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1. Introduction 

The immune system is a highly organized defense system, which recognizes invading 
microorganisms and aims to exclude them. In order to do this effectively and safely, the 
immune system must distinguish between self- and non-self-antigens, and be tolerant of 
self-antigens. Autoimmune diseases develop through the breakdown of self-tolerance, as a 
result of immune deregulation. This is caused by the combined influence of genetic and 
environmental factors, including infectious microorganisms. Rheumatoid arthritis (RA) is a 
systemic autoimmune disease, characterized by synovial hyperplasia leading to the 
destruction of bones and joints. This severely impairs the life of patients. RA is a relatively 
common autoimmune disease, occurring in approximately 1% of the population. However, 
its etiology and pathophysiology are not completely understood. The incidence of RA is 
correlated with certain human leukocyte antigen (HLA)-DR haplotypes, and the production 
of autoantibodies such as rheumatoid factor and anticitrullinated protein autoantibody. 
Thus, the involvement of the deregulated immune system is strongly implicated. Various 
molecules, including type II collagen, gp39, citrullinated peptides, and glucose-6-
phosphoisomerase, have been reported as potential pathogenic autoantigens. However, 
their involvement explains only a proportion of RA cases. Autoantigens are abundant in the 
body and, theoretically, the immune response to them continues indefinitely. Thus, systemic 
autoimmune diseases exhibit the characteristics of chronic inflammation. 
In the pathological condition of RA, the joints are infiltrated with T cells, B cells, 
macrophages, and plasma cells, all of which are characteristic chronic inflammation cells 
driven by the immune system. Recently, Th17, a novel helper T-cell subset producing 
interleukin (IL)-17, has been recognized as a pivotal player in the local inflammation driven 
by acquired immunity. In addition to immune-competent cells, there is accumulating 
evidence for abnormalities in non-hematopoietic cells, especially fibroblast-like synoviocytes 
(FLSs) (Bartok & Firestein, 2010; Firestein, 2009; Mor et al., 2005; Pap & Gay, 2009). The 
cartilage and bone are destroyed by the invasion of pannus, which is formed from 
proliferating FLSs and multi-nucleated osteoclasts. Osteoclasts are specialized to resolve 
bone, and play a major role in bone destruction in RA. However, there is strong evidence 
that FLSs themselves are aggressive enough to destroy bone. When cultured FLSs derived 
from RA or osteoarthritis (OA) were co-implanted with human cartilage under the renal 
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capsule of a severe combined immunodeficiency (SCID) mouse, the FLSs derived from RA, 
but not from OA, destroyed the cartilage (Muller-Ladner et al., 1996; Pierer et al., 2003). In 
RA, cytokines produced by surrounding cells in the inflamed joints, such as basic fibroblast 
growth factor (FGF), platelet-derived growth factor (PDGF), transforming growth factor 

(TGF)-, tumor necrotizing factor (TNF)-, and IL-1 are thought to be responsible for the 

hyperplasia of FLSs. On the other hand, activated FLSs produce TNF-, IL-1, IL-6, 
chemokines, and matrix metalloproteinases (MMPs), thereby establishing the chronic and 
destructive inflammatory circuit driven by cellular interaction. Thus, it appears that some 
passively activated FLSs may be changed to be in a distinctly activated state, autonomously 
destroying bone and joints. 
The critical roles of inflammatory cytokines are evidenced by the effectiveness of cytokine-

blockade therapies for RA, using anti-TNF- or anti-IL-6 receptor antibodies (Brennan & 

McInnes, 2008; Nishimoto & Kishimoto, 2006). In spite of the promising effects shown by 

these anti-cytokine therapies, several problems remain, such as suppression of the normal 

immunity and substantial numbers of resistant cases (Firestein, 2007). To overcome these 

difficulties, increased knowledge of the molecular mechanisms involved in the complex and 

multi-factorial pathophysiology of RA is required. In this context, our research on the 

disease-associated genes of RA is based on the theory that FLSs are heterogeneous in 

physiological, and also in pathological situations. In this chapter, we briefly overview the 

current understanding of FLSs in RA, and introduce the pathophysiological natures of FLSs 

as revealed by our subtyping studies. 

2. Fibroblast-like synoviocytes 

2.1 Fibroblast-like synoviocytes in the normal synovium 

The syovium is a membranous structure that extends from the margins of articular cartilage 

and lines the capsule of diarthrodial joints. The synovium supports the joint structure, 

provides nutrition to the cartilage and lubricates the surface. The synovial membrane has 2 

compartments: the initimal lining layer and the sublining layer. The initimal lining layer is 

the superficial layer that faces the intra-articular cavity, and produces synovial fluid as 

lubricant. This lining layer is normally 2 to 3 cells thick and consists of 2 types of synovial 

cells: macrophage-like synoviocytes (Type A synoviocytes), and fibroblast-like synoviocytes 

(Type B synoviocytes). Type A synoviocytes are hematopoietic in origin, bone marrow-

derived, and terminally differentiated, as are other tissue-resident macrophages. Type B 

synoviocytes are mesenchymal cells with vimentin in the cytoskeleton, and Thy-1 (CD90) on 

their surface. Type B synoviocytes display many characteristics of fibroblasts, such as the 

production of extracellular matrix, and collagen type IV and V. Specific characteristics for 

FLSs in the intimal lining layer include expression of cadherin-11 for homotypic aggregation 

(Lee et al., 2007) and uridine diphosphoglucose dehydrogenase for synthesis of hyaluronic 

acid, an essential joint lubricant. Expression of decay accelerating factor, CD55, and 

adhesion molecules (VCAM-1 and ICAM-1) is also characteristic. 

2.2 Fibroblast-like synoviocytes in the synovium of RA 

In the synovium of RA, the histopathological characteristics are hyperplasia of FLSs, and 

infiltration with inflammatory cells. The pathophysiological reactions are joint destruction 

and perpetuation of inflammation. 
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2.2.1 Hyperplasia 

Hyperplasia of FLSs exhibits features of stable activation—the so-called tumor-like 
transformation. Features of tumor-like transformation include anchorage–independent 
growth, adhesion to the extracellular matrix of cartilage, resistance to apoptotic signaling, 
and invasiveness to cartilage and bone. Tumor-like transformation may be cell-autonomous 
or non-cell-autonomous. The non-cell-autonomous pathway is indirectly driven by factors 
produced by autoimmune-competent cells in the microenvironment. These include 
cytokines, growth factors, lipid mediators, and reactive oxygen species. By contrast, the cell-
autonomous pathway results from the cell-intrinsic changes of FLSs themselves. 
Reflecting cell-intrinsic changes, FLSs in RA have a characteristic morphology, i.e., an 
abundant cytoplasm; a dense, rough endoplasmic reticulum; and large, pale nuclei with 
several prominent nucleoli (Pap & Gay, 2009). One of the important molecular 
characteristics of FLSs in RA is the expression of proto-oncogenes (Bartok & Firestein, 2009), 
including c-fos, (Aikawa et al., 2008), ras, raf, sis, myb, and myc (Roivainen et al., 1999). 
Interestingly, proto-oncogenes are predominantly expressed by FLSs attached to cartilage 
and bone (Muller-Ladner et al., 2000). Furthermore, some of these proto-oncogenes regulate 
gene expression of MMPs or cathepsin L. Thus, in the SCID mouse, inhibition of c-Raf-1 or 
c-Myc significantly reduced the expression of MMP-1 and MMP-3, resulting in decreased 
invasiveness of FLSs to the cartilage (Pap et al., 2004). 
Among the various cells in the inflamed synovium, macrophages and T cells are thought to 
be most responsible for producing various stimuli for stable activation of FLSs. Various 

combinations of PDGF, TGF-, TNF-, IL-1, and the arachidonic acid metabolites induce the 
proliferation of FLSs (Konttinen et al., 1999). On the other hand, FLSs in RA have been 
shown to exhibit defective apoptosis, rather than enhanced proliferation (Jacob et al., 1995; 
Korb et al., 2009). Apoptosis was rapidly induced in RA-derived FLSs by retroviral 
transduction of a combination of dominant-negative c-Raf-1 and dominant-negative c-Myc 
(Pap et al., 2004), indicating that some proto-oncogenes are involved. Death receptor Fas is 
expressed and is functional in FLSs in vitro. However, apoptosis induced by anti-Fas 

antibody was prevented by TNF-, IL-1 and IL-6, suggesting that FLSs in the inflamed 
joints are resistant to apoptosis (Ohshima et al., 2000; Wakisaka et al., 1998). The anti-

apoptotic function of nuclear factor (NF)-B activated by TNF-signaling, and the induction 

of the anti-apoptotic molecule Bcl-xL by IL-1 are involved (Jeong et al., 2004). In addition to 

the effects of cytokines, the adhesion molecule VLA-5 (integrin 51), upon ligation with 
fibronectin, is involved in this resistance to Fas-mediated apoptosis (Kitagawa et al., 2006). 
Under conditions of genotoxic stress, the tumor-suppressor p53 induces cell-cycle arrest, 
followed by either DNA repair or apoptosis, depending on the degree of DNA damage 
(Gudkov & Komarova, 2010). A main effector of p53-dependent apoptosis, PUMA (p53 up-
regulated modulator of apoptosis) is present in very low concentrations in the synovium. 
Adenovirus-mediated transfer of the p53 gene into FLSs induced production of the p53 
protein, leading to p21 expression; however, PUMA expression was not enhanced and 
apoptosis was not induced (Cha et al., 2006). This suggests that, under conditions of 
genotoxic stress, the FLSs in RA tend to undergo cell-cycle arrest rather than apoptosis. 

2.2.2 Infiltration with inflammatory cells 

Infiltration with inflammatory cells mainly involves chemokines, cytokines, lipids of 
chemical mediators, and adhesion molecules. It comprises the mutual activation of 
interacting cells of distinct lineages, leading to the perpetuation of inflammation. 
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Inflammatory mediators produced by FLSs include IL-15 (Miranda-Carus et al., 2004), IL-16 

(Pritchard et al., 2004), IL-18 (Gracie et al., 1999), TNF-, TGF-(Pohlers et al., 2007), NO, and 
prostagrandin E2 (Kojima et al., 2003). Various chemokines are reported to be produced by 

FLSs in RA (Iwamoto et al., 2008). The production of IL-8/CXCL8 and GRO/CXCL1, which 

recruit neutrophils, is induced by stimulation of FLSs with IL-1, IL-1, TNF-, or IL-17 
(Hosaka et al., 1994; Kehlen et al., 2002; Koch et al., 1991, 1995). Neutrophils are abundant in 
the synovial fluid of RA, but rare in the synovial tissue. The levels of lymphotactin/XCL1 
are elevated in the synovial fluid and tissues of RA. Moreover, infiltrating mononuclear cells 
and FLSs in the tissues of RA express XCR1, a receptor for lymphotactin/XCL1 (Wang et al., 

2004). The levels of macrophage inflammatory protein (MIP)-1/CCL3 (a ligand of CCR1 
and CCR5) are higher in the synovial fluid of RA. Furthermore, upon stimulation with 

lipopolysaccharide and TNF- isolated FLSs produce MIP-1/CCL3 (Koch et al., 1994). The 
migration of CD4+ memory T cells to the synovium of RA, and the inhibition of activation-
induced apoptosis of T cells, are induced by stromal cell-derived factor (SDF)-1/CXCL12. 
Thus, the accumulation of CD4+ memory T cells in the synovium plays an important role in 
RA (Nanki et al., 2000). The production of RANTES (Regulated upon Activation, Normal T 
cell Expressed and Secreted)/CCL5 is histologically detected in the synovial lining and 
sublining layers of affected rheumatoid joints (Robinson et al., 1995). All these suggest that, 

in microenvironments rich with TNF- and IL-1 FLSs themselves recruit monocytes, 
neutrophils, Th1 cells, eosinophils, and basophils (Rathanaswami et al., 1993). 
In addition to the regulation of migration, stimulation with MCP-1/CCL2, SDF-1/CXCL12, 
IP-10/CXCL10, Mig/CXCL9, and MCP-4/CCL13 enhances the proliferation of FLSs, leading 
to synovial hyperplasia (Garcia-Vicuna et al., 2004; Iwamoto et al., 2007). Furthermore, 
continuous infusion of human IL-8/CXCL8 into the knee joints of rabbits for 14 days led to 
severe arthritis, characterized by erythema, joint pain, infiltration of leucocytes and 
mononuclear cells in the synovial tissue, and hypervascularization in the synovial lining 
layer (Endo et al., 1994). Thus, the angiogenic properties of chemokines, such as IL-

8/CXCL8, GRO/CXCL1, MCP-1/CCL2, SDF-1/CXCL12, and fractalkine/CX3CL1 (Koch 
et al., 1992; Salcedo et al., 1999, 2000; Volin et al., 2001) may play an important role in the 
development of RA. Angiogenic factors, including FGF (Thomas et al., 2000), vascular 
endothelial growth factor (VEGF) (Cho et al., 2002), IL-18, and angiopoietin (Scott et al., 
2002), are also produced by FLSs. This suggests that FLSs are involved in 
neovascularization, and may cause critical pathological changes to sustain pannus formation 
in RA (Szekanecz & Koch, 2007). 

2.2.3 Joint destruction 

Proteinases, such as MMPs and cathepsins, are produced by FLSs attached to cartilage and 

bone, and play an important role in joint destruction. The expression of MMP-1/interstitial 

collagenase and MMP-3/stromelysin correlates with the invasive growth of FLSs in RA (Tolboom 

et al., 2002). MMP-1 is found in the synovial membranes of all RA patients. Moreover, the 

levels of MMP-1 in the synovial fluid, but not in the sera, correlate with the degree of synovial 

inflammation (Konttinen et al., 1999; Maeda et al., 1995; Sorsa et al., 1992). MMP-3 plays a key 

role in joint destruction, not only by degrading matrix molecules, but also by activating other 

pro-MMPs into their active forms (Okada, 2009). The major source of MMP-3 is FLSs in the 

lining layer (Tetlow et al., 1993). High concentrations of MMP-3 have been detected in the 

synovial fluid and sera of RA patients (Beekman et al., 1997; Taylor et al., 1994). Moreover, 
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elevated serum levels of MMP-3 are correlated with systemic inflammation at the clinical and 

also the serologic level (Manicourt et al., 1995; Yoshihara et al., 1995). Although expression of 

MMP-13/collagenase-3 correlates with elevated levels of systemic inflammatory markers, this 

is not specific to RA (Lindy et al., 1997; Westhoff et al., 1999). MT1-MMT/MMP-14 degrades 

the extracellular matrix, and activates MMP-2/gelatinase A and MMP-13 (Pap et al., 2000a). 

The expression of MMPs in synovial cells is regulated by several extracellular signals, 
including inflammatory cytokines, growth factors, and molecules of the extracellular 
matrix, such as collagen and fibronectin (Pap & Gay, 2009). Among these, IL-1 is the most 
potent inducer of MMPs, including MMP-1, MMP-3, MMP-8, MMP-13, and MMP-14. FGF 

and PDGF also act as potent inducers for MMPs, by enhancing the effects of IL-1. TNF- 

and TGF- induce MMP-1 and MMP-13, respectively, while IL-17 induces MMP-1 and 
MMP-9. 
Another group of proteinases involved in joint destruction is the cathepsins, which cleave 
cartilage types II, IX, and XI, and proteoglycan. The expression of the cysteine proteases, 
cathepsins B and L, was increased in the synovium of RA, especially at the sites of cartilage 
invasion (Keyszer et al., 1995, 1998). Similarly to MMPs, the production of cathepsins is 

induced by proto-oncogene, IL-1, and TNF- (Joseph et al., 1987; Huet et al., 1993; Lemaire et 
al., 1997). Cathepsin K, which plays an important role in bone resorption by osteoclasts, is 
also expressed by FLSs and macrophages at the site of synovial invasion into the articular 
bone (Min et al., 2004). 

2.2.4 Perpetuation of inflammation 

When cells producing soluble factors or expressing ligands on their surfaces are located 

close to cells that receive signals through the specific receptor, a circuit of chronic 

inflammation may be generated through an exchange of cell roles. For example, activated 

Th1 cells produce IFN, which activates macrophages. The activated macrophages produce 

IL-1 and TNF-, which in turn activate T cells. In cases of RA, IL-1 and TNF- from 

macrophages can activate FLSs, creating another circuit with a distinct cellular combination. 

Although one can easily imagine the operation of such a circuit at a certain time point of 

autoimmune diseases, it is difficult to demonstrate the mechanism by a suitable model 

system. Recently, Ogura et al. (2008) proposed that IL-17 secreted from Th17 cells induces 

fibroblasts to produce more IL-6, in a manner dependent on the transcription factor NF-B, 

and the signal transducer and activator of transcription (STAT) 3. The mechanism, 

designated as “IL-17A-triggered positive-feedback loop of IL-6 signaling”, is thought to 

amplify the inflammatory responses mediated by interactive cytokines. Enhancement of this 

loop was shown to be involved in the development of RA-like arthritis or experimental 

autoimmune encephalomyelitis in knock-in mice gp130F759, which are defective in the 

negative regulation of signaling through a common receptor subunit of IL-6 family 

cytokines, gp130. The identification of such a powerful circuit, specific to each autoimmune 

disease, will facilitate the development of a critical target point for effective therapy. 

3. Progress in the study of RA by the molecular genetic approach 

3.1 Genome-wide screening for disease-related genes 

The risk of developing RA and the severity of the disease are significantly affected by 

genetics. It has long been recognized that certain HLA alleles, especially HLA-DR4, are 
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associated with increased risk of onset and severity of RA (Weyand et al., 1992). A shared 

epitope on certain HLA haplotypes is thought to affect the binding of peptides derived from 

self-antigens, leading to autoimmune responses by T cells (Wordsworth et al., 1989). To 

identify non-HLA genes that regulate the development and severity of RA, human genome-

wide studies have been performed. Some of these studies have used a combined approach, 

with factors such as microsatellites (Tamiya et al., 2005), or disease subsets; serum 

autoantibody alone (Stahl et al., 2010) or combined with a shared epitope (Sugino et al., 

2010); race, or nation (Freudenberg et al., 2011; Martin et al., 2010); correlation with other 

autoimmune diseases (Cui et al., 2009; Zhernakova et al., 2011); or responsiveness to 

therapies targeting specific cytokines (Liu et al., 2008; Plant et al., 2011). Single nucleotide 

polymorphisms that may be involved in the development of RA include protein tyrosine 

phosphatase, nonreceptor-type 22 (PTPN22), cytotoxic T-lymphocyte antigen 4 (CTLA4), 

STAT4, and peptidylarginine deiminase type 4 (PADI4). Among these, PADI4 has been 

identified by genome-wide screening (Suzuki et al., 2003) as being able to modify self-

antigens by citrullination. Moreover, the presence of anti-cyclic citrullinated antibody in the 

serum is highly specific to RA and has a high diagnostic value. The role of PADI4 in the 

pathogenesis of RA, especially with respect to “autoimmunity” to modified self-antigens, 

will be intriguing to clarify. 

Large-scale, genome-wide association studies, based firmly on statistics, have provided 
valuable information on the candidate genes for RA. Nevertheless, to understand the 
complex pathophysiology of RA, data from studies on additional aspects must be 
integrated. Such studies should include molecular and cell-biological analyses of clinical 
materials from individual RA cases, and functional analyses of candidate genes in vitro and 
in vivo, including experimental system using engineered mutant mice. 

3.2 Transcription profiling reveals disease-specific genes and heterogeneity in RA 
tissues 

Gene expression profiling of FLSs, comparing RA and OA, has revealed disease-specific 

genes. The genes highly and exclusively expressed in RA were HOXD10, HOXD11, 

HOXD13, CCL8, and LIM homeobox 2. Further analysis of the relationships between gene 

expression on RA-FLSs and clinical disease parameters revealed specific and unique 

correlations as follows; HLA-DQA2 with Health Assessment Questionnaire (HAQ) score; 

Clec12A with rheumatoid factor; MAB21L2, SIAT7E, HAPLN1, and BAIAP2L1 with C-

reactive protein level; and RGMB and OSAP with erythrocyte sedimentation rate (Galligan 

et al., 2007). The data indicated the heterogeneity of gene expression in patients with the 

same disease. These RA-specific or clinical state-related genes differ from those identified by 

genome-wide screening, indicating that the complete pathophysiology of RA, as a multi-

factorial disease, involves genomic and also epi-genomic regulation of genes. The functional 

roles of these genes remain to be determined. 

Evidence for the heterogeneity of gene expression in synovial tissues from erosive RA cases 
has been demonstrated by large-scale profiling studies. Systemic characterization of the 
differentially expressed genes highlighted the existence of at least 2 molecularly distinct 
forms of RA tissues (van der Pouw Kraan et al., 2003). The first is RA tissue with high-grade 
inflammation (RAhigh), which exhibits abundant expression of gene clusters indicative of 
adaptive immune responses, such as genes expressed by T cells, B cell, and antigen-
presenting cell (APC). The second form of RA tissue is a low-grade inflammatory gene 
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expression signature (RAlow), common to the tissues from patients with OA, and characterized 
by increased expression of genes involved with tissue remodeling activity. Importantly, the 
cluster of RAhigh showed an increased expression of STAT1-pathway related genes;STAT1-

inducing receptors (IL-2R, CCR5), and STAT1 target genes (MMP-1, MMP-3, caspase-1, TAP-
1, and IRF-1), suggesting a prominent role for this pathway. Furthermore, patients with the 
high-grade inflammation tissue type had higher Disease Activity Scores in 28 joints, higher 
C-reactive protein levels, higher erythrocyte sedimentation rates, increased numbers of 
platelets, and shorter disease durations (van Baarsen et al., 2010). 
Several trials have profiled gene expression in the synovial tissues of RA patients 
undergoing molecular-targeting therapy (Lindberg et al., 2006; Wijbrandts et al., 2008). 
Further analysis is expected to yield valuable data on cytokine activity in the human body, 
facilitating the development of effective therapy with a clear target point. 

4. Mouse models for RA 

The generation of RA-like joint diseases in engineered mutant mice appears to reflect the 
heterogeneous and complicated mechanisms of human arthritis, diagnosed simply as 
rheumatoid arthritis. In contrast to previous years, when animal models for human diseases 
rarely emerged by point mutations in nature, current research on autoimmune diseases such 
as RA benefits from the existence of various engineered mutant mice models. For example, 
mechanisms for RA-like disease revealed by murine models include, the abnormal T-cell 
receptor (TCR) signaling by a natural mutant ZAP70 in SKG mouse (Sakaguchi et al., 2003), 
an autoantibody to glucose-6-phosphoisomerase in K/BxN TCR transgenic mouse 
(Korganow et al., 1999), defective autoantigen clearance in DNaseII-/- moue (Kawane et al., 
2006), overexpression of the viral gene in HTLV-1 pX transgenic mouse (Iwakura et al., 
1991), and excessive amounts or activity of cytokines. RA-like disease developed in TNF-

transgenic mice (Keffer et al., 1991) and IL-1 transgenic mice (Niki et al., 2001) with 

overproduction of inflammatory cytokines and in TNF AU-rich elements-deficient (ARE) 
mice (Kontoyiannis et al., 1999) with increased stability of cytokine messenger RNA. 
Excessive activities of arthritogenic cytokines were evoked in IL-1 receptor antagonist 
knock-out mouse (Horai et al., 2000) lacking a physiological negative feedback molecule, and 
in gp130F759 with a defective, intracellular negative-regulatory signaling pathway (Atsumi 
et al., 2002; Ohtani et al., 2000). 
These wide variety of murine arthritis models with a defined genetic defect will be useful 
for analyzing the mechanisms for the synergistic action of genetic and environmental factors 
in RA development (Ishihara et al., 2004), and also the mechanisms for initiation or 
perpetuation of joint inflammation (Murakami et al., 2011; Ogura et al., 2008). Furthermore, 
bone marrow transplantation experiment revealed a unique feature of gp130F759 that non-
hematopoietic cells with a point mutation Y759F in gp130 are sufficient to induce passive 

but arthritogenic activation of wild type CD4+T cells (Sawa et al., 2006). In human TNF- 
transgenic mouse, arthritogenic FLSs showed increased expression of MMP-1 and MMP-9, 
and also diminished adhesion to extracellular matrix components. These changes could 
induce increased proliferation and migration, which are critical for the spread of 
hyperplasia in the joints (Aidinis et al., 2003). Dispensable roles for RAG in arthritis have 

been observed in TNFARE mouse (Kontoyiannis et al., 1999) and DNaseII-/- mouse (Kawane 
et al., 2010), indicating that synovial hyperplasia may develop independently of acquired 
immunity.  
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5. Fibroblast-like synoviocytes and mesenchymal stem cells 

FLSs are characterized mainly by in vitro analyses. The synovial membranes are easily 
obtained by joint surgery. The cells liberated from the synovial tissues by treatment with 
collagenase can be cultured under the appropriate conditions. Although primary FLSs are 
useful, experiments must be carefully designed, because the composition of the cells in the 
culture changes after 4 passages, when contaminated hematopoietic cells disappear 
(Zimmermann et al., 2001). 
The source of pathogenic FLSs proliferating in the synovium of RA is an intriguing issue, 
and several possibilities can be considered. Growth of FLSs can be stimulated by adjacent 
hematopoietic cells in the microenvironment, or initiated by the acquisition of cell-intrinsic 
properties for unregulated growth. Alternatively, growing FLSs can be derived from 
resident FLSs in the normal synovial membrane, or migrated from other organs. The latter 

possibility was demonstrated by experiments to inject FLSs from human TNF- transgenic 
mice into the knee joint, and to transplant human synovial fibroblasts into SCID mice 
(Aidinis et al., 2003; Lefevre et al., 2009). 
Fibroblast-like cells that initiate growth during the very early stages of RA can originate 
from mature FLSs or from other mesenchymal cells at the primitive stage, such as 
mesenchymal stem cells (MSCs). The presence of MSCs in the synovium has been reported 
by several researchers. MSCs with the potential to differentiate into 3 lineages, osteogenic, 
adipogenic, and chondrogenic cells, were obtained from the synovial membrane following 
digestion with collagenase and more than 3 passages (De Bari et al., 2001). Fibroblast-like 
MSCs expressing fibroblast marker D7-FIB, but not CD45, were detected in the synovial 
fluid (Jones et al., 2004). The number of these MSCs was lower in the synovial fluid of RA 
than in that of OA. In addition to the synovium, MSCs have been derived from blood 
(Zvaifler et al., 2000), adipose tissue (Zuk et al., 2002), and the periosteal region (De Bari et al., 
2006). Although not genuine MSCs, circulating CD14+ monocytes may contain progenitors 
with the potential to differentiate into mesenchymal cells (Kuwana et al., 2003). 
In terms of the underlying mechanism for the transformation-like phenotype of FLSs, and 
the involvement of MSCs, Li & Makarov (2006) reported intriguing data from animal 
models of RA. Arthritic FLSs contained a substantial fraction of bone marrow-derived 
precursors, with the ability to differentiate in vitro into various mesenchymal cell types. 
However, inflammation prevented multilineage differentiation. The transcription factor NF-

B played a key role in repressing osteogenic and adipogenic differentiation of arthritic 

FLSs. On the other hand, specific activation of NF-B profoundly enhanced proliferation, 
motility, and matrix-degrading activity of FLSs by the induction of MMPs. These data 
suggest an intriguing mechanism, namely, that arthritic FLSs are bone marrow-derived 
MSCs, which are arrested during the early stages of differentiation, by the activation of NF-

B induced by inflammatory cytokines (Li & Makarov, 2006). 

6. Search for RA-related genes through the classification of fibroblast-like 
synoviocytes 

6.1 Subtypes of fibroblast-like synoviocytes in RA 

Kasperkovitz et al. (2005) reported that subtypes of FLSs in RA differ in their gene 

expression. Complementary DNA microarrays of the synovial tissues and cultured FLSs 

obtained from RA patients revealed that the gene expression profiles of high- and low-grade 

www.intechopen.com



Molecular Mechanisms of Rheumatoid Arthritis 
Revealed by Categorizing Subtypes of Fibroblast-Like Synoviocytes 

 

81 

inflammation synovial tissues were characterized by high and low expression of genes of 

immune-competent cells (T cells, B cells, and APCs), respectively. Furthermore, hierarchical 

clustering identified 2 groups of FLSs, characterized by distinctive gene expression profiles 

and correlation with the inflammatory profiles of the synovial tissues. The first group 

correlated with the high-grade inflammation tissue, and exhibited increased expression of a 

TGF-/activin A-inducible gene profile, which is characteristic of myofibroblasts, a cell type 

involved in wound healing. The second group correlated with the low-grade inflammation 

tissue, and showed increased expression of the genes involved in autocrine growth 

regulation, cell transformation, complement activation, and oxidative stress. Reflecting the 

gene expression profile, an increased proportion of myofibroblast-like cells in the 

heterogeneous population of FLSs were immunohistochemically detected in the high-grade 

inflammation tissue. These data suggest that the inflammatory state of the synovium is 

determined by the composition of heterogeneous FLSs. 

6.2 Transformed fibroblast-like synoviocyte lines reveal heterogeneity irrespective of 
arthritis types 

The data of Kasperkovitz et al. (2005), Galligan et al. (2007) and others indicate that 

combining gene expression profiling with other parameters, such as clinical data or 

characteristics of FLS lines, constitutes a powerful tool for identifying novel disease-related 

genes. To identify the cell-intrinsic abnormalities of RA-FLSs, we established transformed 

cell lines from the synovium of RA or OA cases, by immortalization with SV40 large T Ag 

(unpublished data of Ishihara et al.). Characterization of FLSs from 2 types of arthritis 

revealed no significant differences in surface molecules, growth rates, patterns of tyrosine-

phosphorylated proteins, or expression of the genes related to inflammation (IL-1, IL-6, 

MMP-1, MMP-3, etc.). Since the expression levels of these genes vary (ranges exceeding 

1,000-fold) among FLS lines from each type of arthritis, we tentatively categorized them into 

2 subtypes reflecting resting (r) and active (a) stages, based on the expression levels of IL-1 

and MMP-1. Next, we performed a micro DNA array to obtain the gene expression profiles 

for 4 representative cell lines, r-OA-FLS, a-OA-FLS, r-RA-FLS, and a-RA-FLS, and obtained 

10 gene clusters. Although no disease-specific clusters were obtained, 2 reciprocal, stage-

specific clusters were detected, suggesting the validity of our hypothesis for the presence of 

subtypes in FLSs. Using these data we are presently searching for 2 types of candidate 

genes; master genes that determine the states of FLSs, and genes that could play a role in the 

pathophysiology of RA by inference based on our current understanding of FLSs. In the 

following sections, we will review the potential roles of activation-induced cytidine 

deaminase (AID) (Igarashi et al., 2010) and the A20/ABIN family. 

6.3 Ectopic expression of AID and acquisition of a tumor-like phenotype by fibroblast-

like synoviocytes 

6.3.1 P53 mutation in fibroblast-like synoviocytes of RA and AID expression in 

inflammation 

In addition to the properties described above, the expression of the tumor-suppressor gene 

p53 with somatic mutations (Firestein et al., 1997; Inazuka et al., 2000; Kullmann et al., 1999; 

Reme et al., 1998; Yamanishi et al., 2002), and the down-regulation of the tumor suppressor 

PTEN, a protein phosphatase gene, have been demonstrated in RA-FLSs (Pap et al., 2000b). 
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In particular, the somatic mutation of the p53 gene appears consistent, not only in terms of 

increased resistance to apoptosis, but also with respect to pro-inflammatory responses such 

as production of IL-6 and MMP-1 (Han et al., 1999; Sun et al., 2004; Yamanishi et al., 2005). 

However, little is known about the mechanism by which the somatic mutations are 

introduced into the p53 gene in RA-FLSs. 

AID is a member of the APOBEC family, which is a cellular cytidine deaminase involved 

in protection from retroviral infection or regulation of cholesterol metabolism (Goila-Gaur 

& Strebel, 2008). AID was originally identified as an indispensable molecule for somatic 

hypermutation at the immunoglobulin variable region, and also for class-switch 

recombination in germinal center B lymphocytes (Di Noia & Neuberger, 2007; Honjo et al., 

2004). Recently, several investigators have demonstrated up-regulation of AID in non-

lymphoid tumor cells such as breast cancer, cholangiocarcinoma, hepatoma, and 

colorectal cancer cells (Babbage et al., 2006; Chan-On et al., 2009; Endo et al., 2007, 2008; 

Komori et al., 2008; Kou et al., 2007; Morisawa et al., 2008). During the process of 

oncogenesis, NF-B activation in inflammation is thought to be important for aberrant 

expression of AID. For example, the infection of gastric mucosal cells with Helicobacter 

pylori, or of hepatocytes with hepatitis C virus, activates NF-B and successfully induces 

local production of pro-inflammatory cytokines such as TNF- and IL-1. Together, these 

secreted cytokines also activate NF-B, and lead to the induction of AID. In fact, 

stimulation with TNF- or IL-1 induces AID expression even in non-tumor hepatocyte or 

colon epithelial cells. Moreover, the somatic mutations of p53 found in these cancer cells 

appeared to be a direct target of AID (Endo et al., 2008; Kou et al., 2007; Takai et al., 2009). 

RA is characterized by an environment rich in pro-inflammatory cytokines and the existence 

of mutations in the p53 gene. Thus, under chronic inflammatory circumstances, it is possible 

that aberrant expression of AID could introduce mutations into the p53 gene of FLSs. 

6.3.2 Aberrant expression of AID in RA-FLSs 

First, we assessed the expression of the AID gene in the transformed FLS cell lines described 

in 6.2, by real-time reverse transcription polymerase chain reaction (RT-PCR). AID was 

transcribed in more than half of the RA-FLS cell lines (5 out of 9) and in none of the OA-FLS 

cell lines. Quantitative assay by RT-PCR showed 7- to 18-fold higher AID transcription in 

the RA-FLS lines compared to the OA-FLS lines that expressed a low but detectable level of 

AID transcription. The possibility of contaminated signals from AID-expressing B cells was 

excluded by the absence of pan B cell marker transcription. The translation of AID was 

further confirmed by the detection of protein in the cell lysate from RA-FLSs, with western 

blot analysis. 

Patients who provided AID-expressing FLSs showed a tendency toward higher levels 
(approximately 2.7 times) of CRP in the serum. Regarding gender, the number of female 
patients with AID+ FLSs was approximately 1.9 times higher than the number of male 
patients. Although our data are not statistically significant because of the small sample 
numbers used, it appears that AID expression in FLSs is facilitated under conditions of 
inflammation in female patients. Indeed, we observed that estrogen, a representative female 

hormone, or TNF-, a representative pro-inflammatory cytokine, augmented the 
transcription of AID in AID+ RA-FLSs to more than 20-fold higher levels compared with the 
basal levels in OA-FLSs. These results are similar to those previously reported for other cells 
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(Endo et al., 2007, 2008; Pauklin et al., 2009). The transcription levels of TNF-, or the pro-

inflammatory cytokines IL-6 and IL-1 did not correlate with that of AID, suggesting that 
AID transcription is not induced by autocrine cytokines. No clear relationship was observed 
between aberrant expression of AID and other clinical parameters, such as age, serum MMP-
3 levels, or medication. 

6.3.3 Accumulation of p53 gene mutations in AID-expressing RA-FLSs 

The mutations of the p53 tumor-suppressor gene frequently found in RA-FLSs could 
contribute to the tumor-like, and also the pro-inflammatory properties of RA-FLSs, such as 
aggressive growth, invasion, and destruction of cartilage and bone (Firestein et al., 1997; 
Inazuka et al., 2000; Kullmann et al., 1999; Reme et al., 1998; Sun et al., 2004; Yamanishi et al., 
2002). Although genotoxic and oxidative stresses have been speculated to be causative 
candidates for the somatic mutation in the p53 gene in RA-FLSs, the molecular mechanism 
has not yet been elucidated. As mentioned in 6.3.1, a clear relationship between AID 
expression and the frequency of p53 somatic mutations has been demonstrated in some non-
B lymphocytes, such as hepatocytes and colon epithelial cells (Chan-On et al., 2009; Endo et 
al., 2008; Komori et al., 2008; Kou et al., 2007; Morisawa et al., 2008). Thus, we speculated that 
aberrant expression of AID might be involved in the introduction of the p53 gene mutation. 
We amplified the coding region of p53 from 3 AID+ RA-FLS cell lines with high-fidelity 
polymerase. We then determined the nucleotide sequence corresponding to that region and 
compared it with the intact p53 gene sequence. 
AID+ RA-FLSs harbored approximately 2- to 3.5-fold more mutations than the control RA-
FLS subsets, which expressed AID at a lower level. In addition, the frequency of non-silent 
mutations was 3 times more than that of silent mutations. Notably, the base substitution 
pattern in p53 was biased toward the transition type, which is typical for AID-mediated 
mutations at the variable region of the immunoglobulin gene (Di Noia & Neuberger, 2007). 
The mutations were distributed intensively at the DNA-binding domain of the p53 gene, 
where the hotspot of somatic mutations is found in some malignant tumors. The Arg248 
mutation, one of the cancer hotspot mutations (Ko & Prives, 1996), was found in p53 from 
our AID+ RA-FLSs. In addition, among the amino acid mutations that we identified, 17% 
were identical to those previously reported. A further 33% were distinct amino acid 
mutations; however, the positions of base change were located in the same codons as 
previously reported. The apparent correlation between ectopic expression of AID and 
increased frequency of somatic mutations of p53 strongly suggests that AID may be 
involved in the introduction of mutations to p53. Such mutations could lead to reductions or 
increases in the function of p53, which in turn may result in the tumor-like or anti-apoptotic 
phenotypes of FLSs in RA. 

6.3.4 AID is produced by non-transformed RA-FLSs and in the RA synovium outside 
the B-cell follicles 

The aberrant expression of AID in some RA-FLS transformed cell lines is not caused by the 

effects of transformation with SV40 large T Ag. Indeed, 3 to 8 times higher transcription 

levels of AID were observed, even in non-transformed primary FLS cell lines (4 out of 11 

RA-FLSs, but none of the 6 OA-FLSs). In addition, cyto-staining with anti-AID antibody 

revealed a positive signal in AID-expressing primary RA-FLSs. Furthermore, dual-color 

immunohistostaining of the synovial sections from AID+ RA patients clearly demonstrated 
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the production of AID by FLSs in the RA synovial tissues (Figure 1), providing definitive 

evidence for the occurrence of ectopic and aberrant expression of AID in RA. 

 

 

Fig. 1. Immunofluorescence staining of AID on synovial tissue sections from a 
representative RA patient. Sections were stained simultaneously with rat mAb for AID and 
anti-CD20 (B-cell marker) mAb. AID was visualized with alexa 488 fluoro-dye conjugated 
anti-rat secondary Ab (green); CD20 was visualized with alexa 594 fluoro-dye conjugated 
anti-mouse secondary Ab (red). The nucleus was stained with 4',6-diamino-2-phenylindole 

(blue). Scale bar is 100 m. 

We concluded that AID is selectively expressed by a proportion of RA-FLSs and that its 
expression is associated with an increased frequency of somatic mutations in p53 (Igarashi et 
al., 2010). Thus, it is possible that the aberrant expression of AID within certain RA-FLSs 
induces somatic mutations in p53, leading to the acquisition of pro-inflammatory or tumor-
like phenotypes. 

6.4 Heterogeneous responsiveness of fibroblast-like synoviocytes to TNF-
6.4.1 RA-FLS cell lines differentially respond to TNF-
The chronic inflammation circuit in the joints of RA is initiated by the production of 

inflammatory cytokines by FLSs, following stimulation with TNF- secreted from the 

surrounding inflammatory cells. In this context, the TNF-/NF-B pathway plays an 
essential role in the transcription of pro-inflammatory cytokines. However, the regulation of 

NF-B activity downstream of TNF- in FLSs is not fully understood. To investigate the 

heterogeneous responsiveness of RA-FLS cell lines to TNF- stimulation, we examined the 
panels of primary RA-FLS cell lines for their induction levels of pro-inflammatory cytokines 

following TNF- stimulation. Interestingly, RA-FLS cell lines can be clearly categorized into 

2 types based on the responsiveness to TNF-,namely, whether the transcription levels of 
pro-inflammatory cytokine gene are high (designated as the high-responder group) or not 
(designated as the low-responder group). This facilitated production of pro-inflammatory 

cytokines can be explained by the significant elevation of NF-B activity in the high-
responder FLS lines compared with that in the low-responder lines.  
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6.4.2 Possible positive effect of A20/ABINs on pro-inflammatory cytokine induction 

A20, also termed TNFAIP3 (TNF-induced protein 3), was originally identified as an 
inducible zinc finger protein in human umbilical vein endothelial cell lines following 

stimulation with TNF-. A20 has dual enzymatic activities, namely, ubiquitination and 

deubiquitination (Dixit et al., 1990). The induction of A20 upon stimulation with TNF- is 

NF-B dependent; moreover, induced A20 reversely suppresses the activation of NF-B 

through the regulation of ubiquitin-mediated degradation of NF-B activator (Vereecke et 
al., 2009). This negative feedback loop is thought to be necessary to terminate inflammation 
and protect tissues from unnecessary damage. Recently, it was reported that the expression 
level of A20 in RA-FLSs was lower than that in OA-FLSs (Elsby et al., 2010). Although the 
difference was not significant, this finding could provide in vitro evidence of altered A20 
transcription by 6q23 intergenic SNPs associated with RA (Dieguez-Gonzalez et al., 2009; 

Orozco et al., 2009). Thus, we speculated that the down-regulation of NF-B inhibitors might 

be a possible mechanism for enhanced activation of NF-B in high-responder FLSs. 
Contrary to our speculation, the high-responder group with abundant mRNA levels of pro-
inflammatory cytokines also exhibited marked induction of A20 following stimulation with 

TNF-. Furthermore, the transcription of the NF-B inhibitory molecules ABIN (A20-

binding inhibitor of NF-B activation, also called TNIP, TNFAIP3 interacting protein)-1 and 
ABIN-3, but not of ABIN-2, was increased (Igarashi et al., in press). 
These observations indicate that there is heterogeneity of RA-FLSs in the responsiveness to 

TNF- stimulation and suggest that these “inhibitors” might not play negative regulatory 
roles in RA-FLS. The precise mechanism, cell-lineage specificity, disease specificity, and 
significance in cell biology of this unexpected possible positive role for A20/ABINs are 
currently under investigation. 

7. Conclusion 

Anti-cytokine therapy for RA is a prominent achievement in the field of autoimmune diseases. 
Accumulated evidence from clinical and basic medical research indicates pivotal roles for FLS 
in the pathogenesis and pathophysiology of RA. Data from genome-wide screening, 
transcriptional profiling, and animal models indicate that RA consists with heterogeneous 
disease subsets. Together with several other researchers, we have presented evidence for 
heterogeneity in FLS. Based on this finding, we have successfully searched for disease-related 
genes by subtyping FLS. We have identified 2 groups of genes, AID and A20/ABINs. AID is 
involved in the irreversible transformation of FLS, whereas A20/ABINs participate in the 
reversible, but potentially harmful, responsiveness of them. Both groups of genes are 
constituent elements for distinct levels of heterogeneity in FLS, which may be involved in 
resistance to anti-cytokine therapies. Subtyping of FLS based on expression of AID did not 

coincide with that based on responsiveness to signal-utilizing NF-B, which is reasonable 
because RA is a multi-factorial disease. We believe that our approach to categorizing subsets of 
FLS based on differential gene expression, or on responsiveness to inflammatory stimuli, will 
facilitate a comprehensive understanding of the pathogenesis and pathophysiology of RA. 
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