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1. Introduction 

Commonly it is assumed that the nanocrystalline materials are composed of elements like 
grains, crystallites, layers, e.g., of a size of ca. 100 nm. (more typically less than 50 nm; often 
less than 10 nm – in the case of superhard nanocomposite, materials for optoelectronic 
applications, etc.) at least in one direction. The definition give above limits the size of the 
structure elements, however it has to be seen only as a theoretical value and doesn’t have 
any physical importance. 
Thin films and coatings are applied to structural bulk materials in order to improve the 
desired properties of the surface, such as corrosion resistance, wear resistance, hardness, 
friction or required colour, e.g., golden, black or a polished brass-like. The research issues 
concerning the production of coatings are one of the more important directions of surface 
engineering development, ensuring the obtainment of coatings of high utility properties in 
the scope of mechanical characteristics and wear resistance. Giving new utility 
characteristics to commonly known materials is frequently obtained by laying simple 
monolayer, multilayer or gradient coatings using PVD methods (Dobrzanski et al., 2005; 
Lukaszkowicz & Dobrzanski, 2008). While selecting the coating material, we encounter a 
barrier caused by the fact that numerous properties expected from an ideal coating are 
impossible to be obtained simultaneously. The application of the nanostructure coatings is 
seen as the solution of this issue. 
Nanostructure and particularly nanocomposite coatings deposited by physical vapour 
deposition or chemical vapour deposition, have gained considerable attention due to their 
unique physical and chemical properties, e.g. extremely high indentation hardness (40-80 
GPa) (Veprek et al., 2006, 2000; Zou et al., 2010), corrosion resistance (Audronis et al., 2008; 
Lukaszkowicz et al., 2010), excellent high temperature oxidization resistance (Vaz et al., 
2000; Voevodin & Zabinski, 2005), as well high abrasion and erosion resistance (Cheng et al., 
2010; Polychronopoulou et al., 2009; Veprek & Veprek-Heijman, 2008).  
In the present work, the emphasis is put on current practices and future trends for 

nanocomposite thin films and coatings deposited by physical vapour deposition (PVD) and 

chemical vapour deposition (CVD) techniques. This review will not be so exhaustive as to 

cover all aspects of such coatings, but the main objective is to give a general sense of what 

has so far been accomplished and where the field is going. 
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2. Synthesis of nanocomposite films and coatings 

In conventional bulk materials, refining grain size is one of the possibilities for hardness 

increase. The same is true for nanocomposite films or coatings. Looking for coating 

materials with high hardness, higher then the hardness of traditional polycrystalline 

coatings, there are founding materials with unique nanometric structure properties. With a 

decrease in grain size, the multiplication and mobility of the dislocations are hindered, and 

the hardness of materials increase according to the Hall-Petch relationship. This effect is 

especially prominent for grain size down to tens of nanometers. However, dislocation 

movement, which determines the hardness in conventional materials, has little effect when 

the grain size is less than approximately 10 nm. There is a critical value of the grain size at 

which a maximum hardness can be achieved (Fig. 1). For grains with diameters less than the 

critical value the material should be “softened” due to the action of a new deformation 

mechanism. i.e., the Hall-Petch relation is inverted (Koch et al., 2007; Voevodin et al., 2005; 

Zhang et al., 2007). 
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Fig. 1. Schematic illustration of materials hardness versus grain size (Zhang et al., 2007). 

According to the Hall-Petch equation, the strength properties of the material rise along with 

the reduction of the grain size. In case of the coatings deposited by the PVD and CVD 

processes, the structures obtained, with grain size ~10 nm results with the maximum 

mechanical properties. Coatings of such structure present very high hardness >40 GPa, 

ductility, stability at high temperatures, etc.(Tjong et al., 2004; Veprek et al., 2006).  

The known dependency between the hardness and abrasion resistance became the basis for 

the development of harder and harder coating materials. The progress in the field of 

producing coatings by the physical vapour deposition and/or chemical vapour deposition 

process enables the obtainment of coatings of nanocrystal structure presenting high 

mechanical and usable properties. The coatings of such structure are able to maintain a low 

friction coefficient (self-lubricating coatings) in numerous working environments, 

maintaining high hardness and increased resistance (Donnet & Erdemir, 2004; Voevodin & 

Zabinski, 2005). 
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The main concept for achieving of high hardness of nanostructure coatings and good 
mechanical properties and high strength related to it, particularly in case of nanocomposite 
coatings is the restriction of the origination and the movement of dislocations. High 
hardness and strength of the nanocomposite coatings are due to the fact that the movement 
of dislocations is suppressed at small grains and in the spaces between them, which causes 
the appearance of incoherent deformations. When the grain size is reduced to that of 
nanometers, the activity of dislocations as the source of the material ductility is restricted. 
This type of coatings is also characterized with a large number grain boundaries with a 
crystalline/amorphous transition across grain-matrix interfaces, restricting the forming and 
development of cracks. Such mechanism explains the resistance to fragile cracking of 
nanocomposite coatings. Simultaneously, the equiaxial grain shapes, high angle grain 
boundaries, low surface energy and the presence of the amorphous boundary phase 
facilitating the slide along the grain boundaries cause high plasticity of the nanocomposite 
coatings (Rafaja et  al., 2006; Voevodin et al., 2005). 
According to the model proposed by Veprek (Veprek & Reiprech, 1995;Veprek, 1997, 
Veprek et al., 1998) nanocomposite coatings comprise at least two phases, a nanocrystalline 
phase and a matrix phase, where the matrix can be either nanocrystalline or amorphous 
phase. In this design, the nanocrystalline grains must be 3÷10 nm in size and separated by 
1÷2 nm within an amorphous phase as shown in Fig. 2. 
 

 

Fig. 2. Model and TEM image of nanocomposite structure (Source: PLATIT AG). 

Nanocomposite coatings are usually formed from ternary or quaternary system with 
nanocrystalline (nc-) grains of hard transition metal-nitrides (e.g. TiN, TiAlN, CrN, BN, VN, 
ZrN, W2N, etc.), carbides (e.g. TiC, VC, WC, etc.), borides (e.g. TiB2, TiB, CrB2, etc.), oxides 
(e.g. Al2O3, TiO2, B2O3, SiO2, etc.), or silicides (e.g. TiSi2, CrSi2, ZrSi2, etc.) surrounded by 
amorphous (a-) matrices (e.g. Si3N4, BN, C, etc.) (Moore et al., 2007). There are many 
different nanocrystalline grain/amorphous matrix (nc-/a-) systems, such as: nc-TiN/a-
Si3N4, nc-TiN/a-Si3N4/a-&nc-TiSi2, nc-CrN/a-Si3N4, nc-W2N/a-Si3N4, nc-TiAlN/a-Si3N4, nc-
TiN/a-BN, nc-TiC/a-C, nc-WC/a-C (Moore et al., 2007, Voevodin et al., 2005; Zhang et al., 
2007). The synthesis of such nanocomposite coatings depends on the ability to co-deposit 
both phases. 
Various analyses revealed that the synthesized TiAlSiN coatings exhibited nanostructured 
composite microstructures consisting of solid-solution (Ti,Al,Si)N crystallites and 
amorphous Si3N4. The Si addition caused the grain refinement of (Ti,Al,Si)N crystallites and 
its uniform distribution with percolation phenomenon of amorphous silicon nitride. The 
(Ti,Al)N crystallites became finer with a uniform distribution as the Si content was 
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increased. Si addition changes microstructure from columnar to isotropic (Fig. 3). Grain size 
decreases with an increase in Si content (Park et al., 2003; Yu et al., 2009).  
 

 

Fig. 3. Cross sectional morphology of TiAlSiN coatings with different  
Si content (Yu et al., 2009). 

Phase size decrease occurred in the nanocomposite coatings to a value of few nanometers, 
offered an unique possibility to design smart tribological coatings called „chameleon”, for 
their ability to decrease wear and friction by changing surface chemical composition and 
microstructure according to the applied load and environmental changes – like a chameleon 
changes the colour in case of emergence (Voevodin & Zabinski, 2000).  
Nanocomposite coatings make it possible to achieve a combination of several layers with 
opposite properties, such as: high hardness, strength, plasticity or low friction coefficient in 
the single layer. First „chameleon” coatings were produced using mixtures of oxides and 
disulphides (PbO/MoS2, Sb2O3/MoS2, ZnO/WS2), which were applicable in a wide range of 
temperatures (Zabinski et al., 1992; Zabinski et al., 1993).  
It was the next steep to create the advanced multilayer coatings, where the previously 
achieved nanocomposite layers were put together with layers in form of diffusion barrier 
and as a result a self adapting surface was achieved, resistant against cyclic temperature 
changes. In the following new materials were developed, which are wear resistant, they 
were developed as a combination of nanocrystall based carbides (TiC, WC), ceramics (YSZ i 
AlON), bisulphites (MoS2 i WS2) and amorphous DLC for achieving the nanocomposite 
structure of the coating (Voevodin et al., 2001; 2002). An example of „chameleon” coatings is 
the composite coating produced within the W-C-S system, which consist of 1÷2 nm WC and 
5÷10 nm WS2 grains embedded in the amorphous DLC matrix. The WC/DLC/WS2 
nanocomposite exhibits self-adaptation to tribological conditions that occur in aerospace 
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system. This adaptation was found in crystallization and reorientation of initially 
nanocrystalline and randomly oriented WS2 grains, graphitization of the initially 
amorphous DLC matrix, reversible regulation of the composition of the transfer film 
between WS2 and graphite with environmental cycling from dry to humid air, and a 
possible DLC/WS2 synergistic effect, providing friction reduction in oxidizing environments 
(Voevodin & Zabinski, 2000). 
A scheme of a „chameleon” coating of the YSZ/Au/DLC/MoS2 type as well the 
WC/DLC/WS2 type, where the amorphous matrix and hard nanocrystalline phases (YSZ or 
WC) were used for achieving optimal mechanical properties are presented in Fig. 4. 
 

 

Fig. 4. Schematic conceptual design of a nanocomposite tribological coating with chameleon-
like surface adaptive behaviour (Voevodin et al., 2005). 

Carrying out investigations over nanocomposite coatings it was found, that the creation 
mechanisms of such structures have a form of spinodal transformation. During deposition 
of nanocomposite coatings using physical vapor deposition methods a spinodal character of 
the segregation of the crystallized phase (e.g. TiN) and amorphous (np. Si3N4) was observed 
during production of nanocomposite coating of the nc-TiN/a-Si3N4 type. Such layer is 
composed of nanocrystalline TiN structure of 3÷4 nm in diameter, positioned in amorphous 
silicon nitride Si3N4.  
During deposition of nanocomposite coatings in the PVD process the spinodal 
decomposition occurs when following conditions are fulfilled (Zhang & Veprek, 2006): 

 appropriate temperature occurs making possible a complete segregation of phases 
during the deposition process of coatings by controlled diffusion;  

 sufficiently high nitrogen pressure, for achieving of stechiometric nitride phases by a 
given coating deposition rate. 

Different techniques are available for the preparation of nanocomposite coatings. The most 
promising methods are plasma assisted chemical vapour deposition (PACVD), thermally-
induced chemical vapour deposition (TCVD), magnetron sputtering, vacuum arc 
evaporation, laser ablation and hybrid techniques consisting of a combination of these. 
Other techniques, such as ion beam deposition, electrodeposition are also used (Table 1). 
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Group Sub-group Methods 

Physical vapour 
deposition (PVD) 

Thermal evaporation 
(TE) 

Pulsed laser deposition (PLD) 

Electron beam deposition (EB-PVD) 

Sputter deposition 
Magnetron sputtering 

Ion beam sputtering 

Arc vapour deposition 
Vacuum arc deposition 

Filtered arc deposition 

Ion implantation Ion beam deposition (IBD) 

Chemical vapour 
deposition (CVD) 

 

Plasma enhanced CVD (PECVD) 

Plasma assistant CVD (PACVD) 

Electron cyclotron resonance CVD 
((ECR-CVD) 

Table 1. Main preparation methods for nanocomposite thin films (Zhang et al., 2007). 

Uniform deposition for complicated geometries and high deposition rate are the advantages 
of the CVD method. However, the main concern for the CVD process is that the precursor 
gases, TiCl4, SiCl4 or SiH4, may pose problems in deposition because they are a fire hazard 
and corrosive. In conventional thermally activated CVD heating provides sufficient high 
temperature for the dissociation of gaseous species. In case of TiCl4 at low temperatures the 
chemical equilibrium is one the side of the chlorides, high temperatures (~1000ºC) are 
needed to shift the equilibrium towards TiN and HCl. 

 TiCl4 + 2H2 + 0.5N2  TiN + 4HCl  (1) 

For most applications (e.g. high speed steel, hot work tool steel, etc.) the low deposition 
temperature is required to prevent substrate distortion and loss of mechanical properties. It 
precludes the use of substrates having melting points or tempering temperature much lower 
than the reaction temperature. Plasma assisted CVD exhibit a distinct advantages over 
thermal CVD owing to its lower deposition temperature (Koch et al., 2007; Tjong, 2007). 
Vacuum arc evaporation technology has high ionization (≥90 %) but limited material. 
Magnetron sputtering is a low temperature technology, which can deposit various 
materials, but its ionization is low. In magnetron sputtering process the energetic ion 
(several hundred to a few thousand electronovolts) bombardment is used to vaporize the 
target. During magnetron sputtering process, the sputtered atoms carry more energy than 
the evaporated atoms, therefore sputter-grown films usually have higher density. Moreover, 
ion bombardment of the growing film can restrict the grain growth and permit the 
formation of nanocrystalline. In arc evaporation process atoms are removed from source by 
thermal or electron means. Thermal evaporation has a limitation in multicomponent 
materials since one of the metallic elements typically evaporates before the other. The 
advantages of deposition of coatings by means of vacuum arc are the high deposition rate 
and fully ionized plasma. The disadvantages are the emission of droplets of molten metal 
from the cathodic spot and the uncontrolled movement of the cathodic spot over the surface. 
Nowadays one of the commonly used coating equipment for large-scale industrial 

production  is the LARC Technology (Fig. 5). The most important advantages on the 

LARC Technology come from the rotating cathodes and their lateral position. The cathodes 
are in permanent rotation; the magnetic field is generated by coils and permanent magnets 
controlled both vertically and radially (Cselle et al., 2002; Koch et al., 2007). 
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Fig. 5. Coating equipment with the LARC Technology (Lateral Rotating Arc-Cathodes) 
(Cselle et al., 2002). 

To enhance the strong points of above mentioned technologies and avoid their weakness the 
hybrid deposition techniques are used. Yu and co-workers have used hybrid physical 
vapour deposition system, which combine ion plating and sputter plating in order to 
modify the properties of coatings, and to enhance controllability of the ion energy and the 
manageable coatings component (Yu et al., 2009). Voevodin and co-workers used the pulsed 
laser ablation (PLD) of graphite in combination with magnetron sputtering of titanium and 
filtered cathodic arc deposition (FCAD) of graphite with magnetron sputtering of titanium 
(Fig. 6) in order to prepare the unhydrogenated amorphous diamond-like carbon (DLC) and 
fullerene-like carbon nitride (CNx) (Voevodin et al., 2005).  
 

     

Fig. 6. Schematic of deposition arrangements to produce DLC and CNx coatings by (a) 
pulsed laser deposition and (b) filtered cathodic arc deposition. A Ti magnetron was used to 
grow a functionally graded Ti–TiC–C interface by either a hybrid of laser ablation and 
magnetron sputtering (a) or a hybrid of filtered cathodic arc and magnetron sputtering (b) 
(Voevodin et al., 2005). 
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3. Characterization of nanocomposite films 

Film characterization is the inevitable and important step for ensuring of high-quality film 
for the intended application. Different characterization techniques can be used to identify 
nanocomposite coatings.  

3.1 High resolution transmission electron microscope (HRTEM) 

Since nanoscale irregularities have the enormous influence on bulk behavior, the high 
resolution transmission electron microscope has become a powerful and indispensable tool 
for characterizing nanostructured materials. HRTEM is a powerful technique due to its high 
imaging spatial resolution (~0.1 nm). Using correct operating conditions and well-prepared 
samples (specimen materials must be specially prepared to thickness which allow electrons 
to be transmitted through), high-resolution image characteristics are interpretable directly in 
terms of projections of individual atomic positions. As the wavelength of electrons is much 
smaller than that of light, the optimal resolution of transmission electron microscope images 
is many orders of magnitude better than that of a light microscope. Imaging with the 
HRTEM enables individual atomic columns to be resolved in most inorganic materials, 
making it possible to determine the atomic-scale microstructure of lattice defects and other 
inhomogeneities. Structural features of interest include planar faults such as grain 
boundaries, interfaces and crystallographic shear planes, linear faults such as dislocations 
and nanowires, as well as point defects, nanosized particles and local surface morphology. 
Additional information can be obtained from high-resolution studies, including unique 
insights into the controlling influence of structural discontinuities on a range of physical and 
chemical processes such as phase transformations, oxidation reactions, epitaxial growth and 
catalysis (Materials Evaluation and Engineering, Inc., 2010; Smith, 2005). 

3.2 Scanning electron microscope (SEM) 

Scanning electron microscopy is a very useful technique in the characterization of thin films 
and undoubtedly the most widely used of all electron beam instruments. SEM is a method 
for high-resolution imaging of surfaces. Scanning electron microscopy provides magnified 
images by using electrons instead of light waves (in case of conventional light microscopes). 
The advantages of SEM over light microscopy include much higher magnification  
(> 1,000,000×) and greater depth of field up to 100 times. The resolution of modern scanning 
electron microscopes is typically <10 nm (image resolution of about 0.5 nm can be now 
achieved in the most recent generation field-emission-gun SEM), so in principle SEM could 
be used to measure nanocrystalline grain size. The problem is obtaining the appropriate 
surface contrast for grain sizes in the nanoscale regime. To create the SEM image, the 
incident electron beam is scanned in a raster pattern across the sample’s surface. When an 
electron beam interacts with a bulk specimen, a variety of signals can be generated. Figure 7 
shows the various types of electrons and electromagnetic radiation produced when a high 
energy electron beam interacts with a bulk specimen (Liu, 2005).  
The popularity of the SEM can be attributed to many factors: the versatility of its various 
modes of imaging, the excellent spatial resolution, the very modest regarding sample 
preparation, the relatively straightforward interpretation of the acquired images, the 
accessibility of associated spectroscopy and diffraction techniques. Most electron 
microscopes have extra attachments to allow them to generate and analyse X-rays or 
generate and analyse the energy spectra of the secondary emission electrons. These 
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attachments create a more powerful tool for the study of qualitative and quantitative 
chemical analysis, for example X-ray photoelectron spectroscopy (XPS), Auger electron 
spectroscopy (AES), energy dispersive X-ray emission (EDX), wavelength dispersive X-ray 
emission (WDX), electron back-scattered diffraction (EBSD) (Smith, 2005). 
 

 

Fig. 7. Schematic view of the different signals generated after an electron beam interacts 
with a bulk specimen (Materials Evaluation and Engineering, Inc., 2010). 

3.3 X-ray photoelectron spectroscopy (XPS) 
X-ray photoelectron spectroscopy is the most useful analysis technique used to obtain 
chemical information about different elements at sample surfaces. In XPS the sample is 
placed in a high vacuum environment and the beam of low-energy X-rays (or electron) 
irradiates the sample and produce photo-ionisation. The energy of the ejected 
photoelectrons is a function of its binding energy (which is the energy required to remove 
the electron from its atom) and is characteristic of the element from which it was emitted. 
The equation which describes the energy of the photo-ionisation process is: 

 EB=hυ- EK-W  (2) 

where EB is binding energy of the electron from a particular energy level, hυ is the incident 
X-ray photon (or electron) energy, EK is the kinetic energy of the ejected photoelectron, W is 
the spectrometer work function (Clarke & Eberhardt, 2002).  
From the binding energy we can obtain some important information about the samples  
(Fig. 8) under investigation: the relative quantity of each element, the elements from which it 
is made, the chemical state of the elements present, depth distribution (Zhang, 2007). 
 

 

Fig. 8. Typical XPS core-level spectra of (a) Si 2p and (b) N 1s from several Ti–Si–N films 
(Jiang et al., 2004). 
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3.4 Auger electron spectroscopy (AES) 

Auger electron spectroscopy provides information about the chemical composition of the 
outermost material comprising a solid surface or interface. The principal advantages of AES 
over other surface analysis methods are excellent spatial resolution, surface sensitivity  
(~20 Ǻ), and detection of light elements (Materials Evaluation and Engineering, Inc., 2010). 
Different penetrations and accuracies of selected compositions analysis method presents 
Table 2. 
 
 

Analysis 
method 

Elemental 
range 

Detection 
limits (at. %) 

Spatial 
resolution 

Penetration 

XPS Li-U 0.1÷1 100 µm 1.5 nm 

AES Li-U 0.5 10 nm 0.5÷7.5 nm 

RBS Li-U 1.0 1÷4 mm 2÷30 nm 

EDX Be-U 0.1 0.5÷2.0 µm 1÷3 µm 

Table 2. Composition analysis methods (Zhang, 2007). 

3.5 Raman spectroscopy 

Raman spectroscopy is a method of chemical analysis, based on inelastic scattering of 
monochromatic light, usually from a laser source. Photons of the laser light are absorbed by 
the sample and then reemitted. Frequency of the reemitted photons is shifted up or down in 
comparison with original monochromatic frequency, which is called the Raman effect. This 
shift provides information about vibrational, rotational and other low frequency transitions 
in molecules. The sample is illuminated with a laser and scattered light is collected. The 
wavelengths and intensities of the scattered light can be used to identify functional groups 
in a molecule (Fig. 9) (Xu & Kumar, 2007).  
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Fig. 9. Raman spectra of the AlCrSiN/DLC coating.  
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3.6 Grain size 

In most studies of the grain size of nanocrystalline materials X-ray line-broadening analysis 
or direct measurements by transmission electron microscopy are performed. To estimate the 
grain size, the well-known Scherrer formula is used by measuring the full width at half 
maximum (FWHM) of the XRD diffraction peak: 

 





cos

K
d  (3) 

where d is crystallite size, K is the shape factor,  is the wavelength of the X-rays ,  is the 

full width at half-maximum XRD peak in radians, and  is the  position of the peak 
maximum.  
The Scherrer equation is limited to nano-scale particles. It is not applicable to grains larger 
than about 100 nm. Otherwise, other methods, in particular transmission electron 
microscopy, must be used (Koch et al., 2007).  

3.7 Atomic force microscopy (AFM) 

Atomic force microscopy has become a powerful tool to detect structural changes at the 
nanoscale and the importance of AFM, as characterization technique, is further increasing 
with recent developments in nanoscience and nanotechnology. The scope of AFM 
applications includes high-resolution examination of surface topography (Fig. 10), 
compositional mapping of heterogeneous samples and studies of local mechanical, electric, 
magnetic and thermal properties. These measurements can be performed on scales from 
hundreds of microns down to nanometers. Areas as large as about 100 µm square to less 
than 100 nm square can be imaged (Magonov & Yerina, 2005; Roa et al., 2011). 
 

 

Fig. 10. AFM topography of the CrN/DLC coating. 

In conjunction with the atomic force microscopy nanoindenting is performed. 
Nanoindenting is a new method to characterize material mechanical properties on a very 
small scale. Features less than 100 nm across, as well as thin films less than 5 nm thick, can 
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be evaluated. Test methods include indentation for comparative and quantitative hardness 
determination and scratching for evaluation of wear resistance and thin film adhesion. 
Indentation forces ranging from 1 µN to 100 mN can be made to measure material hardness 
(Materials Evaluation and Engineering, Inc., 2010). 

4. Applications of nanocomposite films 

Since the introduction in 1993 of nc-Ti1-xAlxN/a-Si3N4 nanocomposite coatings for 

machining applications, such as steel turning, drilling and milling (Holubar et al., 2000), 

many new nanocomposite coatings have been developed in order to increase the machining 

speed, the lifetime of the coated tools and improve the quality of the machined surface.  

Due to high hardness and wear resistance nanocomposite coatings show excellent results 

even at normal cutting conditions. The high hardness of the nanocomposite coatings can be 

maintained at high temperatures. The enormous hardness will be extremely important for 

dry cutting and for machining with minimum quantity lubrication. 

Modern nanostructured coatings for structural and functional applications, are used mainly 

for wear protection of machining tools and for the reduction of friction in sliding parts. The 

nanocomposite coatings find increasing number of applications also on tools for forming, 

e.g. extrusion, stamping, etc. The demands on the tool material of an extrusion die are high 

hardness, creep resistance, yield strength, toughness at elevated temperatures, wear and 

corrosion resistance. It should be suitable for surface coatings. Hard coating, such as nc-

AlCrN/a-Si3N4, nc-AlTiN/a-Si3N4 deposited by physical vapour deposition on extrusion 

dies have been used in order to increase their life time and properties (Fig. 11) (Faga et al., 

2007; Veprek & Veprek-Heijman, 2008). 

 
 

 

Fig. 11. The performance of uncoated and coated tool for folding boxes for cigarettes 
(Veprek & Veprek-Heijman, 2008). 

An important advantage of the nc-TiN/a-Si3N4, nc-AlTiN/ a-Si3N4, and nc-AlCrN/ a-Si3N4 

nanocomposites coatings is their high thermal stability and high oxidation resistance up to 

temperatures of more than 800ºC (Veprek & Veprek-Heijman, 2008).  
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Nanocomposite coatings can be used for biomedical applications. Implant biomaterials 

interact with the body through their surface. Consequently, the properties of the material 

surfaces are critically important in determining biocompatibility, biological responses and 

bone-implants interface reaction.  Surface coatings like traditional amorphous diamond-like 

carbon modified by doping with silicon and chromium biocompatible coatings are one of 

the ways of improving both the mechanical, physical and chemical properties of implants in 

direct contact with the blood (Okpalugo et al., 2007). In orthopaedic and dental implant 

application, surface coatings have been used to impart bioactivity to the metal substrates to 

enhance and accelerate skeletal fixation.  

Nanocomposite coatings are widely used in solar energy conversion and optoelectronic 

applications. Nanocomposite thin films or coatings for solar energy conversion should have 

a high absorption of solar radiation and low thermal emission at their operating 

temperatures. There are many different thin films solar cells system, such as: a-Si:H/a-

SiGe:H/nc-Si:H, a-Si:H/nc-Si:H/nc-Si:H, a-Si:H/nc-Si:H. Other promising thin films solar 

cells may include CuInS2, CuInGaSe, CdTe, TiO2, CdS (Yin, 2007). Hydrogenated 

amorphous silicon (a-Si:H) or nanocrystalline silicon (nc-Si) is currently used in thin film 

transistor liquid displays  (TFT-LCDs).  

5. Future trends 

The nanocomposite coatings are still at the beginning of their development. Further research 
activity in the field of nanocomposite films and coatings should be concentrated on the 
following problems (Musil, 2007; Voevodin et al., 2005): 

 development of films with controlled grains size, 

 development of new technology system for production of nanocomposite coatings in 

new physical and/or chemical conditions, 

 increased utilization of coatings in many types of applications including those in the 

aerospace and automotive industries,  

 development of protective coatings with oxidation resistance exceeding 2000ºC, 

 development of hybrid coatings with nanophase biomaterials for biomedical 

applications, 

  nanocrystallisation of amorphous materials, 

 development and scale-up of deposition processes, 

 development of high fracture toughness coatings, 

 development of new advanced coatings with unique physical and functional properties. 

6. Summary 

The interest, caused by Feynman in the sixties of the last century, in processes occurring in 
nanometric scale has resulted in a very dynamical development of investigation projects in 
nanotechnology, nanomechanics and nanomaterials. Nanocomposite thin films and coatings 
are also the part of these activities.  
Nanocomposite thin films and coatings, that characterised with nanocrystalline grains of 
transition-metal nitride or carbide embedded in an amorphous phase, are a promising 
instrument for improving the characteristics of various functional surfaces and are rapidly 
trend of surface engineering. To date, several hard coatings based on nanocomposites 
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have been successfully developed and commercialized for engineering applications. There 
are many possible future applications of nanocomposite thin films and coatings. Further 
improvement of the presently available and newly developed nanocomposite coatings 
will push the technology towards new horizons. Several techniques, in particular PVD 
and CVD are now available for the deposition of nanocomposite films on various kinds of 
substrates.  
Despite the big number of scientific investigations in the field of nanocomposite thin films 
and coatings, with results published in professional and competent literature, still some lack 
and deficiency of verified material knowledge occurs. 
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