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1. Introduction 

The dynamic milieu of synovial fluid is of particular interest for biomarker discovery of joint 
related diseases as it is composed not only of ultra-filtrated proteins originating in serum, 
but also proteins exclusively expressed and secreted by cells localized within the synovial 
membrane, fluid or cartilage. Lubricin (proteoglycan 4, prg4) is an abundant mucinous and 
secretory glycoprotein (~227 to 345 kDa) in synovial fluid (SF) and one of the factors 
considered responsible for boundary lubrication of diarthrodial joints (Swann et al., 1981; 
Swann et al., 1985; Jay, 1992). Lubricin is encoded by gene PRG4 and synthesized in synovial 
fibroblasts (synoviocytes) and superficial zone chondrocytes. Different transcripts of PRG4 
have been referred to as superficial zone protein (SZP), megakaryocyte stimulating factor 
(MSF) precursor, camptodactyly arthropathy coxa vara pericarditis (CACP) protein, and 
hemangiopoietin (HAPO), which has recently been reviewed by Bao et al (Bao et al., 2011). 
As a primarily lubricating glycoprotein, lubricin has been found in SF, superficial layer of 
articular cartilage, tendons, and menisci (Schumacher et al., 1994; Schumacher et al., 1999; 
Rees et al., 2002; Rhee et al., 2005b; Schumacher et al., 2005; Sun et al., 2006). This tissue-
specific distribution makes lubricin a potential biomarker during the exacerbation of chronic 
articular inflammation. 
Human synovial lubricin (1404 amino acids) has a large and central mucin-like domain 
characterized with 59 imperfect repeating units of EPAPTTPK which is subject to extensive O-
linked glycosylation. The abundance of negatively charged sugars in this domain contributes 
to the protein’s boundary lubrication of the cartilage surface due to strong repulsive hydration 
forces (Jay, 1992). The mucin domain is flanked by a C-terminal hemopexin (PEX)-like domain 
and two somatomedin B (SMB)-like domains at its N-terminus (Flannery et al., 1999; 
Schumacher et al., 1999; Ikegawa et al., 2000). The two N-terminal SMB-like domains have 60% 
similarity to that of vitronectin, while C-terminal PEX-like domain also shows similarity to 
domains in vitronectin (40-50%) as well as to the matrix metalloproteinase (MMPs) family. 
Purified serum hemopexin has been showed to interact with hyaluronan, suggesting that the 
PEX-like domain in lubricin may also medicate the binding of lubricin to hyaluronan at or near 
cartilage surface (Hrkal et al., 1996). In addition to boundary lubrication, lubricin protects 
cartilage surfaces from protein deposition and cell adhesion (Rhee et al., 2005b). 
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During inflammation, glycosylation properties such as sialylation, sulfation, and 
fucosylation, are regulated to manipulate cell adhesion, differentiation, maturation, and 
activation in the case of immune cells. Bone and cartilage cells like osteoblasts, synovial 
fibroblasts and chondrocytes have been shown to possess the enzymes necessary for the 
synthesis of N- and O-glycans of glycoproteins, among which some activities are regulated 
by cytokines found in inflamed joints (Brockhausen & Anastassiades, 2008). Based on the 
established biosynthetic pathways, it was reported that human joint glycoproteins mainly 
had complex bi-antennary N-glycans and O-glycans with core 1 and the branched core 2 
structures (Brockhausen & Anastassiades, 2008). In our previous study, the O-linked 
oligosaccharides of lubricin were characterized (Estrella et al., 2010). On lubricin, core 1 O-
linked oligosaccharides are the predominant structures. Removal of sialic acid and core 1 
oligosaccharides caused loss of boundary lubrication (Jay, 1992; Jay et al., 2001), showing 
that these structural elements are sufficient for providing lubricating property of lubricin. 
With aid of liquid-chromatography-mass spectrometry (LC-MS), small proportion of 
sialylated core 2 oligosaccharides were also found on lubricin both with and without 
sulfation. This indicates that lubricin glycosylation also have other task requiring complex 
O-glycosylation. In summary, both core 1 and core 2 glyco-epitopes on lubricin have the 
potential of excessive interactions with glyco-binding proteins, such as selectins and 
galectins, to facilitate inflammation.  
Degenerative joint disease and joint injury are associated with increased turnover of 

articular cartilage proteins, inflammation, and alterations to other joint tissue proteins 

(Goldring & Goldring, 2007). So far, several synovial joint-specific biomarkers have been 

identified in adults, such as calgranulin A, B, and C (Sinz et al., 2002; Liao et al., 2004), 

fibrinogen ┚-chain, fructose bisphosphonate aldolase A, alpha-enolase (Tilleman et al., 

2005), tenascin-C (Hasegawa et al., 2004), serum amyloid A (SAA), and broader 

inflammatory biomarkers, such as C-reactive protein (Kuhn et al., 2004) and haptoglobin 

(Sinz et al., 2002; Kantor et al., 2004). Lubricin as one important synovial component to 

monitor the state of a joint is less investigated, despite its highly relevant function as a 

biolubricant. Because of the size and posttranslational modifications of lubricin, it is not 

readily detectable by traditional two-dimensional electrophoresis (2-DE). However, a 

decreased expression of lubricin together with increased degradation of lubricin have been 

associated with more aggressive rheumatoid arthritis (RA) and osteoarthritis (OA). This 

strongly indicates that lubricin may be a good joint-specific biomarker. For example, in vitro 

boundary lubricating test indicated that SF from chronic inflammatory RA patients had 

decreased lubricating ability in comparison with SF from acute knee joint synovitis patients 

and cartilage transplant donors (Elsaid et al., 2005). According to the expression level of 

lubricin in synovium, RA patients could be classified into two groups, of where lower 

expression level of lubricin was associated with a more aggressive disease stage 

(Ungethuem et al., 2010). As for OA, animal models of OA also feature reduced levels of 

lubricin, particularly in the early stage of the disorder (Young et al., 2006; Elsaid et al., 2007). 

Also, when applied exogenous lubricin in an animal model of OA, it appears to be 

chondroprotective and to reduce structural damage (Flannery et al., 2009; Teeple et al., 

2011). It has been demonstrated that lubricin expression is down-regulated by 

proinflammatory cytokines (e.g., interleukin (IL)-1┚, tumor necrosis factor ┙ (TNF┙), and IL-

6) (Flannery et al., 1999; Rhee et al., 2005b; Young et al., 2006; Schmidt et al., 2008). 

Decreased synovial lubricin level may be caused by degradation with neutrophil elastase, 
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cathepsin B, and MMPs (Jones et al., 2003; Elsaid et al., 2005). MMPs are an enzyme family 

of calcium-dependent zinc-containing endopeptidase which is known to play important 

roles in tissue remodeling during physiological as well as pathological processes. In 

cartilage, MMPs are the principal proteases capable of degrading a wide variety of the 

extracellular matrix components (Nagase & Woessner, 1999). The released fragment of 

lubricin together with other synovial residual proteins and cartilage matrices floating in 

synovial fluid may be detected by biochemical or immunochemical assay. The profile of 

proteins or fragments within SF may represent diagnostic or prognostic biomarker for 

degenerative joint diseases.  

Defect of lubricin function leads to CACP syndrome in human, which is a rare and 
Mendelian genetic arthropathy causing juvenile-onset, inflammatory, precocious joint 
failure (Marcelino et al., 1999). Although Prg4-/- mice did not have noticeably reduced 
fertility or life span, with aging knockout mice underwent synovial hyperplasia, subintimal 
fibrosis, proteinaceous deposits on the cartilage surface, irregular cartilage surface and 
endochondral growth plates, and ultimate invasion of the cartilage surface by synoviocytes 
reminiscent of human CACP and the cartilage invasion of RA joints by the inflammatory 
pannus (Rhee et al., 2005b).  
As all these studies indicate, it is reasonable to speculate that inflammation-induced 
alterations of both the level, degradation and glycosylation of lubricin that occur in the joints 
of patients with RA and OA may accelerate the destruction of joints and exacerbate the 
disease. Monitoring new glyco-epitopes and/or proteolytic fragments of lubricin may serve 
as a potential biomarker for advanced diagnosis of early stage. To perform this, it is 
necessary to fully characterize the lubricin molecule by glycoproteomics. In this study, we 
used various biotinylated lectins or anti-carbohydrate antibodies together with MS to 
characterize glyco-epitopes on lubricin. The results confirm that lubricin contains 
immunologically important O-linked oligosaccharide epitopes that are capable of binding 
selectins and galectins. Proteomic analysis indicated that not all repeat units are occupied 
with O-linked oligosaccharides and also revealed several fragments of lubricin in synovial 
fluid.  
It is known that joint damage may progress despite decreased inflammatory activity and 
erosions may develop in patients with few signs of inflammation by conventional 
assessments (Flato et al., 2003). Therefore, predicting the progression and consequences of 
inflammatory pathology are essential for optimal clinical management. The ideal biomarker 
of persistent inflammation in arthritis should fulfill a number of criteria including: 
detectable levels in early disease, expression which coincides with each inflammatory 
episode and expression that is restricted to the inflamed joint. The identification of 
differentially expressed proteins contributes to understanding the molecular factors of the 
disease better and paves the way for new diagnostic and prognostic markers, and eventually 
to novel targets in the development of therapeutic strategies.  

2. Glycoproteomic characterization of synovial lubricin 

2.1 Materials and methods 
2.1.1 Enrichments of lubricin from synovial fluid  
Synovial fluid samples from RA patients were collected during therapeutic joint aspiration 

at the Rheumatology Clinic, Sahlgrenska University Hospital (Gothenburg, Sweden). All 
patients gave informed consent and the procedure was approved by the Ethics Committee 
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of Sahlgrenska University Hospital. All patients fulfilled the American College of 
Rheumatology 1987 revised criteria for RA (Arnett et al., 1988). The samples were clarified 

by centrifugation at 10,000 g for 10 minutes and stored at -80oC before use. The acidic 
proteins were purified as previously described (Estrella et al., 2010). In brief, synovial fluid 

sample was diluted with washing buffer (250 mM NaCl, 20 mM Tris-HCl, 10 mM EDTA, pH 
7.5) before applying to 1 mL DEAE FF Hi-Trap column (GE Healthcare, Uppsala, Sweden). 

Enriched glycoproteins were eluted with 1 M NaCl in washing buffer. Lubricin containing 
fractions were precipitated with 80% ethanol for 16 hours at -20oC. The precipitate was 

collected by centrifugation at 12,100 g for 20 minutes and re-suspended in phosphate 
buffered saline (PBS) at pH 7.4 after air-dry. Protein concentration was determined by BCA 

protein assay kit (Thermo Scientific, San Jose, CA, USA) using bovine serum albumin (BSA) 
as standard. 

For sandwich ELISA, 96-well microtiter plates (Nunc, Roskilde, Denmark) were coated 
with rabbit anti-lubricin polyclonal antibody (Thermo Scientific) in 0.1 M carbonate 
buffer, pH 9.5, at a concentration of 2 ng/mL and 4oC overnight. The plates were then 
blocked with 1% BSA in TBS-T buffer (Tris-buffered saline with 0.01% Tween 20) at 37oC 
for 1 hour. Fractions were diluted with 1% BSA in TBS-T buffer, added to each well, and 
incubated at 37oC for 1 hour. After washing with TBS-T buffer, diluted anti-lubricin 
mouse monoclonal antibody (Pfizer Research, Cambridge, MA, USA) was added to each 
well and incubated at 37oC for 1 hour. After extensive wash, horseradish peroxidase 
(HRP)-labeled goat anti-rabbit immunoglobulin antibody (DakoCytomation, Glostrup, 
Denmark) was added. Color was developed by using tetramethyl benzidine (TMB) buffer 
(Sigma-Aldrich, St. Louis, MO, USA) as substrate for 10 minutes at room temperature; and 
reaction was stopped by adding 1 M H2SO4. The optical density was measured at 450 nm 
wavelength.  

2.1.2 Western blot and lectin immunoblot 
Samples were reduced with 10 mM dithiothreitol (Sigma-Aldrich) and denatured by heating 

at 95oC for 20 minutes, and then alkylated with 25 mM iodoacetamide (Sigma-Aldrich) for 1 

hour at room temperature in the dark. As for non-reduced samples, protein samples were 

mixed with SDS loading buffer and heated at 95oC for 20 minutes. The samples were then 

applied to a 3-8% Tris/acetate NuPAGE gel (Invitrogen AB, Stockholm, Sweden) or agarose-

polyacrylamide gel (AgPAGE) which was made as described previously (Schulz et al., 2002). 

The samples were blotted onto PVDF membrane (Immobilon P, Millipore, Billerica, MA, 

USA) using a semi-dry blotter (Bio-Rad, Hercules, CA, USA). 

PVDF membranes were blocked for 1-2 hour at room temperature in TBS-T buffer 

containing 1% BSA at room temperature on a shaker, and then incubated with primary 

antibodies or biotinylated lectins at the appropriate concentration diluted in TBS-T buffer 

with 1% BSA for 1 hour at room temperature on a shaker. After washing the blots three 

times with TBS-T, blots were incubated with secondary antibodies or streptavidin labeled 

with HRP for 1 hour at room temperature. After wash, bound antibodies and lectins were 

detected by using SuperSignal West Femto maximum sensitivity substrate (Thermo 

Scientific).  

Anti-carbohydrate antibodies used in study including anti-T antigen (mAb 3C9), anti-Tn 
antigen (mAb 5F4 and 1E3), and anti-sialyl Tn (mAb TKH2 and 3F1), which were kindly 
provided by Prof. Henrick Clausen and Prof. Ola Blixt (University of Copenhagen, 
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Denmark). Mouse anti-3’-sulfo-Lea was kindly provided by Dr. Antoon J Ligtenberg 
(Department of Oral Biochemistry, University of Amsterdam, The Netherlands). The other 
anti-carbohydrate antibodies tested in this study were mouse anti- sialyl Lewis x (sLex , 
CD15s, or mAb CSLEX1, BD Biosciences, Franklin Lakes, NJ, USA), MECA-79 (CD62L, BD 
Biosciences), mouse anti-chondroitin sulfate (mAb CS56, Sigma-Aldrich), mouse anti-sLea 
(mAb CA19-9, Abcam, Cambridge, MA, USA), and mouse anti-Leb (mAb 2-25LE, Abcam). 
Biotinylated lectins were also used in this study including ConA (concanavalin A), MAA-I 
(Maackia amurensis lectin I), WGA (succinylated wheat germ agglutinin), and AAL (Aleuria 
aurantia lectin), all from Vector (Vector Laboratories, Burlingame, CA, USA). Biotinylated 
PNA (Arachis hypogaea lectin) and HAA (Helix aspersa agglutinin) were from Sigma-Aldrich. 
Secondary antibodies used were HRP conjugated rabbit anti-mouse IgG, HRP conjugated 
rabbit anti-rat IgG+IgM (Jackson ImmunoResearch, Suffolk, UK). For biotin labeled lectin, 
HRP conjugated streptavidin (Vector Laboratories) was used. The immunoassay was 
validated and optimized with human salivary mucin as described previously (Issa et al., 
2010) and bovine fetuin (Sigma-Aldrich). 

2.1.3 Glycomic analysis of lubricin O-glycan structures 
O-linked oligosaccharides were released by reductive ┚-elimination (Schulz et al., 2002). In 

brief, membrane strips were incubated with 50 µL of 1.0 M NaBH4 in 100 mM NaOH for 16 

hours at 50oC. Reactions were quenched with 1 µL of glacial acetic acid. Samples were then 

desalted and dried for capillary graphitized carbon LC-MS and LC-MS2 in negative ion 

mode using an LTQ Ion Trap (Thermo Scientific). Oligosaccharides were identified from 

their MS2 spectra using the UniCarb-DB (2011 version) (Hayes et al., 2011) and validated 

manually.  

For deglycosylation, the reduced and alkylated samples (20 µg) were incubated with 5 mU 

of sialidase A (Prozyme Inc., Oxford, UK) to remove sialic acids at 37oC for 16 hours. An 

aliquot of sample was also treated with 2.5 mU O-glycanase (endo-┙-N-

acetylgalactosaminidase, Prozyme Inc.), which cleaves core 1 type O-linked glycan on 

glycoproteins and glycopeptides, at 37oC for 16 hours. The reaction was stopped by heating 

at 95oC for 10 minutes in SDS-loading buffer, and enzymes were removed by 

electrophoresis. 

2.1.4 Proteomic characterization of lubricin 
Coomassie blue-stained protein bands in Tris/acetate NuPAGE gels were excised and 
digested with trypsin as described (Kuster et al., 1997). The resultant peptides were 
subjected to nano-LC-MS2 using LTQ-Orbitrap XL mass spectrometer (Thermo Scientific). 
Peptide MS/MS spectra were searched against UniProt and NCBI human protein 
databases using GPM (Zhang et al., 2011) and Mascot software (v.2.2.04, Matrix Science 
Inc., MA, USA). Only peptides with a mass deviation lower than 10 ppm were accepted 
and two peptide sequences with manual inspection were used for positive protein 
identification. 
Enriched synovial lubricin sample was also treated with O-sialoglycoprotein 
endopeptidase from Pasteurella haemolytica (Cedarlane Laboratories, Ontario, Canada). 5 
µg of samples were incubated with endopeptidase in PBS (pH 7.4) at 37oC; and small 
aliquots were taken out at 0, 3, 6, and 16 hours. The reaction was stopped by adding SDS-
loading buffer with boiling.  

www.intechopen.com



 
Rheumatoid Arthritis – Etiology, Consequences and Co-Morbidities 136 

2.2 Result 
2.2.1 Enrichment of synovial lubricin 
Synovial lubricin is a heavily negatively charged glycoprotein that can be enriched by ion-

exchange chromatography (Fig. 1A). Lubricin containing fractions which were determined 

by sandwich ELISA were pooled and precipitated by 80% ethanol. The amount of protein in 

these fractions corresponded to 1.38 mg/mL synovial fluid (mean, n=5). Considering that 

lubricin has been shown to be in the range of 0.2-0.5 mg/mL(Marcelino et al., 1999; Schmid 

et al., 2001; Elsaid et al., 2005), this indicates that additional proteins (e.g., albumin) and 

glycoproteins (e.g., fibronectin, aggrecan) are co-purified (See proteomic section).  

 

 

Fig. 1. Enrichment of human lubricin from synovial fluid. (A) Representative elution profile 
of DEAE ion-exchange chromatography. Protein levels in each fraction were determined by 
BCA method, while lubricin-containing fractions (Fr. 35-41) were pooled and precipitated 
with 80% ethanol. (B) Reduced and alkylated synovial fluid (SF, 1 µL) and enriched sample 
(Lubricin, 2 µg) were separated by Ag-PAGE. Protein bands were visualized by silver nitrate 
or detected by Western blot (WB).  

As shown in Fig. 1B, silver staining of Ag-PAGE showed one major band around 300 kDa 

indicating that the majority of synovial proteins were removed during enrichment. When 

more samples were loaded, additional faint bands were also detected (Fig. 4B-2). Both 

mouse monoclonal (Fig. 1B) and rabbit polyclonal antibody (not shown) specifically react to 

prepared lubricin, respectively. Though there are few bands smaller than lubricin, none of 

them reacted with lubricin-specific antibodies.  

2.2.2 Glyco-epitope on synovial lubricin verified by immunoassay 
To examine the glycan profile on lubricin, purified samples were primarily analyzed by 
immunoassay with lectins or anti-carbohydrate antibodies (Fig. 2). Synovial lubricin was 
positive to the lectins specific to sialic acid and T antigen, such as WGA (sialic acid and 
terminal GlcNAc┚1,4), MAA-I (specific to ┙2,3-linked sialic acid), and PNA (T antigen, 
Gal┚1,3GalNAc┙1-O-Ser/Thr). Lubricin also reacted with HAA, a lectin specific to terminal 
GalNAc┙1- including Tn antigen (GalNAc┙1-O-Ser/Thr). Lectin immunoblot of synovial 
lubricin was also negative to ConA, which binds to branched Man┙1- on high-mannose and 
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hybrid type N-glycans, suggesting N-glycans were absent on lubricin or in very low 
amounts. The same negative results were obtained with Aleuria aurantia lectin (AAL), which 
recognized both peripheral and core fucosylated glycans. 
 

 

Fig. 2. Glyco-epitope on lubricin analyzed by immunoblot. Reduced and alkylated enriched 
lubricin sample (6 µg/lane) was separated by 3-8% Tris/acetate NuPAGE and blotted to 
PVDF membrane. Strips were incubated with various lectins or anti-carbohydrate 
antibodies after blocking with 1% BSA in TBS-T buffer. After incubating with HRP 
conjugated corresponding secondary antibodies and streptavidin, bands were developed by 
SuperSignal West Femto maximum sensitivity substrate. CB, Coomassie blue stained gel; 
PNA, peanut agglutinin; WGA, wheat germ agglutinin; AAL, Aleuria aurantia lectin; HAA, 
Helix aspersa agglutinin; Anti-sLex, sialyl Lewis x-specific antibody; T, T antigen, 
Gal┚1,3GalNAc-O-Ser/Thr; Tn, Tn antigen, GalNAc-O-Ser/Thr. 

When synovial lubricin was investigated by anti-carbohydrate antibodies (Fig. 2), lubricin was 

suggested to have T antigen and sialyl Lewis x (sLex, structure in Fig. 3C). Western blot showed 

(data not presented) that lubricin was negative for anti-carbohydrate antibodies specific to 

chondroitin sulfate (mAb CS56), sLea [NeuAc┙2,3Gal┚1,3(Fuc┙1,4)GlcNAc┚1-], (mAb CA19-9), 

3‘-sulfo-Lea [NeuAc┙2,3Gal(3S)┚1,3(Fuc┙1,4)GlcNAc-], Leb [Fuc┙1,2Gal┚1,3(Fuc┙1,4)GlcNAc┚1-

], (mAb 2-25LE], MECA-79 epitopes, Tn antigen (mAb 5F4 and 1E3), and sialyl Tn antigen 

[NeuAc┙2,6GalNAc-O-Ser/Thr], (mAb TKH2 and 3F1). Results obtained from anti-

carbohydrate antibodies agree with results from the lectin immunoblot except for lectin HAA. 

Together with the lectin immunoblot, these results demonstrated synovial lubricin had 

sialylated glycans, core 1 O-glycan and peripheral sLex epitope. In order to reveal the identity of 

the sLex containing O-glycans and identify other glycan epitopes not recognized by the 

antibodies and lectin used, additional experiments were carried out. 

2.2.3 Glyco-epitope on synovial lubricin verified by LC-MS 
Though immunoassay with lectins and anti-carbohydrate antibodies is convenient to detect 
glyco-epitopes, inner structural information is commonly scant. Furthermore, some glyco-
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epitopes may not be detectable because of hindrance in space or detect limitations. In 
addition, certain glyco-epitopes are short of specific antibodies. For example, there is 
currently no antibody available that could distinguish 3-O-sulfation from 6-O- sulfation. 
Therefore, to scrutinize the result obtained by Western blot/lectin blot of O-linked 
oligosaccharides on lubricin, purified samples were also subjected to ┚-elimination with 
mild base. Released oligosaccharides were then analyzed by LC-MS equipped with online 
graphitized carbon column as previously described (Estrella et al., 2010).  
 

 

Fig. 3. Examples of core 1 and 2 O-linked oligosaccharides found on synovial lubricin 
determined by LC-MS using the [M-H]--ions as precursors. (A) MS2 spectra of core 1 O-
glycan (T antigen) at m/z 384; (B) MS2 spectra of mono-sialylated core 2 O-glycan with one 
┙2,3-linked NeuAc at m/z 1040; (C) MS2 spectra of ion at m/z 1477 indicating a terminal sLex 
[NeuAc┙2,3Gal┚1,4(Fuc┙1,3)GlcNAc] epitope; (D) MS2 spectra of ion at m/z 667, in which 
produced ion at m/z 282 indicate a sulfate group linked to GlcNAc. Purple diamond stands 
for sialic acid (NeuAc); yellow circle for galactose (Gal); blue square for N-
acetylglucosamine (GlcNAc); yellow square for N-acetylgalactosamine (GalNAc); red 
triangle for fucose (Fuc); S for sulfate. 

Consistent with findings from a previous study of lubricin (Estrella et al., 2010), core 1 O-
linked oligosaccharides including T antigen (Gal┚1,3GalNAc-O-Ser/Thr) and sialyl T antigen 
were the predominant O-linked oligosaccharides. As illustrated in Fig. 3A, MS2 of ion at m/z 
384 ([M-H]-) indicates a composition of Hex1HexNAc1, corresponding to a T antigen. The 
presence of the Z ion fragment at m/z 204.1 is consistent with a composition of reduced 
HexNAc, while C ion fragment at m/z 179.0 indicates a terminal Hex. In comparison with MS2 
spectra in the database of UniCarb-DB (2011 version) (Hayes et al., 2011), the structure is 
consistent with Gal┚1,3GalNAc, and its amount approximately accounts for 10% of total O-
glycans on lubricin. Together with mono-sialylated [NeuAc┙2,3Gal┚1,3GalNAc] and 
[Gal┚1,3(NeuAc┙2,6)GalNAc] and di-sialylated [NeuAc┙2,3Gal┚1,3(NeuAc┙2,6)GalNAc] 
structures, core 1-based structures accounted for up to 82% of total O-glycan, based on the 
total ion count. A small proportion of core 2 oligosaccharides, which account for the 
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remaining 18% of the total O-glycans detected, were found in this and a previous study 
(Estrella et al., 2010). Three representative MS2 spectra of core 2 O-linked oligosaccharide is 
shown, with ions at m/z 1040, 1477 and 667 (Fig. 3B, C and D). The [M-H]--ion at m/z 1040 
(NeuAc1Hex2HexNAc2) demonstrates a mono-sialylated core 2 O-linked oligosaccharide, 
while ion at m/z 1477 ([M-H]-, NeuAc2Hex2deHex1HexNAc2) is the same core with one 
additional sialic acid and one fucose. This structure has a sequence indicative of a sialyl Lewis-
type terminal glyco-epitope. These types of sialylated structures together with sialylated core 1 
O-glycan are consistent with the positive WGA and MAA lectin blots. The Western blot results 
showed that lubricin were only positive to sLex-specific antibody but negative to sLea. This 
suggests that synovial lubricin carries sLex [NeuAc┙2,3Gal┚1,4(Fuc┙1,3)GlcNAc] epitope 
(spectrum in Fig. 3C) on core 2 structures. Sulfated core 2 O-glycans were also found in this 
study (Fig. 3D) and previous study (Estrella et al., 2010). Due to lack of good antibodies and 
lectins, this epitope could only be identified by MS but not by lectin analysis. This argues for 
LC-MS and lectin as complementary techniques that need to be applied in glycomics studies.  

2.2.4 Identification of synovial lubricin fragment by proteomic analysis 
Though several proteomic analyses using synovial fluid samples have been carried out 
(Ruiz-Romero & Blanco, 2010), lubricin (or its fragments) appeared in only a few reports 
(Gobezie et al., 2007; Kamphorst et al., 2007; Estrella et al., 2010). To fully characterize 
synovial lubricin, the enriched samples were also subjected to proteomic analysis.  
When the dominating band (area 2, Fig. 4B-2) was analyzed, 28.5% of the lubricin sequence 
could be identified and believed to represent the fully glycosylated full-length secreted 
lubricin. The unidentified portion was mostly located to the mucin-like domain of lubricin 
(Fig. 4C). Lubricin was also detected in all other pieces of the gel indicating that lubricin 
existed as fragments or splice variants. Sequences of all exons could be detected except exon 1, 
consisting of the N-terminal 24 amino acid-signal sequence. In addition to the area 2 (Fig. 4B-2) 
where full-length lubricin was detected, remarkably high sequence recovery of lubricin was 
also found in the low mass region below 65 kDa (Fig. 4B-5). Identified peptides were from 
both N- and C-terminal implying these fragments were generated by proteolytic cleavage close 
to or within mucin-like domain. Examples of LC-MS2 spectra of tryptic peptides from N-and 
C-terminal region of lubricin is shown in Fig. 5. Both N- and C-terminal fragments of lubricin 
have been found in other studies (Flannery et al., 1999; Rhee et al., 2005b). These data together 
with our presented data suggest that lubricin is present in synovial fluid as both full-length 
and degraded proteins. Few peptides (7.7%) were recovered from the area higher than lubricin 
area (Fig. 4B-1). This is probably caused by inefficient reduction and trace amount of multimer 
of lubricin which has been found in synovial fluid recently (Schmidt et al., 2009). The 
dominating bands in area 3 and 5 are fibronectin and the C-terminal fragment of lubricin, 
respectively (Fig. 4B, Jin et al., unpublished results).  
In addition to detection of lubricin, co-purified proteins were also identified by the 
proteomic approach. Table 1 listed top 3 proteins identified in each gel area, which consisted 
of 7 unique proteins and their fragments. Except serum albumin, other proteins are 
glycoproteins. The presence of the lower molecular weight fibronectin in high molecular 
area (area 1) confirmed inefficient reduction and suggest the presence of fibronectin dimers 
or oligomers. Alternatively, both serum albumin and fibronectin have both been reported to  
bind to lubricin in vitro (Schmid et al., 2002) and may have been attached to lubricin during 
the purification. The possible association of lubricin with these proteins or their fragments is 
under investigation by our group.  
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Fig. 4. Proteomic analysis of enriched synovial lubricin. (A and B) Reduced and alkylated 
lubricin sample was separated by 3-8% Tris/acetate NuPAGE. Protein bands were 
visualized by Coomassie blue. Gel slab was cut into five pieces (1 to 5) and subjected to LC-
MS/MS analysis after trypsin digestion. The graph (A) shows the recoveries (%) of lubricin 
sequence from different cut areas. (C) Peptide map of lubricin recovered from different gel 
areas. The horizontal axis stands for the lubricin amino acid sequence (in total 1404 amino 
acids). E1 to E12 indicates the end of exon. *fibronectin; **C-terminus of lubricin 

2.2.5 Characterization of lubricin mucin-like domain 
Because the sequence in mucin-like domain is still largely unknown, several ways were tried 

to characterize this heavily O-glycosylated domain. As shown in Fig. 4C, resolved peptides 

from lubricin contain both N- and C-terminus (Fig. 5). Sequenced N-terminus spanned from 

residue 25 to 334, while C-terminus spanned from residue 1094 to 1383 (1404 amino acids in 

full-length). Only one peptide (A888LENSPKEPGVPTTK902) within mucin-like domain (348-

855) containing 59 imperfect/perfect 8-amino acid repeats (KxPxPTTx) was found in area 2. 

It is believed that because of heavy O-glycosylation, the protein domain with this 

modification is normally not accessible to proteases and hence the low recovery obtained. In 

the case of synovial lubricin, however, it could be completely digested with trypsin in both 

reducing and non-reducing condition (Fig. 6A). The digestion was so complete that lubricin- 

www.intechopen.com



Glycoproteomics of Lubricin-Implication 
of Important Biological Glyco- and Peptide-Epitopes in Synovial Fluid 141 

 

Gel 
area 

Protein identified 
MW 

(kDa)* 
Peptide 

identified 
Protein 

ID 
Coverage 

(%) 

1 

Fibronectin 262.4 42 P02751 24.9 

Basement membrane-
specific heparan sulfate 

proteoglycan core 
protein 

468.5 14 P98160 4.0 

Apolipoprotein B-100 515.2 13 P04114 4.0 

2 

Lubricin 151.0 69 Q92954 28.5 

Alpha-2-macroglobulin 163.2 15 P01023 15.0 

Aggrecan core protein 250.0 15 P16112 6.9 

3 

Apolipoprotein B-100 515.2 111 P04114 30.9 

Fibronectin 262.4 85 P02751 44.9 

Alpha-2-macroglobulin 163.2 36 P01023 36.2 

4 

Fibronectin 262.4 51 P02751 30.9 

Serum albumin (HSA) 69.2 50 P02768 75.5 

Apolipoprotein B-100 515.2 52 P04114 16.9 

5 

Lubricin 151.0 39 Q92954 25.4 

Fibronectin 262.4 38 P02751 23.1 

Serum albumin 69.3 33 P02768 60.4 

* Molecular weight of apoprotein obtained from protein database.  

Table 1. Proteins identified in enriched synovial fluid sample. Reduced and alkylated 
lubricin sample was separated by 3-8% Tris/acetate NuPAGE. The entire gel line (Fig. 4B) 
was cut into five pieces (1 to 5). Gel pieces were subjected to in-gel digestion with trypsin. 
The resultant peptides were applied to nano-LC-MS2. The proteins were identified from 
peptide MS/MS spectra, searched against Uniprot human protein database using GPM 
software. The 3 top ranked proteins from 1-5 cut areas with their molecular weight in kDa 
and with the number of unique peptides for each protein are listed in the table 1. The 
recoveries (%) of the 3 top ranked proteins sequence and their UniProt identification 
numbers are also listed.  
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specific antibodies showed negative in Western blot (data not shown). This data suggests 

that the mucin domain of lubricin is different from mucin domains of traditional mucous 

mucins which are not susceptible to trypsin. Difference in glycosylation between lubricin 

and traditional mucins was also suggested by the treatment with O-sialoglycoprotein 

endopeptidase from Pasteurella haemolytica which cleaves heavily sialylated mucin-domain, 

but only had minor effect on lubricin. As shown in Fig. 6B, after overnight incubation, the 

density of Coomassie blue stained band was significantly diminished. However, when the 

digested same samples were probed with mouse monoclonal antibody, Western blot 

showed that epitope of the antibody, recognizing part of the unglycosylated N-terminal 

region, was still attached to the large mucin domain. Only a small shift in the migration in 

SDS-PAGE was observed after the endopeptidase treatment. 

In order to show that the reason for low recovery of the mucin domain was due to 

glycosylation, sialidase A and O-glycanase were used to remove the majority of O-linked 

oligosaccharides (Fig. 6C and 7). Desialylation with sialidase A decreased the size of lubricin 

on Ag-PAGE verified that synovial lubricin contained sialic acid (Fig. 6C). When further 

treated with O-glycanase, which cleaves core 1 type O-linked glycan (Gal┚1,3GalNAc┙1-O-

Ser/Thr) on glycoproteins and glycopeptides, the size of lubricin decreased dramatically 

and was close to the calculated molecular weight of lubricin without posttranslational 

modification, i.e. 148 kDa. These results suggested that lubricin is heavily glycosylated and 

core 1 type O-linked oligosaccharides are the predominant O-glycans on lubricin. Bands 

after sialidase A treatment with or without subsequent O-glycanase treatment were 

subjected to LC-MS/MS analysis after trypsin digestion. Sialidase A alone recover 19.1% of 

lubricin sequence (Fig. 7), most of the peptides were located in the mucin-like domain 

including 18 random repeats of EPAPTTPK. In contrast, removal of glycosylation using both 

sialidase and O-glycanase gave up to 48% recovery of the lubricin sequence (Fig. 7). By 

removal of core 1 O-glycans, more protein core was revealed and made accessible for 

digestion providing peptides from the mucin domain repeated to be recovered and detected 

by LC-MS. Resolved sequence covered almost entire mucin-like domain of lubricin and 

repeat region without glycosylation could be identified (Fig. 8). 

2.3 Discussion 
Though several biomarkers in SF and serum have been associated with RA and OA, no 
single biomarker has sufficient discriminating power to clearly indicate prognosis. Hence, 
the quest to find new, more efficient single biomarker for cartilage degrading diseases 
remains. On the other hand, measurement of multiple biomarkers at the time of diagnosis 
would improve diagnosis accuracy and even early diagnosis. As a candidate biomarker, SF 
lubricin has been found to be an important lubricant in SF, but expression level is also 
associated with inflammation. Lubricin has not been characterized fully because of its size 
and heavily O-glycosylation. In this study, SF lubricin was characterized by both glycomic 
and proteomic means, indicating that in addition to the level of lubricin in SF, both the 
glycosylation and its degradation are potential marker for disease progression and 
inflammation. 
In combination with our previous study (Estrella et al., 2010) and this study (Fig. 2 and 3), 
synovial lubricin was shown to possess predominantly core 1 O-linked oligosaccharides. 
Even in a low amounts, with the aid of liquid chromatography-mass spectrometry (LC-MS), 
small proportions of core 2 oligosaccharides were found to carry sulfate group. In addition,  
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Fig. 5. MS2 spectra of one N-terminal (A) and one C-terminal (B) peptide derived from 
reduced and alkylated lubricin that was searched against UniProt and NCBI human protein 
database using GPM software. The position of the N-terminal peptide in the protein 
sequence starts from amino acid 25 and ends at 33. The m/z 976.41 is the [M+H]+ precursor 
ion and m/z 488.71 is the [M+H]2+. The assigned ID number for this peptide in the GPM 
database is 1193. The position of the C-terminal peptide starts from amino acid 1265 and 
ends at 1274. The m/z 1156.59 is the [M+H]+ precursor ion and m/z 578.80 is the [M+H]2+.The 
assigned ID number for this peptide in the GPM is 2538.     
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Fig. 6. Proteomic analysis of lubricin under various conditions. All purified samples were 
reduced and alkylated before separation by 3-8% Tris/acetate NuPAGE gel. (A) Samples (5 
µg) were incubated with trypsin. Aliquots were taken out at different time (0 to 16 hours). 
SDS-PAGE gel was stained with Coomassie blue. (B) Samples (5 µg) were treated with O-
sialoglycoprotein endopeptidase from Pasteurella haemolytica. A duplicated gel was blotted to 
PVDF membrane and probed with moue monoclonal anti-lubricin antibody. (C) Enriched 
lubricin sample (8 µg/lane) was treated with sialidase in absence or presence of O-glycanase at 
37oC overnight. The resultant products were separated by Ag-PAGE under reducing condition. 

a sLex epitope was also found present on a small proportion of the core 2 oligosaccharides. 
However, unlike sulfation, the level of fucosylation on lubricin was very low. Though in 
comparison with LC-MS, immunoassay seems less efficient but very specific to certain glyco-
epitopes. For example, MS2 spectra of ion at m/z 1477 suggested a Lewis type epitope. Without 
further fragmentation and known retention time on LC, it is not easy to define this structure of 
sLea or sLex. With sLea- and sLex-specific antibody, immunoblot demonstrated lubricin was 
modified with sLex. HAA is a lectin specific to terminal GalNAc┙1- on N- or O-glycans. The 
lack of antibody recognition to Tn-antigen despite HAA reactivity indicated that exposed 
GalNAc┙1- to protein backbone was only sparingly found. Additionally, synovial lubricin was 
shown to contain PNA binding epitopes (Fig. 2B). This is consistent with that PNA can been 
used as an affinity ligand to enrich synovial lubricin (Jay et al., 2001; Teeple et al., 2011). The 
result from the glycomic study using both LC-MSn and antibody/lectins showed the presence 
of a trace amount of Tn antigen, high abundant sialylated and unsialylated core 1 and several 
sialylated, fucosylated and sulfated core 2 oligosaccharides to be present on lubricin.  
Suggestions of lubricin involvement in disease and inflammation can be identified from its 
glycosylation. Glycomic analysis showed that approximately 50% of the lubricin O-glycans 
contain terminal galactose, such as the T antigen. It makes lubricin a potential ligand for 
galectins, which are a mammalian lectin family recognizing terminal galactose. Increased 
expression of galectin-3 has been reported in synovial fluid from RA patients (Ohshima et al., 
2003). Galectin-3 is believed to play a pro-inflammation role in joint diseases in which galectin-
3 together with soluble fibrinogen was found to regulate neutrophil activation, degranulation 
and survival (Fernandez et al., 2005). Another attractive glyco-epitope on lubricin, sLex, is 
reminiscent of selectin ligands which are involved in leukocyte trafficking.  For instance, 
although it is in a low amount, L-selectin on the surface of synovial neutrophils as well as 
soluble L-selectin are reported in synovial fluid (Humbria et al., 1994; De Clerck et al., 1995). 
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Fig. 7. Peptides recovery of bands excised from sialidase A and O-glycanase (Fig. 6C). The 
mucin-like domain is in capital (encoded by exon 6). Sequences recovered after sialidase A 
treatment were underlined, while sequences recovered after sialidase A and O-glycanase 
treatment were in blue. 

With increased mechanical stress and protease activity associated with OA and RA, the 

fragmentation of lubricin shown here opens up a new possibility for disease-specific 

biomarkers. A few fragments of lubricin were detected in synovial fluid, which were enriched 

together with intact protein. The O-glycosylation domain is supposed to protect against 

proteolytic cleavage. In the case of lubricin, however, it was extensively degraded by trypsin 

but resistant to O-sialoglycoprotein endopeptidase (Fig . 5A). Similarly, lubricin has been 

found to be extensively degraded by papain, trypsin and pronase and to a lesser extent by 

pepsin (Flannery et al., 1999). Other proteases, such as neutrophil elastase (a serine protease) 

and cathepsin B (a cysteine protease), are also able to degrade lubricin in vitro (Jones et al., 

2003; Elsaid et al., 2005). Interestingly, lubricin tryptic peptides were detected as low as the 30-

65 kDa region (Table 1 and Fig. 4). These fragments are unlikely to contain the full mucin-like 

domain, but more likely an N- or C-terminal domain with a portion of mucin-like domain 

(non-glycosylated N-terminus has a mass of 33.8 kDa and the C-terminus 35.4 kDa). So far, it is 

not clear whether they were from unique cleavages along lubricin sequence or just randomly 

excised in vivo. Evidence has indicated N-terminus of lubricin is more sensitive to neutrophil 

elastase (Elsaid et al., 2005). Purified neutrophil elastase has been shown to damage cartilage 

explants in vitro (Burkhardt et al., 1988). Also neutrophil elastase, and not MMPs, can destroy 

the superficial layer of cartilage where lubricin locates. Consequently, MMPs have better 

access to cartilage molecules in less superficial layers of cartilage (Jasin & Taurog, 1991).  

Are lubricin fragments associated with inflammation or pathophysiology of degenerative joint 
disease? Or does lubricin fragmentation patterns in OA or RA differ from those in healthy 
individuals? Recent studies reported the fragment of lubricin in SF (Gobezie et al., 2007; 
Kamphorst et al., 2007). In the work of Kamphorst et al., they found two lubricin C-terminal 
fragments (R1285PALNYPVYGETTQV1299 and D1373QYYNIDVPSRTA1385) in OA SF but not in 
healthy SF (Kamphorst et al., 2007). In the current study with enriched RA synovial lubricin, 
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the first sequence (1285-1300) was found distributed throughout the gel; while the second 
sequence (1373-1385) was only detected in area 3 and 5, areas lower than the lubricin area (Fig. 
4B and C). Additionally, several new peptides derived from both N-terminus and C-termini 
were found in this study. These fragments could be solely by-products of degenerative joint. 
Alternatively, these fragments might play a regulatory role. For example, fragments from 
fibronectin and aggrecan have been reported to correlate with joint diseases (Homandberg et 
al., 1997a; Homandberg et al., 1997b; Struglics et al., 2009). Interestingly, these two proteins 
were also found in this study (Table I). It is not clear whether they form a protein complex 
together with lubricin or just happened to be co-purified with lubricin.  
 

 

Fig. 8. MS2 spectrum of the peptide derived after desialylated and O-glycanase treated 
lubricin sample searched against UniProt and NCBI human protein database using GPM 
software. The m/z 420.73 is the [M+H]2+ precursor ion. The assigned ID number for the 
peptide in the GPM database is 3740. This peptide sequence is in the mucin domain of 
lubricin and is repeated 18 times in lubricin. 
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Besides two flanking protein domains, in the middle of lubricin there is a mucin-like 
domain. To our knowledge, this is the first report of a protein sequence within this domain 
(Fig. 7 and 8). It should be noted that among 59 imperfect repeat units, 18 have a perfect 
repeating unit of EPAPTTPK (Fig. 7 and 8). O-glycanase treatment greatly increased the 
recovery. As discussed above, proteolytic cleavage sites on lubricin are probably located 
within the mucin-like domain, and here we show that the mucin domain of lubricin is 
indeed accessible to proteolytic enzymes. This is probably due to a dispersed O-
glycosylation in contrast to continuous O-glycosylation as the heavily bottle-brush-like O-
glycosylation on traditional mucins, which will hinder the access to the cleavage site. Being 
able to sequence mucin-like domain in lubricin will facilitate the mapping of authentic 
proteolytic cleavage sites on lubricin in situ and to investigate the effect of cytokine 
regulated proteases on synovial lubricin during joint diseases.  

3. Conclusion 

In summary, using glycoproteomics we fully characterized the major glycoprotein in SF as 
lubricin. With knowledge of O-glycosylation and proteomic properties of lubricin, it 
allowed us to identify RA or OA-specific glyco-epitopes and fragments, enabling us to better 
understand how the glycosylation of lubricin is influenced by inflammation of the joint. 
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