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1. Introduction 

Nuclear power stations are electrical energy stations that use nuclear fission reaction as a 
source of heat to produce energy. Most of the world’s nuclear steam supply systems for 
generating electricity are based on water cooled and moderated systems of which the most 
commom design are the Ligth Water Reactors (LWR) varieties: Pressurized Water Reactor 
(PWR) and the Boiling Water Reactor (BWR). In the construction of these reactors nickel-
based alloy 600 and its associated alloys 82 and 182 weld metals were initially selected 
because of their ability to withstand a variety of severe operating conditions involving 
corrosive environment, high temperatures, high stresses, and combinations thereof (Gomez-
Briceño & Serrano, 2005, Peng, et al., 2007). 

Alloy 82 and 182 weld metals are widely used to join austenitic stainless steel to low alloy 

steel components of PWRs. However, after many years of plant operation, those materials 

showed susceptibility to stress corrosion cracking (SCC). Since 1994, cracks and leaks have 

been discovered in about 300 welds of nickel-based alloys 82 and 182 at different PWR plant 

primary coolant system locations (Scott, 2004, Scott & Meunier, 2007). 

Despite many studies have been performed on the SCC behavior of nickel-based alloys the 

mechanisms are still not well understood. It was observed that the variables that influence the 

SCC susceptibility of alloy 182 weld metal are quite similar to those associated for nickel-based 

alloy 600 such as cold work, alloy metallurgical factors, applied or residual stresses, and 

environmental factors including primary water hydrogen partial pressure, water temperature 

and chemistry, (Rebak & Szklarska-Smialowska, 1996, Rebak & Hua, 2004). 

Actions to mitigate the SCC have been undertaken comprising changes in the chemical 
environment (optimizing dissolved hydrogen levels, zinc addition and noble metal chemical 
addition). The use of water chemistry optimization is attractive because many or all 
components can benefit. In view of the successful application of water chemistry on SCC 
mitigation in BWR reactors and its system wide benefit, mitigation by adjusting the primary 
water chemistry in PWR reactors has being considered (Andresen, et al., 2005). 
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Hydrogen gas is added to the primary circuit coolant at concentrations usually ranging 
between 25 and 50 cm3 H2.kg-1 H2O at standard temperature and pressure (STP). This 
concentration range is sufficient to inhibit radiolysis of water and thereby minimize 
corrosion of structural materials (Garbett, et al., 2000, Lima et al., 2011). Besides this, 
dissolved hydrogen (DH) might affect the SCC behavior of nickel-based alloys. Many 
experimental studies (Morton et al., 1999, Totsuka, et al., 2000, Attanasio & Morton, 2003) 
have indicated that the crack growth rate varies with the DH concentration at a given 
temperature. 

In this chapter it is proposed to present the initial results of an evaluation of the dissolved 
hydrogen influence on the SCC susceptibility of the nickel-based weld alloy 182 using slow 
strain rate tensile tests (SSRT) conducted at Nuclear Technology Development Centre – 
CDTN/CNEN. 

1.1 Dissimilar metal Weld in pressurized water reactors 

A weld between different metals is known as dissimilar metal weld (DMW) and is used in 
western LWR plants. In Westinghouse and French nuclear power plants design the most 
important application of this type of weld is between low alloy steel nozzles to austenitic 
stainless steel pipelines. Typical locations are J-groove welds of nickel alloy 600 vessel head 
penetrations, pressurizer penetrations and instrument nozzles. In addition, they are used in 
butt welds in RPV and steam generator inlet and outlet nozzles, pressurizer surge line, safety 
and relief valve nozzles (Figure 1) (Banford & Hall, 2003, King, 2005, Seifert, et al., 2008). 

 

Fig. 1. Alloy 82 and 182 butt welds locations in PWR Westinghouse design plants (King, 
2005). 

The type and characteristics of the DMW depend on a range of factors; including the specific 
reactor design, the welding procedure and the weld material (International Atomic Energy 
Agency [IAEA], 2003, Jang et al., 2008). The welding of two different materials may occur 
directly, after applying a buttering layer in one of them or by using a transition piece, also 
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called safe end, between the two dissimilar materials (Figure 2). Nickel-based alloy 82 or 182 
is generally used as weld metal material in the buttering layer and in the J-groove weld 
(IAEA, 2003, Miteva & Taylor, 2006). 

 

Fig. 2. Dissimilar metal weld variations of the Westinghouse plant design, (a) weld with a 
safe end and (b) weld without a safe end (Miteva & Taylor, 2006). 

The use of safe end avoids making of DMW on site, during the component installation in the 

nuclear power plant. The transition piece is welded to low alloy steel nozzles in the 

manufacturer´s shop under controlled conditions, so the subsequent weld to connect the 

component is a conventional similar weld that can be made on site. The use of the buttering 

layer is an alternative way to accommodate the differences in the composition and 

properties of the two base metals, such as the melting point, coefficient of thermal expansion 

and to make difficult the migration of undesirable alloying elements from base metal to 

weld metal. Buttering can also be used to alleviate the requirements of postweld heat-

treatment (PWHT) (King, 2005, Davis, 2006). 

In the Westinghouse plant design the dissimilar metal welds are made in three steps. In the 

first stage a buttering layer is applied to the low alloy steel with a final thickness varying 

between 5 and 8 mm. The layer is applied by gas tungsten arc process (GTAW) with nickel-

based alloy 82 and 182 as weld metal. The second stage consists of the stress relief heat 

treatment and the machining of the buttered surface to obtain the weld edges. The 

temperature and the duration of the heat treatment depend on the thickness of the low alloy 

steel component and the number of buttering layers. Usually the stress relief heat treatment 

is undertaken at temperatures from 580ºC. In the third stage the buttered low alloy steel is 

welded to austenitic stainless steel by the GTAW process with nickel-based alloy 82 for the 

root pass. The joint is completed with nickel-based alloy 182, using the shielded metal arc 

process (SMAW) (Fallatah et al., 2002, Miteva & Taylor, 2006). 

The use of pre-heating is recommended for materials with a high level of carbon equivalent 

and components of high thickness. Pre-heating encourages a decrease in the cooling speed, 

which reduces the likelihood of martensite forming in the heat affected zone (HAZ) of the 

low alloy steel and reduces the occurrence of hot cracking in the materials involved. Heat 

treatment after welding may or may not take place (Schaefer, 1979, Kou, 2003, Miteva & 

Taylor, 2006). 
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1.2 Stress corrosion cracking in pressurized water reactors 

Environmentally assisted cracking (EAC) in the form of stress corrosion cracking (SCC) is 

one of the most critical kinds of damage experienced in nuclear power plants. It is a 

potentially critical issue concerning safety of plant operation and plant life extension 

(American Society of Metals [ASM], 2006). SCC phenomenon consists of a degradation 

process resulting from a combined and synergistic interaction of aggressive environment, 

tensile stresses and susceptible material, as well as the time for the phenomenon to occur. 

This phenomenon has been reported in dissimilar metal welds in various nuclear power 

plants all over the world. Various studies carried out since the 1980s have demonstrated 

that nickel-based alloys 82 and 182 are susceptible to the SCC phenomenon (Andresen et 

al., 2002, Fukumura & Totsuka, 2010). In the end of the year 2000, three PWRs experienced 

cracking concerned to dissimilar metal welds between the main austenitic stainless steel 

primary circuit piping and the outlet pressure vessel nozzles, believed to be stress 

corrosion cracking, of major primary circuit welds made from nickel-based alloy 82 or 

182. (Pathania et al., 2002 Amzallag et al., 2002, Banford & Hall, 2005, Alexandreanu et al., 

2007). 

In the case of susceptible material the main factors that influence the SCC susceptibility of 

nickel-based alloy 600 and its associated alloys 82 and 182 weld metals are chemical 

composition, microstructure and heat treatment of the material. The levels of carbon and 

chromium are important variables when evaluating the chemical composition. Data from 

laboratories have been demonstrated that the increase of chromium content  correlates with 

decreasing in the SCC susceptibility (White, 2004, White, 2005). The grain size and the 

presence and location of inclusions and precipitates are also relevant variables in the 

evaluation of materials susceptibility to this phenomenon. The presence of continuous or 

semicontinuous chromium carbides at the grain boundaries and the absence of these 

carbides in the grain matrix tend to increase the resistance of nickel-based alloys to SCC 

susceptibility. Various models have been proposed to explain this effect, but the reasons for 

this beneficial effect are not completely understood. (Rebak, et al., 1993, Aguillar et al., 2003, 

Tsai et al., 2005, Andresen & Hickling, 2007). 

Two principal sources of tensile stress are able to cause the SCC phenomenon – the tensile 

stresses resulting from the operating conditions (pressure, temperature and mechanical 

load) and the residual stresses resulting from the original fabrication process, such as 

welding. The tensile stresses that exist during an operation are taken into account when 

planning nuclear power stations and must comply with the specific standards and codes 

(American Society of Mechanical Engineering [ASME], 2004). However, high residual 

stresses may be created during the manufacturing and welding processes. The residual 

stresses that arise from welding may be higher than the operating stresses and tend to be 

dominant driving force behind the crack growth. It is the combination of operating 

condition stresses and residual stresses that lead the occurrence of the SCC phenomenon 

(Sedricks, 1990, ASM, 1992, Speidel & Magdowski, 2000, Gorman, et al., 2009). 

Among all of the factors that affect SCC susceptibility, the effect of environmental 

conditions is particularly important. The concentrations of oxygen and hydrogen, the 

corrosion potential, temperature and the pH balance of the solution play an important role 
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in this process. The SCC phenomenon is a thermally activated process and can be 

represented by the Arrhenius law. Places which the operating temperatures are high 

develop cracks more rapidly than regions where the operating temperatures are lower. It 

has also been observed that crack growth rates of nickel-based alloys and weld metals in 

simulated PWR primary water environments generally increase with increasing 

temperature (Nishikawa et al., 2004, Lu et al., 2008, Schvartzman et al., 2009). 

1.3 Stress corrosion cracking in pressurized water reactors mitigation process 

The mitigation of primary water stress corrosion cracking is defined as a adoption of 

remedial measures to reduce the frequency and/or to delay the stress corrosion crack 

initiation and/or propagation. The term mitigation does not mean completely elimination or 

prevention of the phenomenon, imply only in the control of the variables that affect the SCC 

susceptibility (Scott; Meunier, 2007). 

The metodologies developed to prevent and to mitigate primary water SCC of the nickel-
based alloy 600  and its associated alloys 82 and 182 weld metals include: 

Materials Replacement: replacement in the new nuclear power plants of nickel-based 

alloy 600 and alloys 82 and 182 components for materials more resistant to SCC, nickel-

based alloy 690 and its associated alloys 52 and 152 weld materials, has been considered. 

This remedial measure sometimes can be unavoidable in nuclear power plants currently 

in operation due to the high cost and difficulties in relation to the operation of this 

modification (security issues due to the high radiation level of the components) (King, 

2005). 

Surface Treatment: consist in a process that reverse the unfavorable residual stress field, 

leaving a compressive stresses on the surface. The presence of the compressive stress 

inhibits initiation and propagation of SCC. Among this method can be cited: weld overlay, 

induction heating stress improvement and mechanical stress improvement process, 

(Giannuzzi, et al., 2004). 

Water Chemistry Changes: mitigation can be obtained by implementing changes to the 

operating environment that reduces the material’s susceptibility to SCC. Among this 

method can be cited: addition of zinc, reduction of operating temperature and control of the 

dissolved hydrogen concentration (Andresen, Hickling, 2007). 

In recent years, it became evident that the dissolved hydrogen concentration added to the 

PWR primary circuit coolant can influence the nickel-based alloy stress corrosion cracking 

susceptibility by changing the thermodynamic equilibrium of nickel oxide (NiO) phase 

formation (Morton et al., 2001, Takiguchi et al., 2004). Given the fact that the corrosion 

potential of nickel-based alloys in deareted water is controlled by the H2/H2O reaction, 

which represents two related reactions: oxidation (2H+ + 2e-  H2) and reduction (H2 + 

2OH–  2H2O + 2e), and the line that representing this reaction is parallel to the 

metal/metal oxide (Ni/NiO) phase boundary (Figure 3) variations in the dissolved 

hydrogen concentrations can shift the corrosion potential making that this potential reach 

values close to the Ni/NiO phase transition (Attanasio & Morton, 2003, Andresen et al., 

2008).  
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Fig. 3. System Ni – H2O Pourbaix Diagram at 300ºC (Andresen, et al., 2008). 

Testing conducted by Attanasio and Morton (Attanasio & Morton, 2003) at various aqueous 
DH levels and temperatures has shown that a maximum in crack growth rate (CGR) occurs 
for nickel-based alloys in proximity to the Ni/NiO phase transition. Because the Ni/NiO 
boundary change with temperature the hydrogen level required to transit Ni/NiO 
boundary is not fixed. For nickel alloys at 325ºC the peak in crack growth rate occurs at a 
hydrogen content of about 10 cm3 H2 (STP).kg-1 H2O. As hydrogen concentration is 
increased from low values the growth rate begins to increase and then decrease, as shown 
schematically in Figure 4 (Andresen et al., 2005, Andresen et al., 2008). 
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Fig. 4. Predicted effect of hydrogen concentration on the nickel-based alloys crack growth 
rate (Andresen et al., 2008). 

Although many laboratory studies have been performed, the mechanistic basis for the effect 

of the primary water dissolved hydrogen on the susceptibility of nickel based alloys to SCC 

is still not yet completely understood. 

2. Effect of dissolved hydrogen on stress corrosion cracking of nickel weld 
alloy 182 

2.1 Experimental 

The alloy 182 material was retrieved from a J groove weld joint that was made by joining 

two thick plates (ASTM A-508 class 3 – 130 x 300 x 36 mm and AISI 316L – 130 x 300 x 31 

mm) with alloy 182, thus forming a dissimilar metal weld. The two base metals were used 

as received, AISI 316L in the rolled condition and ASTM A-508 class 3 in the forged 

condition. Five passes of buttering were applied on the ASTM A-508 class 3 plate by Gas 

Tungsten Arc Welding (GTAW) with Alloy 82 wire (AWS A5.14 ENiCr-3). The thickness 

of the buttering layer was about 8 mm. A chamfer was machined on the buttered side and 

the plate was subjected to a post weld heat treatment at 600ºC for 2 hours to relieve the 

residual stresses. The final weld joint was produced by three root passes by GTAW with 

alloy 82 filler and thirty-seven weld passes by Shielded Metal Arc Welding (SMAW) with 

an alloy 182 shielded electrode (A5.11 ENiCrFe-3). The chemical composition of both base 

metals and filler wires is shown in Table 1. Figure 5 shows the microstructure of the alloy 

182 weld joint. 
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 C Mn Si P S Cr Ni Nb Ti Mo 

316L 0.023 1.46 0.48 0.02 0.003 16.7 9.8 0.02 0.03 2.10 

A508 0.21 1.34 0.23 0.005 0.003 0.09 0.68 0.002 0.001 0.51 

182 0.05 6.16 0.34 0.01 0.009 14.3 70.3 2.07 0.05 0.24 

82 0.04 3.4 0.14 0.01 0.005 18.9 73 2.47 0.25 0.16 

Table 1. Chemical composition of the base and filler metals (wt%). (Fe – Bal.) 

 

Fig. 5. Microstructure of Alloy 182 weld joint. 

The finished weld joint (from now on referred to as Alloy 182 weld) was not heat-treated. It 
was submitted to nondestructive tests such as dye penetrant and radiographic tests, and no 
weld defects were revealed. Figure 6 shows a schematic of the weld design. The key welding 
parameters are summarized in Table 2. 

 

Fig. 6. Schematic of the weld design (dimensions in mm). 

Weld Pass Process Filler 
Metal 

Electrode 
Size (mm) 

Current (A) Voltage (V) Travel Speed 
(mm/s) 

Buttering GTAW 82 2.5 90 – 130 17.5 – 18 1.8 – 3.0 

1 - 3 GTAW 82 2.5 126 – 168 20 – 22 1 – 1.2 

4 - 37 SMAW 182 4 – 135 22 – 26 1 – 3.5 

Table 2. Welding parameters. 
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The influence of dissolved hydrogen on SCC susceptibility of the specimens was assessed by 
means of slow strain rate tensile (SSRT) test. The SSRT tests were carried out in accordance 
with ASTM G 129-95 standard (ASTM [American Society for Testing and Materials], 1995). 
The applied strain rate was 3x10-7 s–1, which is an adequate strain rate to promote SCC of 
Alloy 182 weld in PWR primary water environments (Totsuka et al., 2003). 

Specimens for the stress corrosion tests were taken from the Alloy 182 weld in the 
longitudinal direction using electro discharge machining (EDM). They were machined into 
tensile specimens with 25 mm gauge length and 4 mm gauge diameter (Figure 5), in 
conformity with ASTM G49-2000 and ASTM E8-2000 standards (ASTM, 2000a, ASTM, 
2000b). Prior to the test, the specimens gauge length surface was polished with # 2000 
silicon carbide (SiC) paper, degreased with acetone in an ultrasonic cleaner, washed with 
distilled water and finally dried in air. All the tests were performed at an open circuit 
potential (EOCP) and the specimens were exposed to the environment for at least 24 hours (h) 
before applying load to stabilize the surface oxide layer. Three testing were performed for 
each condition studied.  

 

Fig. 7. Slow Strain Rate Test specimen (dimensions in mm). 

The specimens were tested in simulated beginning-of-cycle PWR primary coolant 

environment (1000 ppm B as boric acid and 2 ppm Li as lithium hydroxide) at temperature 

of 325ºC and pressure of 12.5 MPa. Deionized water and analytical grade reagents were 

used. The test solution pH and conductivity at room temperature were 6.5 and 21 S.cm-1, 

respectively. The dissolved oxygen (DO) concentration was less than 5 ppb oxygen and it 

was obtained by bubbling pure nitrogen gas (N2) in the work tank. After the DO content 

was < 5 ppb, the desired DH level were adjusted by bubbling hydrogen gas (H2). Tests were 

carried out at the levels of dissolved hydrogen of 2, 10, 25 and 50 cm
3
 H2 (STP).kg

-1
 H2O. 

The SCC tests were conducted in 1.5 L type AISI 321 stainless steel autoclave, with a high 
temperature water circulation system. The facility was designed for SCC testing in 
simulated PWR or BWR environments. It is equipped with a servohydraulic loading system 
controlled by displacement or load. The displacement is measured by a linear variable 
differential transformer (LVDT) and the load is measured by a load cell. The autoclave is 
heated externally by an electric oven controlled continually by a proportional-integral-
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differential (PID) system. During the execution of the tests, on-line measurements of load, 
displacement, temperature, pressure, conductivity and oxygen concentration are taken. A 
software application developed in the LabVIEW environment is responsible for acquiring 
the data and for their graphic representation. Figure 8 shows a photo of the installation. 

 

Fig. 8. Photo of the installation of SCC tests. 

The susceptibility to SCC was evaluated by means of the ductility parameters obtained from 

the stress-strain curves and the fracture surface analyses. The fracture surfaces of the samples 

were examined using scanning electron microscope (SEM). All results were compared to 

baseline tests conducted in inert medium (N2 – nitrogen gas) at the same strain rate. The ratio 

of time to failure at test condition to baseline (tfsolution/tfN2) and the ratio of elongation at test 

condition to baseline (εsolution/εN2) were used as parameters to measure the degree of SCC 

susceptibility. In general, ratios near 100 indicate higher ductility and less susceptibility to SCC 

(ASTM, 1995, Nace [National Association of Corrosion Engineers], 2004). 

The SCC susceptibility was also estimated using SSRT crack growth rate, which is defined 

as: 

 SSRT crack growth rate = Crack length × SCC fracture ratio ÷ fracture time (1) 

The influence of dissolved hydrogen on Alloy 182 weld stress corrosion cracking behavior 

was also studied using electrochemical technique. For this purpose, open circuit potential 

(EOCP) versus time measurements were performed in 325ºC simulated PWR chemistry at 

hydrogen levels of 2, 10, 25 and 50 cm3 (STP) H2.kg-1 H2O. Specimens were cut from the 

Alloy 182 weld in the longitudinal direction using electro discharge machining (EDM). They 

were machined into cylindrical specimens (5 mm diameter and 10 mm length) were 

mechanically ground to a surface finishing equivalent to # 600 SiC paper. 
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The open circuit potential (EOCP) was measured after about 500 h of exposure. 

Measurements were conducted in a conventional three electrode cell. The electrochemical 

composition consisted of the working electrode, an yttrium stabilized zirconia (YSZ) 

electrode filled with a mixture of Ni/NiO powder and a platinum counter electrode (Figure 

9). A conversion factor of – 0.800 mV taken from Bosch´s work (Bosch et al., 2003) for the 

temperature an pH conditions of the test was used to convert the measured values to 

hydrogen electrode potential values (VSHE). The measurements were performed using a 

potentiostat system. 

 

 

 

 

 

Fig. 9. (a) Electrodes disposition in autoclave, A: work electrode, B: platinum counter 
electrode, C: yttrium stabilized zirconia (YSZ) reference electrode and (b) detail of yttrium 
stabilized zirconia (YSZ) reference electrode. 

2.2 Results and discussion 

The open circuit potential measurements results of Alloy 182 weld in 325ºC simulated PWR 

chemistry at hydrogen levels of 2, 10, 25 and 50 cm3 (STP) H2.kg-1 H2O are given in Figure 

10. It is important to note that at 10 cm3 (STP) H2.kg-1 H2O the potential took a longer time 

to stabilize, the EOCP was considered stabilized when no significant variation was 

observed. 
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Fig. 10. OCP measurements of Alloy 182 weld in 325ºC simulated PWR chemistry at 
hydrogen levels of 2, 10, 25 and 50 cm3 (STP) H2.kg-1 H2O. 

Figure 11 (a) shows the EOCP x pH diagram of nickel at 300ºC in pure water obtained from 
EPRI´s report (Andresen & Hickling, 2007) and Figure 11 (b) shows the relationship between 
the corresponding EOCP values obtained in this work for Alloy 182 weld in PWR 
environment as a function of the test solution pH (pH = 7) and the dissolved hydrogen level. 

 

Fig. 11. (a) Potential x pH diagram of nickel at 300ºC in pure water (Andresen & Hickling, 
2007), (b) detail of the corresponding EOCP values obtained for Alloy 182 weld in PWR 
environment to the line of Ni/NiO transition as a function of the pH of test solution (pH-7) 
and the dissolved hydrogen level. 
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It is observed that at 10 cm3 H2 (STP).kg-1 H2O the potential is closer to the Ni/NiO phase 
transition and at 50 cm3 H2 (STP).kg-1 H2O the potential is far away. Studies conducted for the 
nickel based alloys 600 and X-750 in pure water have shown that the influence of dissolved 
hydrogen on the SCC susceptibility may be related by the extent that the corrosion potential 

deviates from of the potential that corresponds to the transition of Ni/NiO (ECPNi/NiO). A 
maximum in SCC susceptibility is observed in a narrow region near the Ni/NiO phase 
transition (Totsuka et al., 2002, Attanasio & Morton, 2003, Andresen et al., 2008). 

Table 3 shows the values of ECPNi/NiO obtained in PWR solution at 325°C and 
concentrations of dissolved hydrogen of 2, 10, 25 and 50 cm3 H2 (STP).kg-1 H2O. In this table 

the value of ECPNi/NiO for 10 cm3 H2 (STP).kg-1 H2O was considered zero because of the 
proximity of the transition line Ni/NiO. The present result is in accordance with the 
thermodynamic model proposed by Attanasio and Morton (Attanasio & Morton, 2003). 
According to this model the concentration of DH at 325°C, which corresponds to this 
transition, is approximately 10 cm3 H2 (STP).kg-1 H2O. 

Test Enviroment EOCP (mVSHE) ECPNi/NiO (mVSHE) 

2(1) -717 -18 

10(1) -735 0 

25(1) -756 21 

50(1) -776 41 

Table 3. EOCP and ECPNi/NiO values obtained for Alloy 182 weld in PWR environment at 
325ºC as a function of the pH of test solution (pH-7) and the dissolved hydrogen level. (1) cm3 
H2 (STP)/kg H2O. 

The stress-strain curves obtained from SSRT for Alloy 182 weld in the DH levels and in the 
baseline conditions are presented in Figure 12. Table 4 summarizes the mechanical 
properties and Table 5 shows the results of time to failure ratio and elongation ratio of the 
specimens under the five different environments. 

 

Fig. 12. Stress - Strain curves of Alloy182 weld obtained from SSRT at 325º C, at strain rate of 
3x10-7 s-1 in PWR primary water condition with 2, 10, 25 and 50 cm3 H2 (STP).kg-1 H2O and 
baseline (N2 gas). 

www.intechopen.com



 
Alloy Steel – Properties and Use 

 

144 

Test 
Environment 

Yield Strength 
(MPa) 

Ultimate Tensile 
Strength 

UTS (MPa) 

Plastic Strain to 
Failure 
E (%) 

 Range Mean Range Mean Range Mean 

Baseline N2 
(gas) 

347 - 399 375 610 - 616 612 40 – 45 42 

2(1) 385 - 391 388 537 – 575 557 34 - 36 35 

10(1) 380 - 390 385 490 – 547 507 20 - 22 21 

25(1) 345 - 391 368 524 - 536 530 29 - 32 28 

50(1) 380 - 416 398 605 - 618 610 40 -44 42 

Table 4. Mechanical Properties obtained from SSRT test at 325ºC. (1) cm3 H2 (STP)/kg H2O. 

Test Environment Time to Failure 
(Hours) 

Tf solution/Tf N2 
(%) 

Esolution/EN2 
(%) 

(1) cm3 H2 (STP)/kg H2O. Range Mean   

Baseline N2 (gas) 367 - 418 391 - - 

2(1) 317 - 336 324 83 83 

10(1) 197 - 240 216 55 51 

25(1) 266 - 298 278 72 71 

50(1) 367 - 401 384 99 100 

Table 5. Time to failure and elongation ratios obtained from SSRT test at 325ºC.  

Note that at 10 cm3 H2 (STP).kg-1 H2O there was a reduction in the resistance limit and 

ductility of the material, the ultimate tensile strength was 21% lower than the baseline. This 

reduction was attributed to the SCC process that led to the weakness of the material. It can 

also be seen that the specimens exposed at 10 cm3 H2 (STP).kg-1 H2O presented the 

elongation and time to failure ratios lower than 100% indicating an effect of the environment 

on the material behavior and a higher susceptibility to SCC. At 50 cm3 H2 (STP).kg-1 H2O 

these values are close to 100% indicating the lower susceptibility to SCC. Figure 13 shows 

the SEM micrographs of the fracture surfaces of Alloy 182 weld tested in nitrogen gas at 

325°C. The fracture surface was completely ductile with extensive shear parts. 

 

 

Fig. 13. SEM micrographs of Alloy 182 weld fractured surface tested at 325°C in baseline (N2 
gas) and at strain rate of 3x10-7 s-1 (a) overview (b) detail (c) fraction of fracture. 
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The respective SEM micrographs of Alloy 182 weld tested at 2, 10 25 and 50 cm3 H2 
(STP).kg1 H2O are shown in Figures 14 to 17. All surfaces exhibit ductile fracture in the 
middle of the specimen and areas of brittle fracture at the edges, indicating crack initiation 
by SCC. The fracture mode was intergranular. The intergranular stress corrosion cracking 
(IGSCC) facets reached an average depth of 836 µm, 1300 µm, 1040 µm and 573 µm for 2, 10, 
25 and 50 cm3 H2 (STP).kg-1 H2O, respectively. The area of intergranular fracture decreased 
from 3.33 mm2 to 0.43 mm2 when the DH concentration in test solution increased from 10 to 
50 cm3 H2 (STP).kg-1 H2O. These results are consistent with the stress-strain curves obtained 
in SSRT, which indicates a higher susceptibility to SCC at 10 cm3 H2 (STP).kg-1 H2O. 

 

 

 

 

 

 

 

 

Fig. 14. SEM micrographs of Alloy 182 weld fractured surface of SSRT at 325ºC in PWR 
primary water with 2 cm3 H2 (STP).kg-1 H2O and at strain rate of 3x10-7 s-1 (a) overview (b) 
detail of ductile fracture (c) detail of IGSCC fracture failure (d) fraction of fracture. 
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Fig. 15. SEM micrographs of Alloy 182 weld fractured surface of SSRT at 325ºC in PWR 
primary water with 10 cm3 H2 (STP).kg-1 H2O and at strain rate of 3x10-7 s-1 (a) overview (b) 
detail of ductile fracture (c) detail of IGSCC fracture failure (d) fraction of fracture. 

 

Fig. 16. SEM micrographs of Alloy 182 weld fractured surface of SSRT at 325ºC in PWR 
primary water with 25 cm3 H2 (STP).kg-1 H2O and at strain rate of 3x10-7 s-1 (a) overview (b) 
detail of ductile fracture (c) detail of IGSCC fracture failure (d) fraction of fracture. 
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Fig. 17. SEM micrographs of Alloy 182 weld fractured surface of SSRT at 325ºC in PWR 
primary water with 50 cm3 H2 (STP).kg-1 H2O and at strain rate of 3x10-7 s-1 (a) overview (b) 
detail of ductile fracture (c) detail of IGSCC fracture failure (d) fraction of fracture. 

As shown in Figure 18, extensive secondary cracks in the gauge section were observed in the 
sample that was exposed to 10 cm3 H2 (STP).kg-1 H2O in direct contrast with the absence of 
secondary cracking observed at 50 cm3 H2 (STP).kg-1 H2O. According to Brown and Mills 
(Brown & Mills, 2003) the presence of secondary cracks on the gauge sections of the test 
samples are also indicative of the weakness of the material attributed to the SCC process, 
also indicating increased SCC susceptibility of Alloy 182 weld at 10 cm3 H2 (STP).kg-1 H2O. 

 

Fig. 18. Gauge section of the specimens tested in the four different environments. 
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Table 6 shows a summary of the crack growth rate for the four DH conditions calculated 
using Equation (1) and Figure 19 shows the relationship between dissolved hydrogen and 
crack growth rate obtained for concentrations of 2, 10, 25 and 50 cm3 H2 (STP).kg-1 H2O. 

DH 
cm3 H2 (STP) /kg 

H2O 

Deepest Crack 
(mm) 

AIGSCC 

(%) 
T failure 

(h) 
Crack Growth 
Rate (mm/s) 

2 0.84 14 324 1,3x10-7 

10 1.30 33 216 5,0x10-7 
25 1.04 20 278 2.1 x 10-7 
50 0.57 6 384 2.9 x 10-8 

Table 6. SSRT crack growth rate in 325ºC PWR primary water. 

 

Fig. 19. Relationship between dissolved hydrogen and crack growth rate for Alloy 182 weld 
in a PWR primary water with obtained for concentrations of 2, 10, 25 and 50 cm3 H2 
(STP).kg-1 H2O at 325ºC. 

It is observed that there is a maximum of the crack growth rate (CGR) plot at 10 cm3 H2 
(STP).kg-1 H2O and that this CGR maximum is 17 times higher than at 50 cm3 H2 (STP).kg-1 
H2O. The present results are consistent with the ECPNi/NiO values obtained in this work. It 
was observed that at 10 cm3 H2 (STP).kg-1 H2O the potential measured is near Ni/NiO phase 
transition, also indicating a higher susceptibility to SCC. While at 50 cm3 H2 (STP).kg-1 H2O 
the potential measured is well into the nickel metal regime, showing lower SCC 
susceptibility. 
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The present results suggest that in the normal range for operating PWRs (25–50 cm3 H2 

(STP).kg-1 H2O) the influence of hydrogen content on SCC was important. The crack growth 

rate at 25 cm3 H2 (STP).kg-1 H2O was 7 times higher than at 50 cm3 H2 (STP).kg-1 H2O. This 

result is consistent with that reported by Andresen et al., and Moshier, Paraventi for this 

range of hydrogen level (Andresen et al., 2009, Moshier & Pavarenti, 2005). 

Although the crack growth rates obtained in this work have been the result of testing and 

evaluating the susceptibility to SCC using the technique of SSRT, They are in agreement 

with studies by Andresen et al., Moshier, Paraventi, and Dozaki et al. (Andresen et al., 2008, 

Moshier & Pavarenti, 2005, Dozaki, et al., 2010) who used the constant load test (which 

require a period of time of about six months to be performed).   

3. Conclusion 

In the present study, a DMW with alloy 182 was made to reproduce a weld joint of a PWR 

pressurizer nozzle. The susceptibility of Alloy 182 weld to SCC in PWR primary water was 

studied in four levels of DH, 2, 10, 25 and 50 cm3 H2 (STP).kg-1 H2O. From this study the 

following remarks can be made: 

The OCP measurements enabled the quantification of the location of the nickel/nickel oxide 
(Ni/NiO) phase transition line for the Alloy 182 weld metal in PWR primary water at 
temperature of 325ºC. It was observed that the transition Ni/NiO occurs at potentials close 
to -740 mV. 

Whereas the influence of dissolved hydrogen in the Alloy 182 weld susceptibility to SCC can 

be described by the extent that the corrosion potential deviates from of the potential that 

corresponding to the transition of Ni/NiO (ECPNi/NiO) results indicated that a greater 

resistance of this material to SCC occurs at 50 cm3 H2 (STP).kg-1 H2O, followed by 2, 25 and 

10 cm3 H2 (STP).kg-1 H2O. 

The methodology developed using The SSRT test in assessing the Alloy 182 weld SCC 
susceptibility reproduced the same order of magnitude of the results obtained in constant 
load test, demonstrating its feasibility for obtained the CGR of this alloy in PWR primary 
water in less time and cost. 

Within the normal range for operating PWRs (25–50 cm3 H2 (STP).kg-1 H2O) the influence of 
hydrogen content on SCC was significant. The crack growth rate at 25 cm3 H2 (STP).kg-1 H2O 
was 7 times higher than at 50 cm3 H2 (STP).kg-1 H2O. It is well known from literature data that 
the stability of oxides formed on nickel-based alloys at high temperature water is influenced 
by the closeness to the Ni/NiO transition line. In this study it was observed that at 50 cm3 H2 
(STP).kg-1 H2O the potential is more cathodic and at this condition the measured potential is 
away from the Ni/NiO phase boundary. These results suggest less SCC susceptibility in DH 
content of 50 cm3 H2 (STP).kg-1 H2O. In view of that, control of dissolved hydrogen can be an 
effective countermeasure for the mitigation of SCC in PWR primary water. 
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