation (1) with x3=z and v3=߱ is simplified to  

 F

F F
D ω f

t z z

  
  

   
 (2) 

As can be seen, a second variable, given by the mean product ω f , is added to the equation 

of F , so that a second equation involving ω f  and F  is needed to obtain solutions for both 

variables. Additional statistical equations may be generated averaging the product between 

equation (1) and the instantaneous fluctuations elevated to some power ( f  ). As any new 

equation adds new unknown statistical products to the problem, the resulting system is 
never closed, so that no complete solution is obtained following strictly statistical 
procedures (closure problem). Studies on turbulence consider a low number of statistical 
equations (involving only the first statistical moments), together with additional equations 
based on ad hoc models that close the systems. This procedure seems to be the most natural 
choice, because having already obtained equation (2), it remains to model the new parcel 

ω f  a posteriori (that is, introducing hypotheses and definitions to solve it). An example is 

the combined use of the Boussinesq hypothesis (in which the turbulent viscosity/diffusivity 
is defined) with the Komogoroff reasoning about the relevance of the turbulent kinetic 
energy and its dissipation rate. The ߢ −  ,model for statistical turbulence is then obtained ߝ
for which two new statistical equations are generated, one of them for k and the other for ߝ. 
Of course, new unknown parameters appear, but also additional ad hoc considerations are 
made, relating them to already defined variables.  
In the present chapter, as done by Schulz et al. (2011a), we do not limit the number of 

statistical equations based on a posteriori definitions for ω f . Convenient a priori definitions 

are used on the oscillatory records, obtaining transformed equations for equation (1) and 

additional equations. The central moments of the scalar fluctuations, f F F
      ,2 ,1 =ߠ ,

3,… are considered here. For example, the one-dimensional equations for 3 ,2=ߠ and 4, are 

given by 

 
2 2 2

2

1 1

2 2
F

f F f f
f D f

t z z z




       
     

 (3a) 

 
3 3 2 2

2 2 2 2
2 2

1 1

3 3
F

f F F f F f
f f D f f

t t z z z z




           
       

 (3b) 
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4 4 2 2

3 3 3 3
2 2

1 1

4 4
F

f F F f F f
f f D f f

t t z z z z


           
       

 (3c) 

In this example, equation (3a) involves F  and f  of equation (2), but adds three new 

unknowns. The first four equations (2) and (3 a, b, c) already involve eleven different 

statistical quantities: F , 2f , 3f , 4f , f , 2f  , 3f  , 4f  , 
2

2

f
f

z




, 
2

2
2

f
f

z




, and 

2
3

2

f
f

z




, and the “closure” is not possible. The general equation for central moments, for 

any ߠ, is given by [20] 

 
2 2

1 1 1 1
2 2

1 1
F

f F F f F f
f f D f f

t t z z z z

 
   

 
   

           
       

 (3d) 

(using 1=ߠ reproduces equation (2)).  
As mentioned, the method models the records of the oscillatory variables, using random 
square waves. The number of equations is limited by the number of the basic parameters 
defined “a priori”.  

2.2 “Modeling” the records of the oscillatory variables 
As mentioned in the introduction, the term “modeling” is used here as “representing in a 
simplified way”. Following Schulz et al. (2011a), consider the function F(z, t) shown in 
Figure 1. It represents a region of a turbulent fluid in which the scalar quantity F oscillates 
between two functions Fp (p=previous) and Fn (n=next) in the interval z1<z<z2. Turbulence is 
assumed stationary.  
 

 
 

Fig. 1a. A two-dimensional random scalar 
field F oscillating between the boundary 
functions Fp(t) and Fn(t). 

 

Fig. 1b. Sketch of the region shown in figure 
(1a). Turbulence is stationary. Adapted from 
Schulz et al. (2011a) 

The time average of F(z, t) for 1 2z z z  , indicated by ( , )F z t  is defined as usual 

 
2

1

1 2

1
( , ) ( , )

t

t

F z t F z t dt for z z z
t

  
   (4) 
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2 1t t t    is the time interval for the average operation. Equation (4) generates a mean 

value ( )F z  for 1 2z z z   and 1 2t t t  . Any statistical quantity present in equations 3, like, 

for example, the central moments f F F
     , is defined according to equation (4). To 

simplify notation, both coordinates (z, t) are dropped off in the rest of the text. 
The method described in the next sections allows to obtain the relevant statistical quantities 

of the governing equations, like the mean function F , using simplified records of F.  

2.3 Bimodal square wave: Mean values using a time-partition function for the scalar 
field - n 

The basic assumptions made to “model” the original oscillatory records may be followed 
considering Figure 2. In this sense, figure 2a is a sketch of the original record of the scalar 

variable F at a position 1 2z z z  , as shown in the gray vertical plane of Figure 1. The 

objective of this analysis is to obtain an equation for the mean function ( )F z
 
for 1 2t t t  , 

which is also shown in figure 2a. The values of the scalar variable during the turbulent 
transfer are affected by both the advective turbulent movements and diffusion. Discarding 
diffusion, the value of F would ideally alternate between the limits Fp and Fn (the bimodal 
square wave), as shown in Figure 2b (the fluid particles would transport only the two 
mentioned F values). This condition was assumed as a first simplification, but maintaining 

the correct mean, in which ( )F z  is unchanged. It is known that diffusion induces fluxes 

governed by F differences between two regions of the fluid (like the Fourier law for heat 
transfer and the Fick law for mass transfer). These fluxes may significantly lower the 
amplitude of the oscillations in small patches of fluid, and are taken into account using Fp-P 
and Fn+N for the two new limiting F values, as shown in Figure 2c. The parcels P and N 
depend on z.  
In other words, the amplitude of the square oscillations is “adjusted” (modeled), in order to 
approximate it to the mean amplitude of the original record. As can be seen, the aim of the 

method is not only to evaluate F  adequately, but also the lower order statistical quantities 
that depend on the fluctuations, which are relevant to close the statistical equations. The 
parcels P and N were introduced based on diffusion effects, but any cause that inhibits 
oscillations justifies these corrective parcels.  
The first statistical parameter is represented by n, and is defined as the fraction of the time 

for which the system is at each of the two F values (equations 5 and 6), being thus named as 

“partition function”. This function n depends on z and is  mathematically defined as 

 
( )

of the observation

pt at F P
n

t





 (5) 

This definition also implies that  

 
( )

1
of the observation

nt at F N
n

t


 


 (6) 

F  remains the same in figures 2a, b and c. The constancy between figures 2b and c is 
obtained using mass conservation, implying that P and N are related through equation (7):  
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Fig. 2. a) Sketch of the F record of the gray plane of figure 1, at z, b) Simplified record 

alternating F between Fp and Fn, c) Simplified record with amplitude damping. Upper and 
lower points do not superpose at the discontinuities (the F segments are open at the left and 
closed at the right, as shown in the detail). 
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  1

P n
N

n


  (7) 

The mean value of F is obtained from a weighted average operation between Fp-P and Fn+N, 
using equations (5) through (7). It follows that  

 (1 )p nF nF n F    (8) 

Isolating n, equation (8) leads to 

 
n

p n

F F
n

F F





 (9) 

Thus, the partition function n previously defined by equation (5) coincides with the 

normalized form of F  given by equation (9). Note that n is used as weighting factor for any 

statistical parameter that depends on F. For example, the mean value Q  of a function Q(F) 

is calculated similarly to equation (8), furnishing  

    (1 )p nQ n Q F P n Q F N      (9a) 

As a consequence, equations (9) and (9a) show that any new mean function Q  is related to 
the mean function F . Or, in other words: because n is used to calculate the different mean 
profiles, all profiles are interrelated. 
From the above discussion it may be inferred that any new variable added to the problem 
will have its own partition function. In the present section of scalar-velocity interactions, 

two partition functions are described: n for F (scalar) and m for V (velocity).  

2.4 Bimodal square wave: Adjusting amplitudes using a reduction coefficient function 

for scalars - f  

The sketch of figure 2c shows that the parcel P is always smaller or equal to pF F . As 

already mentioned, this parcel shows that the amplitude of the fluctuations is reduced. 
Thus, a reduction coefficient ߙ௙ is defined here as  

 0 1f p fP F F        (10) 

where ߙ௙ is a function of z and quantifies the reduction of the amplitude due to interactions 

between parcels of liquid with different F values (described here as a measure of diffusion 
effects, but which can be a measure of any cause that inhibits fluctuations). Using the effect 
of diffusion to interpret the new function, values of ߙ௙ close to 1 or 0 indicate strong or weak 

influence of diffusion, respectively. Considering this interpretation, Schulz & Janzen (2009) 
reported experimental profiles for ߙ௙ in the mass concentration boundary layer during air-

water interfacial mass-transfer, which showed values close to 1 in both the vicinity of the 
surface and in the bulk liquid, and closer to 0 in an intermediate region (giving therefore a 
minimum value in this region).  
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From equations (7), (8) and (10), N and P are now expressed as 

 
 

  1

f p n

f p n

N n F F

P n F F





  


   

0 1f   (11) 

As for the partition functions, any new variable implies in a new reduction coefficient. In the 
present section of scalar-velocity interactions, only the reduction coefficient for F is used 
(that is,  ߙ௙ ). In the section for velocity-velocity interactions, a reduction coefficient ߙ௩ for V 

(velocity) is used. 

2.5 Bimodal square wave: Quantifying superposition using the superposition 

coefficient function -  

Let us now consider the two main variables of turbulent scalar transport, the scalar F and 

the velocity V, oscillating simultaneously in the interval z1<z<z2 of Figure 1. As usual, they 

are represented as F F f   and V V   , where F  and V  are the mean values, and f and ߱ are the fluctuations. The correlation coefficient function ߩ(z) for the fluctuations f and ߱ is 

given by 

    
2 2

1 1
2 2 2 2

1 1
,

t t

t t

f f
z z t dt dt

t t f f

 
 

 
  
    (12) 

If the fluctuations are generated by the same cause, it is expected that the records of ߱ and f 
are at least partially superposed. As done for F, it is assumed that the oscillations ߱ can be 
positive or negative and so a partition function m (a function of z) may be defined. If we 

consider a perfect superposition between f and ߱, it would imply in n=m, though this is not 
usually the case. Aiming to consider all the cases, a superposition coefficient ߚ is defined so 
that 1.0=ߚ reflects the direct superposition (m=n), and 0.0=ߚ implies the inverse 
superposition of the positive and the negative fluctuations (m=1-n) of both fields.  

The definition of ߚ is better understood considering the scheme presented in figure 3. In 
this figure all positive fluctuations of the scalar variable were put together, so that the 
nondimensional time intervals were added, furnishing the value n. As a consequence, the 
nondimensional fraction of time of the juxtaposed negative fluctuations appears as 1-n. 

The velocity fluctuations also appear juxtaposed, showing that 1=ߚ superposes f and n 
with the same sign (++ and --), while 0=ߚ superposes f and n with opposite signs (+- and -
+). The positive and negative scalar fluctuations are represented by f1 and f2, respectively. 

The downwards and upwards velocity fluctuations are represented by ߱ௗ and ߱௨, 
respectively. 
Thus, m, which defines the fraction of the time for which the system is at ߱ௗ, is expressed 
as 

  1 2m n n      is a function of z. Also here any new variable implies in new superposition functions. In ߚ (13) 
the present section of scalar-velocity interactions only one superposition coefficient function 
is used (linking scalar and velocity fluctuations).  

www.intechopen.com



One Dimensional Turbulent Transfer 
Using Random Square Waves – Scalar/Velocity and Velocity/Velocity Interactions 11 

 

Fig. 3. Juxtaposed fluctuations of f and ߱, showing a compact form of the time fractions n 
and (1-n), and the use of the superposition function ߚ. The horizontal axis represents the 
time as shown in equations (5) and (6). 

2.6 The fluctuations around the mean for bimodal square waves 

An advantage of using random square waves as shown in Figure 2 is that they generate only 

two fluctuation amplitudes for each variable, which are then used to calculate the wished 

statistical quantities. Of course, the functions defined in sections 2.3 through 2.5 (partition, 

reduction and superposition functions) are also used, and they must “adjust” the statistical 

quantities to adequate values. From equations (8), (10), and (11), the two instantaneous 

scalar fluctuations are then given by equations (14) and (15)  

     1 (1 ) 1p p n ff F P F n F F           (positive) (14) 

     2 1n p n ff F N F n F F           (negative) (15) 

2.7 Velocity fluctuations and the RMS velocity 

In figure 1 the scalar variable is represented oscillating between two homogeneous values. 

But nothing was said about the velocity field that interacts with the scalar field. It may also 

be bounded by homogeneous velocity values, but may as well have zero mean velocities in 

the entire physical domain, without any evident reference velocity. This is the case, for 

example, of the problem of interfacial mass transfer across gas-liquid interfaces, the 

application shown by Schulz et al. (2011a). In such situations, it is more useful to use the rms 

velocity 2 as reference, as commonly adopted in turbulence. For the one-dimensional 

case, with null mean motion, all equations must be derived using only the vertical velocity 

fluctuations ߱. It is necessary, thus, to obtain equations for 2  and for the velocity 

fluctuations (like equations 14 and 15 for f) considering the random square waves 

approximation. An auxiliary velocity scale U is firstly defined, shown in figure 4, 

considering “downwards” (߱ௗ) and “upwards” (߱௨) fluctuations, which amplitudes are 

functions of z. 
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Fig. 4. The definition of the partition function m and the velocity scale U. Upwards (-) and 
downwards (+) velocities are shown. The dark and light gray areas are equal, so that the 
mean velocity is zero. 

Using m for the partition function of the velocity, the scale U shown in figure 4 is defined as 
the integration of the upper or the lower parts of the graph in Figure 4, as 

 dU m        and        1uU m   (16) 

Equation (17) describes the zero mean velocity (remembering that ߱௨ is negative) 

  1 0d um m           or       0U U   (17) 

U is a function of z. Let us now consider the RMS velocity 2 , which is calculated as 

   22 2 1d um m             and         22 2 1d um m       (18) 

U and 2  may be easily related. From equations (13), (16), and (18) it follows that 

    2 1 2 2U n n n n             (19) 

Finally, the velocity fluctuations may be related to 2 , n and  using equations (16) and 

(19) 

 
 

2 2

1 2
d

n n

n n

  
 
 


  

       and       
 2 1 2

2
u

n n

n n

 
 

 
  


 

 (20) 

2 is a function of z and is used as basic parameter for situations in which no evident 

reference velocities are present. For the example of interfacial mass transfer, 2  is zero at 

the water surface (z=0) and constant ( 0 ) in the bulk liquid ( z  ).  
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The basic functions n, ߙ௙, ߚ, 2 , defined in items 2.3 through 2.7, are used in the sequence 

to calculate the statistical quantities of the one-dimensional equations for scalar-velocity 

interactions. Further, incorporating them into equations (2) and (3), a closed set of equations 

for these functions is generated. In other words, the one dimensional turbulent transport 

problem reduces to the calculation of these functions, defined a priori to their inclusion in the 

equations. Some of their general characteristics are described in table 1.  

The RMS velocity may be normalized to be also bounded by the (absolute) values of 0.0 and 
1.0. Because the position of the maximum value depends on the situation under study, 
needing more detailed explanations, the table is presented with the RMS velocity in 
dimensional form and having an undetermined maximum value.  
 

Function n ߙ௙ 2 ߚ  

Dimension Nondimensional Nondimensional Nondimensional Velocity 

Physical 
ground 

Partition Reduction Superposition Ref. velocity 

Maximum 
value 

1 1 1 Undetermined 

Minimum 
value 

0 0 0 0 

Table 1. Characteristics of the functions defined for one dimensional scalar transport. 

A further conclusion is that, because four functions need to be calculated, it implies that 

only four equations must be transformed to the random square waves representation in this 

one-dimensional situation. As a consequence, only lower order statistical quantities present 

in these equations need to be transformed, which is a positive consequence of this 

approximation, because the simplifications (and associated deviations) will not be 

propagated to the much higher order terms (they will not be present in the set of equations).  

2.8 The central moments of scalar quantities using random square waves 

It was shown that equations (3) involve central moments like 2f , 3f , 4f , which, as 

mentioned, must be converted to the square waves representation. The general form of the 
central moments is defined as 

 1,2,3,...f F F        (21) 

For any statistical phenomenon, the first order central moment (1=ߠ) is always zero. Using 
equations (14) and (15), Schulz & Janzen (2009) showed that the second order central 

moment ( 2f for 2=ߠ) is given by 

       2 22 2 2
1 2 1 1 1 f p nf f n f n n n F F        (22) 

or, normalizing the RMS value (f ’2) 
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      
2

2' 1 1 f

p n

f
f n n

F F
   


                     

2

1
1

f

p n

f

F F n n
  

 
 (23) 

This form is useful to obtain the reduction function ߙ௙ from experimental data, using the 

normalized mean profile and the RMS profile, as shown by Schulz & Janzen (2009). 

Equation (23) shows that diffusion, or other causes that inhibit the fluctuations and imply in 

0f  , imposes a peak of f’2 lower than 0.5.  

The general central moments (3 ,2 ,1=ߠ…) for the scalar fluctuation f are given by 

              1 1
1 2 1 1 1 1 1p n ff f n f n n n n n F F

                    (24) 

or, normalizing the ߠth root ( ఏ݂) 

            1 1
' 1 1 1 1 f

p n

f
f n n n n

F F


            

 (25) 

 

The functional form of the statistical quantities shown here must be obtained solving the 

transformed turbulent transport equations (that is, the equations involving these quantities). 

Equations (21) through (25) show that, given n and ߙ௙, it is possible to calculate all the 

central moments ( f  statistical profiles) needed in the one-dimensional equations for scalar 

transfer.  

2.9 The covariances and correlation coefficient functions using random square waves 

2.9.1 The turbulent flux of the scalar F  

The turbulent scalar flux, denoted by F , is defined as the mean product between scalar 

fluctuations (f) and velocity fluctuations (߱) 

 F f  (26) 

Thus f  in equation (2) is the turbulent flux of F along z. The statistical correlation 

between ߱ and f is given by the correlation coefficient function, r, defined as 

 
2 2

f
r

f




  (27) 

r is a function of z, and 0 1r  . As it is clear from equations (26) and (27), r is also the 

normalized turbulent flux of F and reaches a peak amplitude less than or equal to 1.0, a 

range convenient for the present method, coinciding with the defined functions n, ߙ௙, ߚ, also 

bounded by 0.0 and 1.0 (as shown in table 1). The present method allows to express r as 

dependent on n, the normalized mean profile of F.  
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2.9.2 The correlation coefficient functions θf ω  

Equations (3) involve turbulent fluxes like fω , 2f  , 3f  , 4f  , which are unknown 

variables that must be expressed as functions of n, ߙ௙, ߚ and 2 . For products between 

any power of f and ߱, the superposition coefficient ߚ must be used to account for an 
“imperfect” superposition between the scalar and the velocity fluctuations. Therefore the 
flux f  is calculated as shown in equation (28), with ߚ being equally applied for the 

positive and negative fluctuations, as shown in figure 3 

       1 2 1 21 1 1 1d uf f n f n f n f n                      (28) 

Equations (13) through (20) and (28) lead to 

       
 2 1 22

1 (1 ) 2 1
1 2 2

p n f

n nn n
f F F n n

n n n n

     
   

           
      

 (29) 

Rearranging, the turbulent scalar flux is expressed as 

 
    2

2

1 1

(1 )
(1 )

(2 1)

f p nn n F F
f

n n

 


 


  



 



 (30) 

Equations (23), (27) and (30) lead to the correlation coefficient function  

 
 

   
 

,
2 2

2

1

1
1

2 1

f

n nf
r

f n n



 



 


 



      with      
,

0 1
f

r    (31) 

Schulz el al. (2010) used this equation together with data measured by Janzen (2006). The 
“ideal” turbulent mass flux at gas-liquid interfaces was presented (perfect superposition of f 

and ߱, obtained for 1.0 = ߚ). Is this case, 
,

1
f

r   , and 2 2f f  . The measured peak 

of 2 , represented by W, was used to normalize f , as shown in Figure 5. 

Considering r as defined by equation (27), it is now a function of n and ߚ only. Generalizing 
for ݂ఏ, we have 

       1 2 1 21 1 1 1d uf f n f n f n f n                         (32) 

The correlation coefficient function is now given by  

 
 

   
 

 

     
, 2 1 2 2 12 2

2

1 ( )1

1
1 11

2 1

f

n nn nf
r

f n nn n



 

   


 


 

                   

 (33) 
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Fig. 5. Normalized “ideal” turbulent fluxes for 1=ߚ using measured data. W is the measured 

peak of 2 . z is the vertical distance from the interface. Adapted from Schulz et al. (2011a). 

Equation (32) is used to calculate covariances like 2f  , 3f  , 4f   , present in equations 

(3). For example, for 3 ,2=ߠ and 4 the normalized fluxes are given, respectively, by: 

 
 

   
 

 
   

2

2

, 3 34 2

2

1 1 2

1
11

2 1

f

n n nf
r

n nf n n



 


 
  

           

 (34a) 

 
 

   
 

 

   
3

3 3
3

, 5 56 2

2

11

1
11

2 1

f

n nn nf
r

n nf n n



 


                 

 (34b) 

 
 

   
 

 

   

4 4
4

, 4 7 78 2

2

11

1
11

2 1

f

n nn nf
r

n nf n n



 


                 

 (34c) 

As an ideal case, for =1 (perfect superposition) equation 33 furnishes 

 
 

     
, 2 1 2 2 12 2

1 ( )

1 1
f

n nf
r

n nf


 

   



  

         
      

 (35) 

and the normalized covariances 2f  , 3f  , 4f  , for 3 ,2=ߠ and 4, are then given, 

respectively, by: 

 
 

   
2, 3 3

1 2

1
f

n
r

n n


 
 

  
     

 (36a) 
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 

   
3

3 3

, 5 5

1

1
f

n n
r

n n


       
     

 (36b) 

 
 

   

4 4

, 4 7 7

1

1
f

n n
r

n n


       
     

 (36c) 

Equations (34a) and (36a) can be used to analyze the general behavior of the flux 2f  . 

These equations involve the factor  1 2n , which shows that this flux changes its direction 

at n=0.5. For 0<n<0.5 the flux 2f   is positive, while for 0.5<n<1.0, it is negative. In the 

mentioned example of gas-liquid mass transfer, the positive sign indicates a flux entering 
into the bulk liquid, while the negative sign indicates a flux leaving the bulk liquid. This 

behavior of 2f   was described by Magnaudet & Calmet (2006) based on results obtained 

from numerical simulations. A similar change of direction is observed for the flux 4f  , 

easily analyzed through the polynomial  4 41 n n  .  

The equations of items 2.9.1 and 2.9.2 confirm that the normalized turbulent fluxes are 
expressed as functions of n and ߚ only, while the covariances may be expressed as functions 

of n, ߙ ,ߚ௙ and 2 .  

2.10 Transforming the derivatives of the statistical equations 
2.10.1 Simple derivatives 
The governing differential equations (2) and (3) involve the derivatives of several mean 
quantities. The different physical situations may involve different physical principles and 
boundary conditions, so that “particular” solutions may be found. For the example of 
interfacial mass transfer reported in the cited literature (e.g. Wilhelm & Gulliver, 1991; Jähne 
& Monahan, 1995; Donelan, et al., 2002; Janzen et al., 2010, 2011), Fp is taken as the constant 
saturation concentration of gas at the gas-liquid interface, and Fn is the homogeneous bulk 
liquid gas concentration. In this chapter this mass transfer problem is considered as 
example, because it involves an interesting definition of the time derivative of Fn.  

The pth-order space derivative 
p

p

F

z




 is obtained directly from equation (8), and is given by 

  
p p

p np p

F n
F F

z z

 
 

 
 (37) 

The time derivative of the mean concentration, 
F

t




, is also obtained from equation (8) and 

eventual previous knowledge about the time evolution of Fp and Fn. For interfacial mass transfer 
the time evolution of the mass concentration in the bulk liquid follows equation (38) (Wilhelm & 
Gulliver, 1991; Jähne & Monahan, 1995; Donelan, et al., 2002; Janzen et al., 2010, 2011) 
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  n
f p n

dF
K F F

dt
   (38) 

This equation applies to the boundary value Fn or, in other words, it expresses the time 
variation of the boundary condition Fn shown in figure 1. Kf is the transfer coefficient of F 

(mass transfer coefficient in the example). To obtain the time derivative of F , equations (8) 
and (38) are used, thus involving the partition function n. In this example, n depends on the 
agitation conditions of the liquid phase, which are maintained constant along the time 
(stationary turbulence). As a consequence, n is also constant in time. The time derivative of 

F  in  equation (8) is then given by 

 
(1 )

(1 )
p n n

nF n FF F
n

t t t

       
  

 (39) 

From equations (38) and (39), it follows that 

   1f p n

F
K n F F

t


  


 (40) 

Equation (40) is valid for boundary conditions given by equation (38) (usual in interfacial 
mass and heat transfers). As already stressed, different physical situations may conduce to 
different equations.  

The time derivatives of the central moments f   are obtained from equation (24), 

furnishing:  

 
           11 1
1 1 1 1 n

p n f

f F
n n n n F F

t t

     
               

 or (41) 

 
           1 1
1 1 1 1p n f

f
K n n n n F F

t

                   

As no velocity fluctuation is involved, only the partition function n is needed to obtain the 

mean values of the derivatives of f  , that is, no superposition coefficient is needed. The 

obtained equations depend only on n and ߙ௙ , the basic functions related to F.  

2.10.2 Mean products between powers of the scalar fluctuations and their derivatives  

Finaly, the last “kind” of statistical quantities existing in equations (3) involve mean products 

of fluctuations and their second order derivatives, like 
2

2

f
f

z




, 
2

2
2

f
f

z




, and 
2

3
2

f
f

z




. The 

general form of such mean products is given in the sequence. From equations (14) and (15), it 
follows that 

       
22

1
1 2 2

(1 ) 1
(1 ) 1

f

p n f p n

nf
f n F F F F

z z





            

 (42) 
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       
22

2
2 2 2

1
1

f

p n f p n

nf
f n F F F F

z z





            

 (43) 

Using the partition function n, we obtain the mean product 

  
 

 
 

    
2 22 11 1

2 2 2

(1 ) 1 1
1 1 1

f f

f p n

n nf
f n n n n F F

z z z

  
 


 

                     
    

 (44) 

Equation (44) shows that mean products between powers of f and its derivatives are 
expressed as functions of n and ߙ௙ only.  

2.11 The heat/mass transport example 

In this section, the simplified example presented by Schulz et al. (2011a) is considered in 

more detail. The simplified condition was obtained by using a constant ߙ௙, in the range from 

0.0 to 1.0. The obtained differential equations are nonlinear, but it was possible to reduce the 

set of equations to only one equation, solvable using mathematical tables like Microsoft 

Excel® or similar. 

2.11.1 Obtaining the transformed equations for the one-dimensional transport of F 

Equation (2) may be transformed to its random square waves correspondent using 

equations (2), (8), (30), (37), and (40), leading to 

  
  
   

 
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2

2

1 1
1

1
1

2 1
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f f

n nd n d
K n D

d zd z
n n
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 



 
 

  
    

    

 (45) 

In the same way, equation (3d) is transformed to its random square waves correspondent 

using equations (3d), (8), (24), (32), (37), (41), and (44), leading to 
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   

 

(46)

 

2.11.2 Simplified case of interfacial heat/mass transfer  

Although involving few equations for the present case, the set of the coupled nonlinear 
equations (45) and (46) may have no simple solution. As mentioned, the original one-
dimensional problem needs four equations. But as the simplified solution of interfacial 
transfer using a mean constant 

f f   is considered here, only three equations would be 

needed. Further, recognizing in equations (45) and (46) that ߚ and 2  appear always 

together in the form 

 
  
   

 

2

2

1 1

1
1

2 1

fn n
IJ

n n

 

 



 



 



 (47) 

It is possible to reduce the problem to a set of only two coupled equations, for n and the 
function IJ. Thus, only equations (45) and (46) for 2=ߠ are necessary to close the problem 
when using 

f f  . Defining (1 )fA    the set of the two equations is given by 

    2

2
1f f

d IJd n
K n D

d zd z
    (48a) 

         
2

2 2
2

1 1 2 2 1
2

f f

dn A d d n
K n n A IJ IJ n D n n A

d z d z d z
            (48b) 

Equations (48) may be presented in nondimensional form, using z*=z/E, with E=z2-z1, and 

S=1/ߢ=Df/KfE2 

 
  

   
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1
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fn n KE
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n n

 

 



    
 


 



 (49) 

    2

2

*
1

**

d IJd n
n S

d zd z
    (50a) 

         
2

2 2
2

1 1 2 2 1
2

dn A d d n
n n A IJ * IJ * n Sn n A

d z* d z* d z*
            (50b) 
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Equation (50a) is used to obtain dIJ/dz*, which leads, when substituted into equation (50b), 
to the following governing equation for n (see appendix 1) 

 

        

    

3

3

22 2

2 2

2

1 2
2 1

2

1 2 1 2 12 1 11 2
2 1 1

2 2

3
1 1 1 2 2 0

2

dn( n) d n
A An n

dz*dz*

A A nn A dn( n) d n d n
A An n κ n

A dz*dz* dz*

dnκ A n A A n n
dz*

     

                                

                
     

 (51) 

Thus, the one-dimensional problem is reduced to solve equation (51) alone. It admits non-
trivial analytical solution for the extreme case A=0 (or 1f  ), in the form  

  
2

2
1

*

d n
n

d z
          or         

 
sin *

1
sin

z
n




   (52) 

But this effect of diffusion for all 0<z*<1 is considered overestimated. Equation (51) was 
presented by Schulz et al. (2011a), but with different coefficients in the last parcel of the first 

member (the parcel involving 3/2-2n in equation (51) involved 1-n in the mentioned study). 
Appendix 1 shows the steps followed to obtain this equation. Numerical solutions were 
obtained using Runge-Kutta schemes of third, fourth and fifth orders. Schulz et al. (2011a) 
presented a first evaluation of the n profile using a fourth order Runge-Kutta method and 

comparing the predictions with the measured data of Janzen (2006). An improved solution 
was proposed by Schulz et al. (2011b) using a third order Runge-Kutta method, in which a 
good superposition between predictions and measurements was obtained. In the present 

chapter, results of the third, fourth and fifth orders approximations are shown. The system 
of equations derived from (51) and solved with Runge-Kutta methods is given by: 
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                              
                   



       







(53) 

Equations (53) were solved as an initial value problem, that is, with the boundary conditions 
expressed at z*=0. In this case, n(0)=1 and j(0)=~-3 (considering the experimental data of 
Janzen, 2006). The value of  w(0) was calculated iteratively, obeying the boundary condition 
0<n(1)<0.01. The Runge-Kutta method is explicit, but iterative procedures were used to 
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evaluate the parameters at z*=0 applying the quasi-Newton method  and the Solver device 
of the Excel® table. Appendix 2 explains the procedures followed in the table. The curves of 
figure 6a were obtained for 0.001 0.005  , a range based on the ߢ experimental values of 
Janzen (2006), for which ~0.003<0.004~>ߢ. The values A=0.5 and n”(0)=3.056 were used to 
calculate n in this figure. As can be seen, even using a constant A, the calculated curve n(z*) 
closely follows the form of the measured curve. Because it is known that f  is a function of 
z*, more complete solutions must consider this dependence. The curve of Schulz et al. 
(2011a) in figure 6a was obtained following different procedures as those described here. 
The curves obtained in the present study show better agreement than the former one.  
 

 

Fig. 6a. Predictions of n for n”(0) = 3.056. 
Fourth order Runge-Kutta. 

 

Fig. 6b. Predictions of n for 0.0025 = ߢ, and -
0.0449 ≤n”(0) ≤ 3.055. Fifth order Runge-
Kutta 

Fig. 6b. was obtained with following conditions for the pairs [A, n”(0)]: [0.2, 0.00596], [0.25, -
0.0145], [0.29, -0.04495], [0.35, 1.508], [0.4, 1.8996], [0.45, 1.849], [0.5, 2.509], [0.55, 3.0547], 
[0.62, 2.9915], [0.90, 0.00125]. Further, n’(0) = -3 for A between 0.20 and 0.62, and n’(0) = -1 for 
A=0.90. 

Figure 7a shows results for 0.4~ߢ, that is, having a value around 100 times higher than those 
of the experimental range of Janzen (2006), showing that the method allows to study 
phenomena subjected to different turbulence levels. ߢ = (Kf E2/Df) is dependent on the 
turbulence level, through the parameters E and Kf, and different values of these variables 
allow to test the effect of different turbulence conditions on n. Figure 7b presents results 
similar to those of figure 6a, but using a third order Runge-Kutta method, showing that 
simpler schemes can be used to obtain adequate results. 
As the definitions of item 3 are independent of the nature of the governing differential 
equations, it is expected that the present procedures are useful for different phenomena 
governed by statistical differential equations. In the next section, the first steps for an 
application in velocity-velocity interactions are presented. 
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Fig. 7a. Predictions of n for n”(0) = 3.056,  and 0.40~ߢ. Fourth order Runge-Kutta. 

 

Fig. 7b. Predictions of n for 0.003=ߢ and 
2.99812 ≤ n’’(0) ≤ 3.2111. Third order 
Runge-Kutta 

3. Velocity-velocity interactions 

The aim of this section is to present some first correlations for a simple velocity field. In this 
case, the flow between two parallel plates is considered. We follow a procedure similar to 
that presented by Schulz & Janzen (2009), in which the measured functional form of the 
reduction function is shown. As a basis for the analogy, some governing equations are first 
presented. The Navier-Stokes equations describe the movement of fluids and, when used to 
quantify turbulent movements, they are usually rewritten as the Reynolds equations: 

 
1j j j

i i j i
i i i j

V V V p
V v v B

t x x x x




    
            

,            i, j = 1, 2, 3. (54) 

p  is the mean pressure, ߭ is the kinematic viscosity of the fluid and Bi is the body force per 
unit mass (acceleration of the gravity). For stationary one-dimensional horizontal flows 
between two parallel plates, equation (1), with x1=x, x3=z, v1=u and v3=߱, is simplified to:  

 
1 p U

u
x z z

 


  
  

   
 (55) 

This equation is similar to equation (2) for one dimensional scalar fields. As for the scalar 
case, the mean product u  appears as a new variable, in addition to the mean velocity U . 
In this chapter, no additional governing equation is presented, because the main objective is 
to expose the analogy. The observed similarity between the equations suggests also to use 
the partition, reduction and superposition functions for this velocity field. 
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Both the upper and the lower parts of the flow sketched in figure 8 may be considered. We 
consider here the lower part, so that it is possible to define a zero velocity (Un) at the lower 
surface of the flow, and a “virtual” maximum velocity (Up) in the center of the flow. This 

virtual value is constant and is at least higher or equal to the largest fluctuations (see figure 
8), allowing to follow the analogy with the previous scalar case. 
 

 

Fig. 8. The flow between two parallel planes, showing the reference velocities Un and Up. 

The partition function nv, for the longitudinal component of the velocity, is defined as: 

 
( )

of the observation

p
v

t at U P
n

t





 (56) 

It follows that: 

 ( )
1

of the observation
n

v

t at U N
n

t


 


 (57) 

Equation (7) must be used to reduce the velocity amplitudes around the same mean velocity. 
It implies that the same mass is subjected to the velocity corrections P and N. As for the 
scalar functions, the partition function nv is then also represented by the normalized mean 
velocity profile: 

 n
v

p n

U U
n

U U





 (58) 

To quantify the reduction of the amplitudes of the longitudinal velocity fluctuations, a reduction 
coefficient function ߙ௨ is now defined, leading, similarly to the scalar fluctuations, to:  

 
 

  1

u v p n

u v p n

N n U U

P n U U





  


   

0 1u   (59) 

It follows, for the x components, that: 

   1 (1 ) 1v p n uu n U U                      (positive) (60) 
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   2 1v p n uu n U U                     (negative) (61) 

The second order central moment for the x component of the velocity fluctuations is given by: 

       222 2 2
1 2 1 1 1v v v v u p nu u n u n n n U U        (62) 

Or, normalizing the RMS value (u’2): 

 
     

2

2' 1 1v v u

p n

u
u n n

U U
   


 (63) 

Equation 63 shows that the relative turbulence intensity profile is obtained from the mean 
velocity profile nv and the reduction coefficient profile ߙ௨. As done by Schulz & Janzen 
(2009), the profile of ߙ௨ can be obtained from experimental data, using equation (63). 

 
   

2

1
1

u

p n v v

u

U U n n
 

 
 (64) 

As can be seen, the functional form of ߙ௨ is obtainable from usual measured data, with 
exception of the proportionality constant given by 1/Up, which must be adjusted or 
conveniently evaluated. Figure 9 shows data adapted from Wei & Willmarth (1989), cited by 

Pope (2000), and the function  1v vn n is calculated from the linear and log-law profiles 

close to the wall, also measured by Wei & Wilmarth (1989).  
To obtain a first evaluation of the virtual constant velocity Up, the following procedure was 
adopted. The value of the maximum normalized mean velocity is U/u*~24.2 (measured), 
where U is the mean velocity and u* is the shear velocity. The value of the normalized RMS 
u velocity, close to the peak of U, is u’/u*~1.14. Considering a Gaussian distribution, 99.7% 
of the measured values are within the range fom U/u*-3 u’/u*. to U/u*+3 u’/u*. A first 
value of Up is then given by U+3u’, furnishing Up/u*~24.2+3*1.14~27.6. Physically it implies 
that patches of fluid with Up are “transported” and reduce their velocity while approaching 
the wall. With this approximation, the partition function is given by: 

 

1
ln 5.2

0.41
27.6 27.6

v

y
u

n


 

   (65) 

The value 0.41 is the von Karman constant and the value 5.2 is adjusted from the 
experimental data. The notation u+ and y+ corresponds to the nondimensional velocity and 

distance, respectively, used for wall flows. In this case, u+=U/u* and y+=zu*/, where  is 
the kinematic viscosity of the fluid. Equation (65) is the well-known logarithmic law for the 
velocity close to surfaces. It is generally applied for y+>~11. For 0<y+<~11, the linear form 
u+=y+ is valid so that equation (65) is then replaced by a linear equation between nv and y+. 
From equation (63) it follows that:  

        
2

1 1 27.6 1 1
* *

p
v v u v v u

Uu
n n n n

u u
        (66) 
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Figure 9 shows the measured u’2 values together with the curve given by 27.6  1v vn n . As 

can be seen, the curve 27.6  1v vn n  leads to a peak close to the wall. In this case, the function 

is normalized using the friction velocity, so that the peak is not limited by the value of 0.5 (which 

is the case if the function is normalized using Up-Un). It is interesting that the forms of 2 /u u*  

and 27.6  1v vn n  are similar, which coincides with the conclusions of Janzen (2006) for mass 

transfer, using ad hoc profiles for the mean mass concentration close to interfaces.  
Figure 10 shows the cloud of points for 1-ߙ௨ obtained from the data of Wei & Willmarth 
(1989), following the procedures of Janzen (2006) and Schulz & Janzen (2009) for mass 
transfer. As for the case of mass transfer, ߙ௨ presents a minimum peak in the region of the 
boundary layer (maximum peak for 1-ߙ௨).  
 

 

Fig. 9. Comparison between measured values of u’/u* and    / * 1p v vU u n n . The gray 

cloud envelopes the data from Wei & Willmarth (1989). 

 

 

Fig. 10. 1-ߙ௨ plotted against n, following the procedures of Schulz & Janzen (2009). The gray 
cloud envelopes the points calculated using the data of Wei & Willmarth (1989). 
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As a last observation, the conclusion of section 2.7, valid for the scalar-velocity interactions, 
are now also valid for the transversal component of the velocity. The mean transversal 
velocity is null along all the flow, leading to the use of the RMS velocity for this component.  

4. Challenges 

After having presented the one-dimensional results for turbulent scalar transfer using the 
approximation of random square waves, some brief comments are made here, about  some 
characteristics of this approximation, and about open questions, which may be considered in 
future studies.  
As a general comment, it may be interesting to remember that the mean functions of the 
statistical variables are continuous, and that, in the present approximation they are defined using 
discrete values of the relevant variables. As described along the paper, the defined functions (n, 

, , RMS) “adjust” these two points of view (this is perhaps more clearly explained when 

defining the function ). This concomitant dual form of treating the random transport did not 
lead to major problems in the present application. Eventual applications in 2-D, 3-D problems or 
in phenomena that deal with discrete variables may need more refined definitions. 
In the present study, the example of mass transfer was calculated by using constant reduction 

coefficients (), presenting a more detailed and improved version of the study of Schulz et al. 
(2011a). However, it is known that this coefficient varies along z, which may introduce 
difficulties to obtain a solution for n. This more complete result is still not available. 
It was assumed, as usual in turbulence problems, that the lower statistical parameters (e.g. 
moments) are appropriate (sufficient) to describe the transport phenomena. So, the finite set of 
equations presented here was built using the lower order statistical parameters. However, 
although only a finite set of equations is needed, this set may also use higher order statistics. In 
fact, the number of possible sets is still “infinite”, because the unlimited number of statistical 
parameters and related equations still exists. A challenge for future studies may be to verify if 
the lower order terms are really sufficient to obtain the expected predictions, and if the 
influence of the higher order terms alter the obtained predictions. It is still not possible to infer 
any behavior (for example, similar results or anomalous behavior) for solutions obtained using 
higher order terms, because no studies were directed to answer such questions.  
In the present example, only the records of the scalar variable F and the velocity V were 
“modeled” through square waves. It may eventually be useful for some problems also to 
“model” the derivatives of the records (in time or space). The use of such “secondary 
records”, obtained from the original signal, was still not considered in this methodology.  
The problem considered in this chapter was one-dimensional. The number of basic functions 
for two and three dimensional problems grows substantially. How to generate and solve the 
best set of equations for the 2-D and 3-D situations is still unknown. 
Considering the above comments, it is clear that more studies are welcomed, intending to 
verify the potentialities of this methodology.  

5. Conclusions 

It was shown that the methodology of random square waves allows to obtain a closed set of 
equations for one-dimensional turbulent transfer problems. The methodology adopts a priori 
models for the records of the oscillatory variables, defining convenient functions that allow 
to “adjust” the records and to obtain predictions of the mean profiles. This is an alternative 
procedure in relation to the a posteriori “closures” generally based on ad hoc models, like the 
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use of turbulent diffusivities/viscosities, together with physical/phenomenological 
reasoning about relevant parameters to be considered in these diffusivities/viscosities. The 
basic functions are: the partition functions, the reduction coefficients and the superposition 
coefficients. The obtained transformed equations for the one-dimensional turbulent 
transport allow to obtain predictions of these functions.  
In addition, the RMS of the velocity was also used as a basic function. The equations are 
nonlinear. An improved analysis of the one-dimensional scalar transfer through air-water 
interfaces was presented, leading to mean curves that superpose well with measured mean 
concentration curves for gas transfer. In this analysis, different constant values were used 
for ߢ ,ߙ and the second derivative at the interface, allowing to obtain well behaved and 
realistic mean profiles. Using the constant ߙ values, the system of equations for one-
dimensional scalar turbulent transport could be reduced to only one equation for n; in this 
case, a third order differential equation. In the sequence, a first application of the 
methodology to velocity fields was made, following the same procedures already presented 
in the literature for mass concentration fields. The form of the reduction coefficient function 
for the velocity fluctuations was calculated from measured data found in the literature, and 
plotted as a function of n, generating a cloud of points. As for the case of mass transfer, ߙ௨ 
presents a minimum peak in the region of the boundary layer (maximum peak for 1-ߙ௨). 
Because this methodology considers a priori definitions, applied to the records of the random 
parameters, it may be used for different phenomena in which random behaviors are observed.  
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7. Appendix I: Obtaining equation (51) 

The starting point is the set of equations (45), (46), and the definition (47).  
The “*” was dropped from z* and IJ* in order to simplify the representation of the equations. 
The main equation (45) (or 50a) then is written as 

    2

2
1

d IJd n
n S

d zd z
    (AI-1) 

Equation (46), for 2=ߠ, is presented as: 
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Using the definitions 
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
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       

 

                 
   

 (AI-3) 

For ߙ௙ constant and defining A=(1 −  :(௙ߙ

    
2

2 2
2

(1 2 )
1 2 1

2

dn dn d IJn d n
n n A IJ IJ A A S n n A

d z d z d z d z

           
  

 (AI-4) 

Using equations (AI1) and (AI4)  
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 (AI-5) 

Solving equation (AI5) for IJ: 
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2 1 1
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1
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                
      


 (AI-6) 

Rearranging equation (AI6): 

  
     2

2

2 1 1(1 2 )
2 1 1

2 21

n An d n
S An n n

d zA
IJ

dnA
d z

                        (AI-7) 

Differentiating equation (AI7) and using equation (AI1):  
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      

                          
    

 
 

 (AI-8) 

Multiplying by 
2

dn

d z

 
 
 

 and simplifying dn

d z
: 
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 (AI-9) 

Rearranging (after multiplying the equation by A and using S=1/ߢ): 
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
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           
  

                   


 (AI-10) 

Equation (AI10) is the equation (51) presented in the text.  

8. Appendix II: Solving equation (51) using mathematical tables 

Equation (51) (or equation (AI-10)) of this chapter is a third order nonlinear ordinary 
differential equation, for which adequate numerical methods must be applied. Some 
methods were considered to solve it.  
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A first attempt was made using the second order Finite Differences Method and the solver 
device from the Microsoft Excel® table, intending to solve the problem with simple and 
practical tools, but the results were not satisfactory. It does not imply that the Finite 
Differences Method does not apply, but only that we wanted more direct ways to check the 
applicability of equation (51). 
The second attempt was made using Runge-Kutta methods, also furnished in 
mathematical tables like Excel ®, maintaining the objective of solving the one-dimensional 
problem with simple tools. In this case, the results were adequate, superposing well the 

experimental data. 
The Runge-Kutta methods were developed for ordinary differential equations (ODEs) or 

systems of ODEs. Equation (AI-10) is a nonlinear differential equation, so that it was 

necessary to first rewrite it as a system of ODEs, as follows 

 
dn

j
dz

  (AII-1) 

 
2

2

d n
w

dz
  (AII-2) 

 1 2 3( ) /
dw

f f f
d z

   (AII-3) 

in which 
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       
 

 (AII-4) 
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3
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2
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                
 (AII-5) 

  3

(1 2 )
2 1

2

n
f A An n j

     
 (AII-6) 

Figure 6 shows that 3th, 4th and 5th orders Runge-Kutta methods were applied to obtain numerical 

results for the profile of n. This Appendix shows a summary of the use of the 5th order method. 

Of course, similar procedures were followed for the lower orders. As usual in this chapter, 

equations (AII-1) up to (AII-3) use the nondimensional variable z without the star “*” (that is, it 

corresponds to z*). Considering "y" the dependent variable in a given ODE, the of 5th order 

method, presented by Butcher (1964) appud Chapra and Canale (2006), is written as follows 

  1 1 3 4 5 67 32 12 32 7
90

k k

x
y y     


       (AII-7) 
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in which 
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 
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        
 
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 













 (AII-8) 

In the system of equations (AII-8), generated from equations (AII-4) through (AII-6), x = z 
and y = n , following the representation used in  this chapter.  
The system of equations (AII-1) through (AII-6) was solved using a spreadsheet for 
Microsoft Excel®, available at www.stoa.usp.br/hidraulica/files/. Two initial values were 
fixed and one was calculated. Note that in the present study it was intended to verify if the 
method furnishes a viable profile, so that boundary or initial values obtained from the 
experimental data were assumed as adequate. The first was n(0)=1. The second was n'(0)=-3, 
corresponding to the experiments of Janzen (2006). The third information did not constitute 
an initial value, and was n(1)=0 or 0<n(1)<0.01 (threshold value corresponding to the 
definition of the boundary layer). As the Runge-Kutta methods need initial values, this 
information was used to obtain n''(0), the remaining initial value needed to perform the 
calculations. With the aid of the Newton (or quasi-Newton) method, it was possible to 
obtain values for n''(0) that satisfied the third condition imposed at z = 1.  
The derivative of n at z=0 is generally unknown in such mass transfer problems. In this case, 
solutions must be found considering, for example, n(0)=1, 0<n(1)<0.01 and n’(1)=0 (three 
reasonable boundary conditions), for which another scheme must be developed to calculate 
the first and second derivatives at the origin. As mentioned, the aim of this study was to 
verify the applicability of the method. The details of solutions for different purposes must be 
considered by the researchers interested in that  solution. 
The construction of the spreadsheet is described in the following steps: 
i. determine the initial values: n(0) = 1, n'(0) = -3 (or other appropriate value) n''(0) = 

initial guess; 
ii. Compute ߰ଵ,ଵ and ߰ଵ,ଶ, the function values f1, f2 e f3 with the initial values, and then ߰ଵ,ଷ. In the variable ߰௜,௝, i = 1,2,...,6 and j = 1,2,3, the first index corresponds to the six 

stages of the method and the second to the order of the ODE that generated the original 
system to be solved; 

iii. With the values calculated in (ii), calculate now nk+(1/4)	߰ଵ,ଵ Δz, jk+(1/4) ߰ଵ,ଵ Δz and 
wk+(1/4) ߰ଵ,ଵ Δz. The following steps are similar until  j = 6; 

iv. Equation AII-7 (a system) is then used to advance in space z. 
The spreadsheet available at www.stoa.usp.br/hidraulica/files/ presents some suggestions 
that simplify some items of the above described steps (some manual work is simplified). The 
estimate of n”(0), for example, is obtained  following simplified procedures.   
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