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1. Introduction 

The phenomenon that hypoxic preconditioning (HP) protects against subsequent severer 
anoxia was discovered approximately two decades ago. Subsequently, the effects of HP 
have been studied intensively in the whole brain, as well as in living hippocampal or 
cortical slices, and in in vitro cell cultures using various hypoxic model systems 
[1,8,10,12,14,18,28,36,53,56,67,93,94]. Although the exact mechanisms are not completely 
disclosed, the underlying molecular mechanisms have been postulated. For example, HP 
activates a great variety of endogenous protective mediators and/or inhibits amounts of 
harmful mediators, which combined attenuates a burst of free radicals and ultimately 
increases the capability of cell survival under severe oxygen deprivation [65,74,93,94].  

The central nervous system (CNS) is extremely sensitive to a decrease of oxygen content, 

due to its high intrinsic rate of oxygen consumption [55]. O2 consumption in brain is 

maximum in all organs but with a lesser weight ratio. Moreover, the repair ability of CNS is 

weak to multiple injuries. So, prevention is more important than treatment in CNS. The 

hypoxic diseases in brain mainly includes stoke, cerebral palsy, etc. Until now, there are no 

any effective drugs to protect brain from these diseases. Disclosure of the mechanism of HP 

will contribute to drug discovery for prevention against hypoxic diseases.   

A number of cellular adaptive responses to hypoxia are mediated by a key transcription 

factor termed hypoxia-inducible factor 1 (HIF-1). Activation of HIF-1 by HP enhances the 

capability to tolerate severe anoxia or ischemia. The target genes of HIF-1, on the one hand, 

are involved in energy homeostasis, such as erythropoietin (EPO) in the regulation of 

erythropoiesis [7,29,30,54,71,89], vascular endothelial growth factor (VEGF) in angiogenesis 

[6,7,88], glucose transmitters (GLUTs) in glucose uptake [62,96] and glycolytic enzymes of 

anaerobic glycolysis [5,40,80,82], and on the other hand, in redox homeostasis, such as Bcl-2 

and adenovirus E1B 19 kDa-interacting protein 3/BNIP3-like (BNIP3/BNIP3L) and 

microRNA miR-210 in reduction of reactive oxygen species (ROS) [24,43,60,79,97].   

ROS are burst from mitochondria during anoxia owing to the lack of O2 as a final electron 
acceptor. A mass of ROS are normally regarded as toxic substances due to their strong 
aggressivity to biological macromolecule, such as proteins, lipids, DNA, and even organelles 
[52,57]. The macromolecule or organelles damaged by ROS confer oxidative injury, and 
ultimately result in cell death. In this regard, reduction of ROS during anoxia/ischemia 
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should lead to the protection of cells. However, a moderate amount of ROS is a stimulus to 
stabilize HIF-1ǂ [16,69,72,84], a functional subunit of HIF-1, which degrades in normoxia. 
The duplex roles of ROS will be discussed in this chapter. 

During anoxia, a change of cell volume was seldom observed by researchers, however, we 
noticed the phenomenon and found for the first time that cell volume could be regulated by 
HP, which caused the protection against severe anoxia. Further analysis showed that 
sorbitol might mediate the protection [95]. 

This chapter will review the neuroprotective effects of HP and elaborate the above 
mentioned mechanisms of HP against anoxia.   

2. Activation of HIF-1 by HP and its neuroprotective role in ischemic or 
anoxic damage 

2.1 Characteristic of HIF-1 

HIF-1 acts as a pivotal mediator in adaptive responses to hypoxia. It is a heterodimeric 

transcription factor consisting of an oxygen-regulated HIF-1ǂ subunit and a constitutively 

expressed HIF-1ǃ subunit. Under normoxia, prolyl sites at 402 and 564 residues of HIF-1ǂ 

are hydroxylated by proline hydroxylases (PHDs, also known as HIF prolyl hydroxylases, 

HPH and Egg-laying deficient nine, EGLN) utilizing O2 and ǂ-ketoglutarate as substrates, 

Fe2+ and Vc as cofactors. Hydroxylated HIF-1ǂ is recognized by a tumor suppressor protein 

Von Hippel Lindau (VHL), an E3 ubiquitin ligase complex, and then HIF-1ǂ is 

polyubiquitinated by ubiquitins and hence marked for destruction. Ultimately, HIF-1ǂ is 

degraded in proteasome by hydrolases [17,21,41,42,72,73,91]. In contrast, 803 site of a 

conserved asparagine residue in HIF-1ǂ is hydroxylated by factor inhibiting HIF-1 (FIH-1), 

which blocks the binding of the transcriptional co-activator p300/CBP to the site in HIF-1ǂ 

and leads to the obstruction of transcriptional activation of HIF-1ǂ. Under hypoxia, 

hydroxylase activity is inhibited due to lack of O2 as substrate. On the one hand, 402 and 564 

sites of prolyl residues cannot be hydroxylated by PHDs, and therefore HIF-1ǂ cannot be 

degraded through ubiquitin-proteasome pathway. On the other hand, 803 site of asparagine 

residue cannot be hydroxylated by FIH-1, and hence HIF-1ǂ has the function of 

transcriptional activation [35,49,59,70,86].  

When the stabilized HIF-1ǂ translocates to nucleus, it heterodimerizes with HIF-1ǃ to form 
a heterodimeric transcription factor complex HIF-1. Then HIF-1 binds to a conserved cis-
regulatory motif called the hypoxia-response element (HRE) that contains the core site of 5ꞌ-
(A/G)CGTG-3ꞌ on its target genes. By interaction with coactivators that are required for 
transcriptional responses to hypoxia, more than two hundred genes are transactivated by 
HIF-1. HIF-1 target genes include growth and survival factors, such as VEGF, EPO, heme 
oxygenase 1 (HO-1) [4,63,99], adrenomedullin (AM) [58], inducible nitric oxide synthase 
(iNOS) [51], etc.; glucose metabolism, such as glucose transporters GLUT1, GLUT3, 
phosphoglycerate kinase 1, pyruvate kinase M, lactate dehydrogenase A [78,96], etc.; 
molecules stabilizing homeostasis of redox, such as BNIP3/BNIP3L [79,97], miRNAs [24], 
etc., which allow cells to adapt to the hypoxic environment. 

In addition to stabilizing HIF-1ǂ protein, hypoxia also leads to increased transcription of HIF-
1ǂ mRNA and increased expression of HIF-1ǂ protein in brain [82]. Briefly, hypoxic stimuli 
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play important roles in the accumulation of HIF-1ǂ protein and in transcriptional activation of 
HIF-1. It has been found that the accumulation of HIF-1ǂ in tissues or cells promoted adaptive 
mechanisms for cell survival and mediated the tolerance induced by HP [1,87]. 

2.2 The vital role of HIF-1 in HP  

Hypoxic preconditioning (HP) is an exogenous phenomenon in which brief episodes of a 

hypoxic sublethal insult induces protection against the deleterious effects of subsequent 

lethal anoxia or ischemia [39,87]. The brain is one of the first organs to fail in hypoxia due to 

its high intrinsic rate of oxygen consumption. Kitagawa et al. first reported the cerebral HP 

in 1990 [45]. HP (3 h at 8%O2) for 24 h before a unilateral occlusion of the common carotid 

artery in the neonatal rat brain promoted ischemic tolerance [27]. Miller and Bernaudin 

separately used two different models of hypoxia-induced ischemic tolerance in the adult 

mouse brain [6,61]. And Bernaudin demonstrated that the tolerance was in association with 

an increased expression of HIF-1. However, there is no study shown that the effects of 

hypoxic preconditioning are interrupted by deficiency or blockage of HIF-1 because 

systemic disruption of the HIF-1 gene leads to embryonic lethality until conditional 

knockout HIF-1 mice are created. Taie et al. used neural cell-specific HIF-1ǂ-deficient mice 

to elucidate the role of HIF-1ǂ in hypoxic preconditioning in the brain [87]. . Their results 

indicated that the protective effects of HP were partially mediated by improving tissue 

oxygenation via HIF-1ǂ. Similarly, taking advantage of the Cre/Lox technology to generate 

conditional mutant mice with deletion of HIF-1ǂ predominantly in neurons of the forebrain, 

Baranova provided evidence that these mutant mice subjected to transient focal cerebral 

ischemia induced by middle cerebral artery occlusion (MCAO) deteriorated ischemic brain 

damage. To verify the beneficial role of HIF-1 in the ischemic brain, mice were treated with 

pharmacologic HIF-1 activators and found that severity of brain ischemic damage was 

lessened [2]. These researches indicates that activation of HIF-1 by HP is essential to 

ischemic or anoxic tolerance. However, in contrast to the above results, late-stage brain-

specific knock-out of HIF-1ǂ in adult mice reduces rather than increases hypoxic-ischemic 

damage, and the data suggest that in acute hypoxia, the neuroprotection found in the HIF-

1ǂ-deficient mice is mechanistically consistent with a predominant role of HIF-1ǂ as 

proapoptotic and loss of function leads to neuroprotection [34]. 

In addition, the stabilization of HIF-1ǂ by HP has been shown to be dose-dependent. 
Preconditioning of mice dose-dependently stabilized HIF-1ǂ in the retina: exposure to 6 and 
10% oxygen for 6 h had the most profound effect on HIF-1ǂ stabilization, while exposure to 
14% oxygen stabilized HIF-1ǂ to intermediate levels, and 18 and 21% (normoxia) conditions 
did not cause a notable stabilization of this transcription factor. Hypoxic HIF-1ǂ 
stabilization was transient as reoxygenation for 1 h was sufficient to result in the complete 
degradation of the protein [29]. 

2.3 The important target genes of HIF-1 

Being a transcription factor, HIF-1 plays its important roles via activation of its target genes 
rather than by itself. The increased expression of HIF-1 by HP results in transcriptional 
activation of a number of target genes involved in erythropoiesis, angiogenesis, 
vasodilation, glucose transport, anaerobic glycolysis and autophagy [40,77,79,81,90]. These 
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target genes are the effectors carrying out the protection from severe anoxia or ischemia, 
whereas HIF-1 is the sensor or executor of the response to hypoxia. Therefore, activation of 
HIF-1 and its target genes by HP are equal importance to adaptive mechanisms underlying 
the prevention against ischemic or anoxic damage. By oligonucleotide microarrays to 
examine genomic responses in neonatal rat brain following 3 h of hypoxia (8% O2) and 
either 0, 6, 18, or 24 h of re-oxygenation, Bernaudin showed that 12 HIF-1 target genes 
including EPO, VEGF , GLUT-1, AM, etc. were involved in brain hypoxia-induced tolerance. 
The results suggested that HP-induced HIF-1 target genes might mediate neuroprotection 
against subsequent ischemia, and might provide novel therapeutic targets for treatment of 
cerebral ischemia [7]. 

2.4 EPO 

The main role of EPO is the stimulation of erythrocyte production. Studies of human and 

rat brain show that cerebral EPO is produced by both neuronal and glial cells and that 

neurons, glia, and cerebral endothelial cells all express the EPO receptor [33]. In mice focal 

cerebral ischemia model, Leconte et al. demonstrated that a late application of hypoxia 5 

days after ischemia reduced delayed thalamic atrophy.  Further, with an in vitro oxygen 

glucose deprivation (OGD) model, they found that HIF-1ǂ and the target gene EPO were 

both increased by hypoxic postconditioning and revealed that EPO was involved in 

hypoxia postconditioning-induced neuroprotection [50]. In another report, Bernaudin 

showed that HP with 8% O2 of 1-hour, 3-hour, or 6-hour duration for 24 hours before 

ischemia reduced infarct volume caused by focal permanent ischemia in adult mouse 

brain by approximately 30% when compared with controls, and they also demonstrated 

that HP rapidly increased the nuclear content of HIF-1ǂ as well as the mRNA level of EPO 

and its protein level was up-regulated 24 hours after 6 hours of HP. Therefore, they 

proposed that HIF-1 target genes contributed to the establishment of ischemic tolerance 

[6]. A report from Prass et al. demonstrated that HP for 180 or 300 minutes induced 

relative tolerance to transient focal cerebral ischemia, as evidenced by a reduction of 

infarct volumes to 75% or 54% of the control, respectively, and they found a marked 

activation of HIF-1 DNA-binding activity and a 7-fold induction of EPO transcription. 

Infusion of soluble EPO receptor that neutralizes EPO significantly reduced the protective 

effect of hypoxic pretreatment by 40%. This study was the first to present functional 

evidence that EPO is an essential mediator of protection in HP. Accordingly, the authors 

concluded that endogenously produced EPO is an essential mediator of ischemic 

preconditioning [71]. Recently it has been reported that HP increased secretion of EPO 

and up-regulated expression of HIF-1ǂ, B cell lymphoma/lewkmia-2 (Bcl-2), 

erythropoietin receptor (EPOR), neurofilament (NF), and synaptophysin in ES cell-

derived neural progenitor cells (ES-NPCs). Interestingly, HP-primed ES-NPCs survived 

better 3 days after transplantation into the ischemic brain (30-40% reduction in cell death 

and caspase-3 activation), and transplanted HP-primed ES-NPCs exhibited extensive 

neuronal differentiation in the ischemic brain, accelerated and enhanced recovery of 

sensorimotor function when compared to transplantation of non-HP-treated ES-NPCs 

[89]. The increased secretion of EPO by HP may play the crucial role in the ischemic brain. 

It has also been reported that EPO acts at EPO receptors to activate Janus kinase-2 (Jak2), 

which initiates phosphorylation of inhibitor of NF-κB (IκB) to activate nuclear factor-κB 
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(NF-κB) and induce NF-κB neuroprotective genes [20]. It is another pathway of EPO in 

neuroprotection. 

2.5 VEGF 

VEGF is expressed both in endothelial cells and in neural cells (neurons, astrocytes and 
microglia). It has the ability to promote cerebral angiogenesis and vasodilation. Induction of 
VEGF by HP is an attempt to increase tissue oxygen levels by improving blood circulation 
through the formation of new vessels. Therefore, endogenous VEGF over-expression 
stimulated by HP should be beneficial following stroke by improving oxygen and nutrient 
delivery to the ischemic area. In the study of ischemic tolerance, it has been reported that HP 
with normobaric hypoxia induced ischemic tolerance in adult mice, and increased the 
nuclear content of HIF-1ǂ as well as the mRNA and protein levels of VEGF [6]. Although 
the authors did not provide a direct cause-relation effect of VEGF on tolerance induction, 
the increased expression of VEGF at the time of tolerance appearance provided an indirect 
argument speaking for the possible implication of HIF-1ǂ and its target genes in this 
phenomenon. In contrast, the VEGF∂/∂ knock-in mice, which lack the HRE in the VEGF 
promoter, reduced hypoxic VEGF expression and caused motoneuron degeneration. This 
finding suggests an important role for VEGF in neuronal development and maintenance 
within the central nervous system [48,68]. 

In the retina, VEGF is also recognized as a pro-survival factor protecting retinal neurons 
against ischemic injury. Nishijima et al. demonstrated that ischemic preconditioning 24 
hours before ischemia-reperfusion injury increased VEGF-A (also called VEGF) levels and 
substantially decreased the number of apoptotic retinal cells. The protective effect of 
ischemic preconditioning was reversed after VEGF-A inhibition. Thus, they hypothesized 
that treatment with VEGF-A might provide neuroprotection in the retina, particularly 
during ischemic eye disease [64]. Cerebellar granule neurons exposed to 5% O2 for 9 h 
showed increased levels of VEGF, VEGF receptor-2 (VEGFR-2), phosphorylated 
Akt/protein kinase B (PKB), and extracellular signal-regulated kinase 1 (ERK1). Incubation 
with a neutralizing anti-VEGF antibody, a monoclonal antibody to VEGFR-2, wortmannin, 
or antisense-Akt/PKB, an ERK-inhibitor, reversed the resistance acquired by HP. Inhibition 
of VEGFR-2 blocked the activation of Akt/PKB. Pretreatment with recombinant VEGF 
resulted in a hypoxia-resistant phenotype in the absence of HP. These data indicate a 
requirement for VEGF/VEGFR-2 activation for neuronal survival mediated by HP and 
suggest VEGF as a hypoxia-induced neurotrophic factor [92]. The above findings implicate 
the potential use of VEGF as a therapeutic in neural ischemic or anoxic diseases. 

2.6 HO-1 

Heme oxygenase (HO) belongs to the heat-shock protein families. It is the rate-limiting 
enzyme for oxidizing heme to biliverdin and carbon monoxide. Biliverdin is further 
metabolized to bilirubin, which is a strong antioxidant. By means of guanylyl cyclase, 
carbon monoxide works as an intracellular messenger, similar to nitric oxide [4]. The 
isoform heme oxygenase 1 (HO-1; also called HSP32) was found to be inducible in a variety 
of stress conditions, such as hypoxia [25,47], heat shock [66], hydrogen peroxide [38,55] and 
so on. The induction is considered to be a cellular adaptive protection due to the 
antioxidation of HO-1[4,38,55,63,98]. 
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HO-1 is a HIF-1 target gene that has been shown to be expressed in the cerebellum following 
focal ischemia and in the retina following repetitive HP [33]. Because ischemia or anoxia 
have been associated with increased ROS, clearance of ROS by production of antioxidants 
by HO-l could help protect the brain from oxidative injury. As a downstream gene of HIF-1, 
HO-1 can be induced by HP. Garnier et al. demonstrated that HP induced a progressive and 
sustained expression of HO-1, and they got a conclusion that antioxidant enzymatic 
defenses in response to hypoxia might be involved in the protective effect of HP against 
hypoxia–ischemia [25]. Similarly, in rat liver HO-1 is also involved in the protection exerted 
by HP against hepatic ischemia-reperfusion (I/R) injury. Lai et al. showed that the levels of 
HO-1 mRNA and protein were obviously over-expressed after 2 weeks of HP. HP 
diminished the injury after I/R, while after inhibition of HO-1 activity by zinc 
protoporphyrin (ZnPP), the protective effect of HP was lessened [47]. Furthermore, they 
demonstrated that pharmacological preconditioning with simvastatin protected liver from 
I/R injury by HO-1 induction [46]. In contrast, suppressing HO-1 expression in the presence 
of HO-1 siRNA during I/R injury, apoptosis was enhanced, whereas HO-1 over-expression 
attenuated apoptosis [55]. It suggests the anti-apoptosis activity of HO-1.  

2.7 BNIP3 

BNIP3 (Bcl-2/adenovirus E1B 19-kDa interacting protein 3), BH3-only Bcl-2 family member, 
localizes to mitochondria when overexpressed [9]. It positively regulates autophagy by 
competing with beclin-1, a highly conserved protein that is required for the initiation of 
autophagy, for binding to Bcl-2 or Bcl-XL, thereby releasing beclin-1 to induce autophagy. 
Activation of BNIP3-dependent autophagy decreases mitochondrial mass and ROS 
formation [3,97]. 

BNIP3 is a known HIF-1 target gene. The promoter has two HIF-1 binding sites. BNIP3 is 
suppressed by Von Hippel-Lindau (VHL) protein in a renal cell carcinoma cell line, 
consistent with its regulation through the HIF-1ǂ pathway [85]. In an ischemia-reperfusion 
model, BNIP3 induced autophagy, which protected myocytes from cell death [31]. Zhang et 
al. showed that hypoxia induced mitochondrial autophagy and this process required the 
HIF-1-dependent expression of BNIP3 and the constitutive expression of Beclin-1. The 
authors proposed a molecular pathway: prolonged hypoxia stimulates HIF-1ǂ activity that 
up-regulates BNIP3 expression, then over-expression of BNIP3 disrupts the interaction of 
Beclin-1 with Bcl-2, and as a result, BNIP3 competitively binds to Bcl-2, which leads to 
Beclin-1 release. Subsequently, Beclin-1 recruits autophagy related proteins that induce the 
occurrence of mitochondrial autophagy (also called mitophagy). After the defective 
mitochondria are cleared by mitophagy, cell survival is enhanced under hypoxia due to the 
reduction of ROS by mitophagy.  

In addition, on the basis of the characteristics of HIF-1, pharmacological stabilization or 
activation of HIF-1ǂ will contribute to the protection against ischemia or severe anoxia, 
imitating the effect of HP. Desferrioxamine (DFO) and cobalt chloride (CoCl2), an iron 
chelator and competitive inhibitor of iron, respectively, usually used as a positive control 
are extensively used agents to mimic the effect of HP by inhibiting PHD enzyme activity 
and thus stabilize HIF-1ǂ [33,55,78,91]. Additionally, the 2-OG analogues L-mimosine (L-
mim), dimethyloxalylglycine (DMOG), and 3,4-dihydroxybenzoate (3,4-DHB) can also be 
used to inhibit PHD enzyme activity and stabilize HIF-1ǂ [33,71]. Recently it has been 
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shown that a PHD inhibitor, 2,4-pyridinedicarboxylic acid diethyl ester, pretreatment 
followed by a 30-min oxygen-glucose deprivation enhanced neuronal resistance in 
organotypic hippocampal slices on a model of ischemic damage, which was similar to the 
effect of anoxia preconditioning in the same model system [56]. With the development of 
novel PHD inhibitors for the treatment of ischemic diseases, a clinical treatment will be 
promising. 

Taken together, these observations suggest that HIF-1 is involved in mediating the beneficial 
effects of preconditioning, and that pharmacological activation of HIF-1 may be beneficial in 
stroke and other hypoxic diseases. 

3. The duplex roles of ROS  

3.1 Formation of ROS 

ROS are small and highly reactive molecules that can damage proteins, lipids, DNA and 

even mitochondria. In mitochondria, respiration generates ROS and ROS are constantly 

produced during normal metabolism. The balance of ROS formation and removal of ROS 

via enzymatic activity or antioxidants establishes constitutive ROS levels. ROS include 

superoxide anions (O2−�), hydrogen peroxide (H2O2), hydroxyl radical (�OH). O2−� are the 

most common ROS, but can be readily converted to other types by enzymatic (e.g. 

superoxide dismutase) and non-enzymatic reactions. O2−� are formed by metabolic 

processes (especially in mitochondria) or by enzymatic reactions (e.g. NADPH oxidase).  

Multiple isoforms of superoxide dismutase (SOD) can catalyze O2−� to form H2O2. �OH is 

formed from the breakdown of H2O2 by transition metals such as iron (Fe2+) or copper (Cu+) 

through Fenton reactions; this is a particularly reactive form of ROS with a short half life. 
�OH, in turn, can form from O2−� and H2O2 via the Haber-Weiss reaction [100].  

Hypoxia and re-oxygenation are capable of stimulating ROS formation in brain tissue. 

Hypoxia stimulates ROS formation from mitochondria and xanthine oxidase in the cortex, 

whereas reoxygenation induces NADPH oxidase-derived ROS formation. Although single 

bouts of hypoxia or re-oxygenation increase ROS formation, repetitive hypoxia/re-

oxygenation events amplify this effect. Greater ROS formation during and/or following 

repeated hypoxia and re-oxygenation may contribute to the pattern-sensitivity of hypoxia-

induced respiratory plasticity [57]. 

3.2 Damage roles of ROS and rescue by autophagy 

Excess ROS can damage DNA and proteins, contributing to aging, cardiac disease, cancer 

and other pathologies [23]. The damage can induce the mitochondrial permeability 

transition (MPT) caused by opening of non-specific high conductance permeability 

transition (PT) pores in the mitochondrial inner membrane. ATP depletion from uncoupling 

of oxidative phosphorylation then promotes necrotic cell death, whereas release of 

cytochrome c after mitochondrial swelling activates caspases and onset of apoptotic cell 

death. The defective mitochondria have the potential for futile ATP hydrolysis, which 

accelerates production of ROS and release of proapoptotic proteins. ROS also attack nucleic 

acids and are thus genotoxic. A lack of histones in mitochondrial DNA (mtDNA) accounts, 

at least in part, for a 10- to 20-fold higher mutation rate of mtDNA compared to nuclear 
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DNA [44]. It is thus clear that elimination of dysfunctional mitochondria is essential to 

protect cells from the injury of disordered mitochondrial metabolism. 

Cells can activate a range of pathways to eliminate ROS, or modulate ROS levels to facilitate 
essential cellular repair [101]. Mitochondrial autophagy has recently been described as an 
adaptive metabolic response to prevent increased levels of ROS and cell death [97]. It is now 
widely accepted that autophagy is crucial for removal of damaged mitochondria by 
mitophagy. Activation of BNIP3-dependent mitophagy decreases mitochondrial mass and 
ROS formation, thus supporting cell survival under hypoxia [102]. Removal of 
dysfunctional mitochondria or oxidized proteins by autophagy is suggested to take place 
via the chaperone-mediated autophagy (CMA) pathway [103]. By interacting with LC3, p62 
mediates the targeting of damaged mitochondria into autophagosomes. More recently, p62 
has been implicated in the delivery of oxidized proteins to autophagosomes for degradation. 
Initially, p62 was thought to act solely through the ubiquitin-proteasome system. However, 
growing data demonstrates the crucial role of p62 in delivering oxidized protein aggregates 
to autophagosomes [75]. Removal of damaged mitochondria and oxidized proteins, in most 
cases, supports survival. Therefore, autophagy is primarily a survival mechanism in 
response to ROS. 

In addition to autophagy, HIF-1 pathway is also involved in decreasing ROS levels. HIF-1 
reduces ROS production under hypoxic conditions by multiple mechanisms including: a 
subunit switch in cytochrome c oxidase from the COX4-1 to COX4-2 regulatory subunit that 
increases the efficiency of complex IV [104]; induction of pyruvate dehydrogenase kinase 1, 
which shunts pyruvate away from the mitochondria [105]; and induction of microRNA-210, 
which blocks expression of the iron-sulfur cluster assembly proteins ISCU1/2 that are 
required for the function of the tricarboxylic acid (TCA) cycle enzyme aconitase and electron 
transport chain (ETC) complex I [79]. These HIF-1-mediated mechanisms in maintaining 
redox homeostasis suggest an adaptive response to hypoxia. 

3.3 Beneficial roles of ROS through stabilizing HIF-1 

In contrast to the potential damaging effects of ROS, recent studies suggest that generation 
of mitochondrial ROS, especially H2O2, is required for hypoxic HIF-1 activation and 
stabilization [22,32,54]. In human lung epithelial A549 cells, over-expression of antioxidant 
enzymes that scavenge H2O2, such as catalase or glutathione peroxidase 1 (GPx 1) prevents 
hypoxic stabilization of the HIF-1ǂ protein. However, over-expression of superoxide 
dismutase 1 or 2, which detoxifies superoxide to H2O2, does not alter hypoxic HIF-1 
stabililization [11]. Furthermore, low dose exogenous H2O2 could trigger HIF-1ǂ expression 
and thereby, contribute to hypoxic/ischemic (H/I) preconditioning protection in the 
immature brain. Chang et al. reported that H2O2 induced HIF-1 ǂ protein expression in a 
dose-dependent manner and provided neuroprotection against severe oxygen-glucose 
deprivation (OGD) 24 h later. They observed that low dose of exogenous H2O2 not only 
conferred cells a tolerance to subsequent lethal insult, but also alone significantly up-
regulated HIF-1ǂ protein expression, suggesting that H2O2 produced during OGD 
preconditioning may stabilize and upregulate HIF-1ǂ. HIF-1ǂ stabilized by endogenous 
H2O2 induced by H/I preconditioning might mediate H/I preconditioning protection [15]. 
Using superoxide dismutase (SOD1) transgenic (Tg) mice, Liu et al. found that hypoxic 
preconditioning (HP) was protective in wild-type (Wt) neurons but not in neurons obtained 
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from SOD1 Tg mice [54]. In Wt neurons, HIF-1ǂ and EPO expression showed a greater 
increase after hypoxia compared with Tg neurons. Therefore, the authors concluded that HP 
induced ROS, which might downregulate the threshold for production of HIF-1ǂ and EPO 
expression during subsequent lethal hypoxia, thus exerted neuroprotection [54].  

In conclusion, ROS plays completely opposite roles depending on the amount and the time 
of ROS production: less ROS and earlier generation has beneficial roles; conversely, excess 
ROS and later generation has damaging effects. 

4. Regulation of cell volume 

Cell volume can be regulated by HP to prevent severe anoxic injury. We demonstrated for 
the first time that HP protected PC12 cells against necrosis after exposure to acute anoxia 
(AA), and this protective role of HP was probably related to cell volume regulation by 
increasing aldose reductase (AR) and sorbitol levels [95]. 

AR is the first enzyme of the polyol pathway. In this pathway, AR catalyzes conversion of 
glucose to sorbitol in the presence of nicotinamide adenine dinucleotide phosphate, while 
sorbitol dehydrogenase converts sorbitol to fructose in the presence of NAD+ [37]. Under 
osmotic stress, the abundance of AR is elevated by increasing the transcription of its gene. In 
turn, sorbitol synthesis is raised by increasing the amount and activity of AR [13]. A change 
of osmolarity causes sorbitol to leak rapidly to the external medium through a sorbitol 
permease transport pathway, which prevents excessive cell swelling. Efflux of sorbitol was 
the primary mechanism for regulatory volume decrease (RVD). RVD protects the cells by 
minimizing swelling [26].  

Sorbitol synthesized from glucose catalyzed by AR is directly related to cell volume 
regulation [19,76,83]. After synthesis, sorbitol is packed into the secretory vesicles to carry 
and fuse to cytoplasmic membrane, and finally sorbitol is released from it, which is a 
procedure involving the help of cytoskeleton [19]. Its biological significance is related to cell 
volume regulation [13,83].  

In this study, we showed AA caused a sharp rise in LDH leakage indicative of cell injury, 
while HP clearly inhibited it. In addition, BB, an inhibitor of AR, completely reversed the 
protection of HP. These results indicated that AR was involved in the protection produced 
by HP. AA furthermore caused the increase in cell volume, which would result in swelling 
and eventually lead cells to necrosis. By observing the change of cell volume at different 
time points, we found that HP not only delayed the appearance of RVD but also inhibited 
the increase of cell volume during 24 h of AA exposure. This suggested that cell volume 
regulation could be a potential mechanism in the protection exerted by HP against AA. We 
further demonstrated that HP significantly increased sorbitol levels, while the inhibitor of 
AR, BB, attenuated the increase in sorbitol content induced by HP. According to the above 
results, we hypothesized that sorbitol might be correlated with increased AR by HP. The 
fact that quinidine, a stronger inhibitor of sorbitol, reversed the protection afforded by HP 
indicates that sorbitol contributes to the protection of HP [95]. 

In summary, HIF-1, ROS and regulation of cell volume may mediate the protection of HP 
against anoxic or ischemic injury in CNS. Disclosure of the mechanisms of HP will 
contribute to the prevention and treatment of anoxic or ischemic diseases in brain.  
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activities on oxygen level, within important ecological systems such as Lake Victoria, are presented. There is

no doubt that the oxygen molecule is central to every stratum of biological systems.
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