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1. Introduction 

Cutaneous malignant melanoma (CMM) is a serious type of cancer accounting for 75% of all 
deaths associated with skin cancer (Jerant et al., 2000). CMM incidence has dramatically 
increased in the past few decades and, recently, approximately 160,000 new cases of CMMs 
are diagnosed worldwide each year (Ries et al., 2003). In 2010, the American Cancer Society 
estimated that 68,130 cases of melanoma (38,870 males; 29,260 females) and 8,700 melanoma 
deaths (5,670 males; 3,030 females) were expected in the United States (American Cancer 
Society (ACS), 2010). In the United States, the lifetime risk for developing CMM has 
increased from 1 in 1500 in 1930 to 1 in 50 in 2010 (ACS, 2010; King, 2004). 
Proper staging of CMM is crucial for defining prognosis and for determining the optimal 
treatment approach. Several cancer staging systems are being used worldwide. One of the 
most common staging systems is the tumor-node-metastasis (TNM) classification 
established by the American Joint Committee on Cancer (AJCC) (Balch et al., 2001). The 
TNM system classifies CMM in three categories: (1) the size and extent of the primary tumor 
(T), (2) the involvement of regional lymph nodes (N) and, (3) the presence or absence of 
distant metastasis (M), determining CMM clinical Stage I, II, III, or IV. To remain current 
and relevant to clinical practice, the TNM classification is updated periodically based on 
advances in understanding of cancer prognosis. The latest revision of TNM (presented in the 
7th edition of the AJCC Cancer Staging Manual) is applied for cases diagnosed on or after 
January 1, 2010 (Edge et al., 2010). The CMM invasion depth known as the Breslow 
thickness (Breslow, 1970) in T category is the single most important factor for CMM staging 
and closely related to survival rate (Mihm et al., 1988). The five-year survival rate is 95%-
100% if CMM thickness is less than 1 mm, while the survival rate is reduced to 50% if the 
tumor thickness is greater than 4 mm (Figure 1).  
Current surgical treatment for primary CMM has often been an excision with a margin 
determined by CMM thickness (Table 1). Since the risk of local recurrence is dependent on 
CMM thickness, a narrow margin of 5 mm is recommended for in situ CMMs, 1 cm for 
tumors thinner than 1 mm, 1-2 cm for tumors between 1.01 and 2 mm, and 2 cm for tumors 
thicker than 2.01 mm (Sladden et al., 2009). Because sentinel lymph node highly correlates 
with the metastatic status of CMM, a sentinel lymph node dissection (SLND) procedure is 
also performed on patients with intermediate thickness (1-4 mm) lesions (Balch & Ross, 
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1999; Kanzler & Mraz-Gernhard, 2001). Therefore, detection of CMM thickness is clinically 
significant and essential for five-year survival rate and surgical margin determination. 
 

 

Fig. 1. CMM thickness and survival rate. Image adopted from Rubin., 2010. 

 

T Category 
Classification 

Breslow 
Thickness 
(mm) 

Ulceration Status 
/Mitoses 

Excision 
Margin (cm) 

TX  Primary tumor cannot be assessed  
T0   No evidence of primary tumor  
Tis   Melanoma in situ 0.5 

T1 ≤ 1.0 
Without ulceration or mitosis < 1 mm2 
With ulceration or mitosis > 1 mm2 

1 

T2 1.01-2.0 
Without ulceration  
With ulceration  

1-2 

T3 2.01-4.0 
Without ulceration  
With ulceration 

2 

T4 > 4.0 
Without ulceration  
With ulceration 

2 

Table 1. CMM classification in T category and current U.S. guidelines for excision margins. 

The current gold standard for CMM diagnosis and tumor thickness measurement is 
achieved by taking a small biopsy for standard histology (Gambichler et al., 2006). Biopsy 
and histology allows the visualization of structures in a vertical section of the skin (i.e., from 
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the epidermis through to the reticular dermis or even subcutaneous tissue). However, this 
procedure is invasive, time consuming and the sensitivity/specificity of CMM detection is 
highly dependent on location of biopsy. A real clinical need is recognized for non-invasive 
imaging techniques for in vivo evaluation of CMM. Currently, magnetic resonance imaging 
(MRI), computed tomography (CT), positron emission tomography (PET), high-frequency 
ultrasound (HFUS), optical coherence tomography (OCT), photoacoustic imaging (PAI), 
pulsed photothermal radiometry (PPTR), scanning confocal microscopy (SCM), multi-
photon luminescence microscopy (MPLM), second harmonic generation (SHG), 
dermoscopy, multispectral imaging (MSI), diffuse reflectance spectroscopy (DRS) and 
Raman spectroscopy (RS) or some combination of these are being investigated for non-
invasive diagnosis of CMM. Although MRI, CT and PET have the ability to identify nodal 
and distant metastasis, their routine use for localized CMM investigation is not indicated 
due to insufficient spatial resolution (King, 2004). Dermoscopy, MSI, DRS and RS are able to 
identify intrinsic differences between CMM, dysplastic nevi and normal skin but without 
providing the depth profile of CMM. SCM, MPLM and SHG provide the highest spatial 
resolution among all these imaging techniques and can also identify the morphological 
differences in CMM compared with dysplastic nevi. Moreover, SCM, MPLM and SHG have 
been successfully used to preoperatively delineate CMM lateral margins. However, the 
penetration depth of SCM, MPLM and SHG limits their use to detect depth margins of 
intermediate (1-4 mm) and more advanced (>4 mm) CMMs. HFUS, OCT, PAI and PPTR 
have spatial resolutions and penetration depths between MRI/CT/PET and 
SCM/MPLM/SHG, which underlines their potential applicability to not only diagnose 
CMM but also to detect lateral and depth margins.  
This chapter examines the evidence for use of non-invasive imaging techniques, in 
particular, MRI, CT, PET, HFUS, OCT, PAI, PPTR, SCM, MPLM and SHG, in CMM 
diagnosis as well as tumor lateral and depth margin detection for preoperative CMM 
staging and surgical margin definition. Comparison between these imaging techniques in 
terms of spatial resolution, penetration depth, sensitivity/specificity, correlation with 
histology and temporal monitoring (possibility to monitor CMM changes at multiple time 
points) are described and, recommendations for future studies are indicated. 

2. CMM imaging techniques 

2.1 Magnetic Resonance Imaging (MRI) 
Atomic nuclei in a magnetic field oscillate in the direction of the field at a specific frequency 
directly related to the field strength and the magnetic properties of the nuclei. If a pulse of 
current of the same frequency is applied to the coil surrounding the nuclei, an oscillating 
magnetic field is produced that creates a radio frequency within the coil. Magnetic field 
energy is absorbed by the nuclei and re-emitted as a radio-frequency signal immediately 
after the applied pulse. The re-emitted radio frequency energy is measured by the surface 
coil and reconstructed to form an MRI image (Baddeley, 1984). MRI has been widely 
employed in clinical oncology and introduced to examine cutaneous melanocytic and other 
types of skin lesions since 1989 (Zemtsov et al., 1989) due to good contrast between tumor 
regions and soft tissues (Totty et al., 1986; Weeks et al., 1985). The application of MRI to 
dermatology has become practical with the development and application of specialized 
surface coils that allow higher resolution imaging than standard MRI coils (Bittoun et al., 
1990; Hyde et al., 1987; Marghoob et al., 2003; Querleux et al., 1988, 1995; Rajeswari et al., 
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2003; Richard et al., 1991; Zemtsov et al., 1989). Although imaging thin cutaneous tumors 
(i.e., <1 mm) is not possible due to insufficient resolution, MRI was utilized to evaluate 
advanced skin tumors, particularly to determine the depth of malignant tumors and the 
degree of invasion. el Gammal et al combined a strong homogeneous magnetic field of 9.4 T 
with gradient fields of 11.7 G/cm and an imaging unit to obtain a voxel resolution of 
40×40×300 μm3, allowing differentiation between normal skin and skin tumors including 
CMMs (Figure 2) (el Gammal et al., 1996). Using this approach, a primary nodular 
melanoma with Breslow thickness of 1.65 mm was imaged. The tumor is visible in the image 
(Figure 2d) in the upper left part of the histological section. Skin layer, sub-layers and tumor 
were visualized by MRI (Figure 2c) with different signal contrast. An excellent correlation 
between MRI image and corresponding histological features was achieved.  
 

 

Fig. 2. (a,b) MRI and corresponding histology images, respectively, of normal skin from the 
upper leg of a 25-year-old man. (c,d) MRI and corresponding histology images, respectively, 
of primary nodular melanoma from the leg of a 31-year-old woman. (*) indicates the tumor 
location in (d) . Breslow thickness of the tumor was 1.65 mm. Scale bar is 1 mm. Image 
modified from el Gammal et al., 1996. 

Ono et al applied MRI to the diagnosis of malignant skin tumors and reported selected cases 
(Ono & Kaneko, 1995). A more advanced CMM with lateral dimensions of 36×26 mm2 was 
imaged (Figure 3). The MRI image (Figure 3a) was found to reflect precisely the actual 
morphology and tumor depth (Figure 3b). The reconstructed 3-D MRI image (Figure 3c) 
yielded accurate information regarding the relationship between tumor and its surrounding 
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tissue and also provided a 3-D view of the state of infiltration, useful for deciding on a 
resection area prior to surgery. MRI has also been used to image nodal and distant 
metastasis in a murine model (Foster et al., 2008) as well as different organs in humans 
(King, 2004). However, the availability and cost of MRI is a limiting factor. Therefore, 
although MRI is useful for advanced CMM thickness measurement and individual 
metastasis characterization, at present this approach is not a first-line investigation tool. 
 
 

 

Fig. 3. CMM on the left sole of a 67-year-old woman. (a) MRI image longitudinally 
sectioning the tumor demonstrated an irregularly convex and concave region at the thick 
base of the tumor. (b) Histological section of the tumor. (c) A reconstructed 3-D image 
prepared from MRI slices. (*) indicates the tumor location in (a). Image modified from Ono 
& Kaneko, 1995. 

2.2 Computed Tomography (CT) and Positron Emission Tomography (PET) 
CT produces images with contrast given by the attenuation of X-ray photons by differing 
body tissues, in a manner similar to conventional radiography (Baddeley, 1984). Because CT 
has comparable or lower resolution than MRI (Link et al., 2003), it is not indicated to 
diagnose patients with primary CMMs but rather metastasis. The identification of CMM 
metastasis is dependent on the morphologic alteration of tissue malignancy and, therefore, 
CT is insensitive at detecting small tumor masses. Chest CT is sensitive to detect nodules (<1 
cm), calcification within a nodule and to distinguish solitary from multiple pulmonary 
lesions (Armstrong et al., 2001; Halton, 1992). Although these findings are often non-specific 
for malignancy, they can provide a baseline scan allowing serial assessment of changes. 
Heaston et al showed that chest CT detected CMM metastasis in 19% of patients with 
normal chest X-ray (Heaston et al., 1983).  
PET, a whole-body imaging technique, is widely used in the diagnosis of metastatic cancer. 
In a PET imaging procedure, an isotopic tracer is injected and used to label cancer cells. 
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Fluoro-deoxy-glucose (FDG) is one of the most widely applied PET tracers used to survey 
cell metabolism (Gritters et al., 1993; Strobel et al., 2007; Wagner et al., 1999). Because 
metabolic characterization of tumor cells usually exceeds physiological metabolic activity, 
excessive FDG uptake has consequently been demonstrated in most cancers in vivo, making 
whole-body FDG-PET a sensitive indicator of metastatic CMM compared with conventional 
diagnostic imaging modalities (Blessing et al., 1995; Boni et al., 1995; Damian et al., 1996; 
Gritters et al., 1993; Macfarlane et al., 1998; Rinne et al., 1998; Steinert et al., 1995; Wagner et 
al., 1997). The improved sensitivity and potential cost-effectiveness of FDG-PET are rational 
arguments for PET staging of patients with recurrent CMM (Yao et al., 1994). The sensitivity 
of PET depends on the location and size of the tumor. A resolution of 4-6 mm is usual, 
which suggests that PET may lack the sensitivity to detect small nodular CMM metastasis 
that are usually 1-2 mm in size (Belhocine et al., 2006).  
As PET alone does not provide sufficient resolution to detect small CMM metastasis, it is 
usually used in combination with CT (Akcali et al., 2007; Essner et al., 2006), allowing 
mapping of PET images onto CT images acquired simultaneously (Figure 4). Reinhardt et al 
studied 251 patients with PET/CT and showed a sensitivity of 98.7% compared to 88.8% for 
PET alone and 69.7% for CT alone (Reinhardt et al., 2006). Moreover, Iagaru et al recently 
reported a study involving 163 patients and showed a sensitivity of 89%, and recommended 
the use of PET/CT in the evaluation of high-risk CMM metastasis (Iagaru et al., 2006). 
 

 

Fig. 4. 18F-fluorodeoxyglucose PET/CT for restaging of a 56-year-old patient with a 
superficial spreading melanoma of 4.3 mm depth at the right shoulder after resection of a 
lymph-node metastasis at the right neck. (a) CT, (b) PET and (c) fused PET/CT images 
showed two lymph-node metastasis infraclavicular, and PET showed an additional 
metastasis that was found to be localized in the right humerus head after image fusion. 
Image adopted from Reinhardt et al., 2006. 

2.3 High-frequency Ultrasound (HFUS) 
Ultrasound (US) uses a transducer to transmit sound pulses and to receive backscattered echo 
signals. Because the interfaces between tissues have different acoustic impedances and, 
therefore, different reflectivities, the received US signal contains boundary information of 
tissue with different elastic properties (T. Wang et al., 2011). US frequencies of 7.5-15 MHz are 
routinely used to visualize subcutaneous structures deeper than 1.5 cm including muscles, 
tendons, vessels and internal organs to identify pathologies or lesions (Aaslid et al., 2010; Shia 
et al., 2007; Tuzcu et al., 2010). The traditional US equipment used in the clinical environment 
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does not allow precise measurement of tissues due to insufficient spatial resolution (Ulrich et 
al., 1999). High-frequency ultrasound (HFUS), however, is capable of visualization of dermis 
(20 MHz) and even epidermis (50-100 MHz). The resolution of the image and depth of tissue 
penetration is largely dependent on the frequency of the US transducer. High-frequency 
scanners offer finer resolution (e.g., axial resolution of 50 μm and lateral resolution of 300 μm 
for a 20 MHz transducer) but poorer tissue penetration. HFUS at 20 MHz have been used with 
success to distinguish between benign skin lesions and CMM. Harland et al showed 100% 
sensitivity in distinguishing between 29 basal cell carcinomas and 25 CMMs (Harland et al., 
2000). Bessoud et al in a study involving 111 patients, identified 65 of 70 CMMs (81%). There 
was a 100% sensitivity and specificity for melanoma and 32% specificity for non-melanoma 
lesions (Bessoud et al., 2003). HFUS at 20 MHz has also been shown to allow preoperative 
assessment of CMM thickness that correlated well with histological measurement (Dummer et 
al., 1995; Hoffmann et al., 1992; Lassau et al., 1999; Serrone et al., 2002; Tacke et al., 1995). A 
prospective study and systematic review of literature from 1987 to 2007 on CMM thickness 
measurement using 20 MHz HFUS reported that measurement of CMM thickness was 
possible except for thin CMMs (<0.4 mm) in areas with marked photoaging, and in the case of 
very thick CMMs exceeding the explored depth (7.6 mm) (Figure 5a) (Machet et al., 2009). This 
study also demonstrated a linear correlation between ultrasound and histology in CMM 
thickness measurements (Figure 5b). Another study using 75 MHz HFUS, involving 112 
patients with suspicious CMMs, showed that 45 of 52 CMMs had clear hypoechogenic 
boundaries with tumor thicknesses ranging from 0 to 2.8 mm and correlation between HFUS 
measurement and histology was high (r=0.908) (Guitera et al., 2008).  
 

 

Fig. 5. (a) HFUS imaging of two CMM lesions. Lesions were generally hypoechoic and well 
demarcated from the dermis. (b) Linear relationship of CMM thickness between HFUS and 
histological measurements. Image adopted from Machet et al., 2009. 

2.4 Optical Coherence Tomography (OCT) 
OCT is an emerging diagnostic optical imaging technique that provides in vivo structure and 
function of tissues by measuring backscattered or backreflected light. OCT is based on the 
principle of Michelson interferometry. The light sources used for OCT imaging of skin are 
broad-band superluminescent diodes or tunable laser sources operating at a wavelength of 
about 1300 nm (Huang et al., 1991). The broad-band source leads to a small coherence length 
and achieves an axial and lateral resolution of approximately 15 μm and a penetration depth of 
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500 to 1000 μm (Olmedo et al., 2006; Welzel et al., 2003). OCT is a well established tool in 
ophthalmology (Welzel, 2003) and currently being advanced in dermatology (Fujimoto et al., 
1995; Gambichler et al., 2005; Welzel, 2001), particularly for the diagnosis of CMM (Marghoob 
et al., 2003). A study of CMM characterization by OCT examined a panel of CMMs and benign 
nevi and demonstrated that CMMs showed increased architectural disarray, less defined 
dermal-epidermal borders, and vertically oriented icicle-shaped structures not seen in nevi 
(Figure 6b,c) (Gambichler et al., 2007). A recent review of OCT investigation in dermatology 
also showed that the intact border between epidermis and dermis disappears in infiltrative 
growing CMM compared with healthy skin (Figure 6a) (Smith & MacNeil, 2011).  
 

 

Fig. 6. (a) OCT image of health human finger tip skin. Image adopted from Smith & 
MacNeil, 2011. (b,d) OCT image of a compound nevi and corresponding histology, 
respectively. OCT displays finger-shaped elongated and broadened rete ridges including 
dense cell clusters (<) (b). Dermoepidermal junction zone is relatively clearly demarcated 
from more or less dark-appearing papillary dermis (b). Besides, epidermal horn cyst is 
demonstrated both on histology and OCT (*) (b and d). (c,e)  OCT image of a superficial 
spreading CMM (0.91 mm) and corresponding histology, respectively. OCT (c) clearly 
displays marked architectural disarray including large vertically arranged icicle-shaped 
structures (*). Image adopted from Gambichler et al., 2007. 
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The utility of OCT for early-stage CMM thickness measurement (Figure 7) has not been fully 
established because correlation studies for CMM thickness determination by OCT and 
histology have not been reported. Furthermore, an important limitation of OCT is 
penetration depth. The maximum penetration depth of OCT is currently between 1-2 mm, 
dependent on the tissue type. Although the use of longer light wavelengths (e.g., 1750 nm) 
may improve penetration depth, no data is available to suggest that penetration depth 
greater than 4 mm is possible in the near future (Brezinski & Fujimoto, 1999). Therefore, 
OCT is currently not an established candidate for CMM thickness measurement. 
 

 

Fig. 7. OCT of 4 superficial spreading CMMs with Breslow thickness of (a) 0.45 mm, (b) 0.5 
mm, (c) 0.7 mm, and (d) 1.6 mm measured by histology. CMM thickness determination is 
hardly possible. Despite large icicle-shaped structures (*) (a and b) and a patchy or cloudy 
bright dermis was observed (^) (c and d). Image adopted from Gambichler et al., 2007. 

2.5 Photoacoustic Imaging (PAI) 
PAI is an emerging hybrid technique that detects absorbed photons ultrasonically through 
the photoacoustic effect (Sun & Diebold, 1992). When a short-pulsed radiant source (e.g., 
laser) irradiates biological tissues, wideband ultrasonic waves (referred to as photoacoustic 
waves) are induced as a result of transient thermoelastic expansion. Magnitude of the 
photoacoustic waves is proportional to the local optical energy deposition and, hence, the 
waves divulge physiologically specific optical absorption contrast. As energy deposition is 
related to optical absorption coefficient of chromophores, concentration of multiple 
chromophores can be quantified by varying the laser excitation wavelength. Tissues such as 
blood vessels and CMM, can be imaged by PAI with the spatial resolution of ultrasound, 
which is not limited by the strong light scattering in biological tissues (X. Wang et al., 2003). 
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Images of microvasculature as deep as 3 mm were demonstrated with high-resolution PAI 
(Maslov et al., 2005). Recently, Oh et al used high-resolution and high-contrast PAI in vivo 
with a near-infrared (NIR) (764 nm) and a visible (584 nm) pulsed laser source, respectively, 
to image the 3-D CMM distribution inside nude mouse skin and the vascular system 
surrounding the CMM including tumor-feeding vessels (Oh et al., 2006). Maximum CMM 
thickness (0.5 mm) was measured with a lateral resolution of 45 μm and an axial resolution 
of 15 μm (Figure 8). Detection of melanoma cells in circulation was also reported (Holan & 
Viator, 2008; Weight et al., 2006; Zharov et al., 2006). More recently, in a pilot study Song et 
al proposed that non-invasive in vivo spectroscopic PAI can map sentinel lymph node using 
gold nanorods as lymph node tracers in a rodent model (Song et al., 2009). 
 

 

Fig. 8. In vivo non-invasive photoacoustic images of CMM and vascular distribution in  
nude mouse skin. (a,b) Enface photoacoustic images for the NIR light source (764 nm) and 
visible light source (584 nm), respectively: 1, CMM; 2, vessels perpendicular to image plane; 
3, vessels horizontal to image plane; 4, skin. (c,d) Photoacoustic B-scan images from the NIR 
and visible light sources, respectively, for the dot lines in (a) and (b). (e) A cross-sectional 
histology image (H&E staining): E, epidermis; D, dermis; M, muscle. (f,g) Depthwise enface 
photoacoustic images from the NIR and visible light sources, respectively: A, 0.15-0.30 mm; 
B, 0.30-0.45 mm; C, 0.45-0.60 mm; D, 0.60-0.75 mm from the skin surface. Image adopted 
from Oh et al., 2006. (h) A composite of the two maximum amplitude projection (MAP) 
images projected along the z axis of a CMM region, where an MAP image is formed by 
projecting the maximum photoacoustic amplitudes along a direction to its orthogonal  
plane. Here, blood vessels are pseudocolored red in the 584 nm image and the CMM is 
pseudo-colored brown in the 764 nm image. As many as six orders of vessel branching  
can be observed in the image as indicated by numbers 1-6. (i) 3-D rendering of the CMM 
from the data acquired at 764 nm. Two MAP images at this wavelength projected along  
the x and y axes are shown on the two side walls, respectively. Image adopted from  
Zhang et al., 2006. 

2.6 Pulsed Photothermal Radiometry (PPTR) 
PPTR is a non-invasive technique that utilizes an infrared detector to measure radiometric 
temperature changes induced in a test material exposed to pulsed radiation. Heat generated as 
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a result of light absorption by subsurface chromophores in the test material diffuses to the 
surface and results in increased infrared emission levels. By collecting emitted radiation onto 
an infrared detector, a PPTR signal is obtained that represents the time evolution of 
temperature near the test-material surface. Useful information regarding the test material may 
be deduced from analysis of the PPTR signal. PPTR has been applied to depth profiling of 
strongly absorbing tissues and tissue phantoms (Milanič et al., 2007; Milner et al., 1996), 
including blood vessels in port wine stain (PWS) birthmarks in human skin (Li et al., 2004). 
Because different chromophore thicknesses can provide different laser induced initial 
temperature profiles and eventually produce different radiometric temperatures (T. Wang et 
al., 2009), the authors proposed that relationship between CMM thickness and detected 
radiometric temperature increase can be determined using PPTR in tissue phantoms 
mimicking CMM thicknesses from 120 µm to 2.8 mm (Figure 9) with a penetration depth of  
1.7 mm and axial resolution of 75 µm (T. Wang et al., 2011). However, further studies  
are needed to investigate the capability of PPTR in CMM thickness measurement in skin  
in vivo. 

2.7 Scanning Confocal Microscopy (SCM) 
SCM is a non-invasive imaging technique that permits in vivo examination of the epidermis 
and papillary dermis. The basic premise of SCM is the selective collection of light from a 
specific plane in tissue through a pinhole-sized aperture which allows for light collection 
from the single in-focus plane and the rejection of light from all out-of-focus planes (Nehal 
et al., 2008). SCM has been recently employed in CMM diagnosis (Gerger et al., 2005; 
Marghoob & Halpern, 2005), preoperative and intraoperative margin assessment (Busam et 
al., 2001), and followup for response to medical treatment (Ahmed & Berth-Jones, 2000; 
Cornejo et al., 2000; Langley et al., 2006; Tannous et al., 2000, 2002). Commercial SCM 
instruments have been developed that image with lateral resolution of 0.5 to 1.0 μm and an 
optical sectioning thickness of 1.0 to 5.0 μm, to a depth of 200 to 300 μm in human skin 
(depth of papillary dermis). The spatial resolution of SCM is determined by the pinhole size 
while imaging depth is limited by the laser wavelength (with a 488 nm laser imaging  
50-100 μm into skin (Gareau et al., 2007) and longer wavelengths lasers able to image at 
depths of up to 300 μm (Gonzalez & Gilaberte-Calzada, 2008; Marghoob et al., 2003; Nehal 
et al., 2008), providing images of the basement membrane down into the papillary dermis. 
SCM with an 830 nm light source is ideal for detecting CMM because melanin serves as an 
endogenous contrast agent. Melanin presence in melanocytic nevi and CMM provides 
strong contrast, thereby permitting the clear visualization of the architecture and outlines of 
cells (Gareau et al., 2008; Rajadhyaksha et al., 1995). SCM can be used in either fluorescence 
or reflectance modes (Meyer et al., 2006). While dermatological research tends to use 
fluorescence, clinical practice uses reflectance microscopy as this does not require 
fluorescent labeling of cells and tissues and, therefore, is more suitable for in vivo imaging. 
SCM criteria have been established to distinguish between CMMs and benign nevi (Gerger 
et al., 2005; Pellacani et al., 2007). Pellacani et al proposed a diagnostic algorithm that uses 2 
major (i.e., nonedged dermal papillae and cytologic atypia at the basal layer) and 4 minor 
criteria (i.e., roundish pagetoid cells, widespread pagetoid infiltration in the epidermis, 
nucleated cells within dermal papillae, and cerebriform cell clusters in the dermis) (Figure 
10) (Pellacani et al., 2005). The presence of at least 2 features, 1 major and 1 minor criterion, 
are required for a positive CMM diagnosis.  
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Fig. 9. (a) Measured radiometric temperature increase from PDMS tissue phantoms  
(top-layer is 120 µm-2.8 mm thick respectively - mimicking different CMM thicknesses).  
(b) Measured radiometric temperature increase in the window indicated in (a).  
(c) Simulated radiometric temperature increase. (d) Simulated radiometric temperature 
increase in the window indicated in (c). The dashed lines in (a,c) indicate when peak 
radiometric temperature increase decays to 37% of the maximum. (e) Decay time of the 
PDMS tissue phantoms with different top-layer thicknesses from experiment (square box) 
and simulation (dashed line). Image adopted from T. Wang et al., 2011. 
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Fig. 10. In vivo reflectance-mode SCM images of characteristic CMM (corresponding to 
major (a,b) and minor (c,d,e,f) criteria) and benign nevi features (g,h,i): (a) Marked cytologic 
atypia at basal cell layers. (b) Nonedged papillae at dermoepidermal junction. (c) Roundish 
cells in superficial layers spreading upward in pagetoid fashion (arrowheads). (d) Pagetoid 
cells widespread throughout lesion. (e) Cerebriform clusters in papillary dermis. (f) 
Nucleated cells within dermal papilla (arrowhead). Image adopted from Pellacani et al., 
2005. (g) Regular honeycombed and cobblestone pattern. (h) Regular junctional nests of cells 
(junctional cluster and junctional thickening); (i) Regular dense nests in the dermis. Image 
adopted from Pellacani et al., 2007. 

SCM is capable to identify the lateral margins of CMM when determining the precise 
margins by clinical Wood’s lamp or dermoscopic examination is virtually impossible. Chen 
et al reported a case of a patient with a recurrent CMM on the scalp that developed in a 
background of photodamage with diffuse melanocytic atypia and lentigines (Chen et al., 
2005). SCM was able to distinguish the adjacent normal skin from CMM and the lateral 
tumor margin was preoperatively determined by SCM and the tumor was excised 
accordingly (Figure 11). Another study by Curiel-Lewandrowski also demonstrated the 
feasibility of using SCM in preoperative and intraoperative surgical margin assessment of 
indistinct CMM lesions (Curiel-Lewandrowski et al., 2004). However, SCM detection of 

www.intechopen.com



 
Skin Cancer Overview 

 

122 

tumor depth margins is still difficult due to insufficient penetration depth. The high cost 
and sophisticated design of current SCM devices are considered to be major barriers. Efforts, 
such as miniaturizing the device and lowering the cost of production can facilitate wider 
adoption. 
 
 

 

Fig. 11. (d) shows the refined border of the lentigo malignant melanoma (LMM) as 
determined by SCM. The SCM-examined foci are numbered 1-16 and are color-coded to 
indicate areas that were negative (green) and positive (purple) for LMM on SCM images. 
Five pairs (marked in yellow) of these foci on either side of the border were biopsied for 
histological confirmation. (a), (b) and (c) are the confocal, histology and Melan-A 
immunostained sections of one representative area of normal skin (long arrow in (d)).  
(a) shows the epidermal layer and demonstrates the honeycomb pattern of keratinocytes 
and well-defined cell to cell demarcations which is the characteristic architecture of 
normal skin. (b,c) The haematoxylin and eosin (H&E)-stained and Melan-A-stained 
histological sections of normal skin, respectively. (e,f,g) Confocal, histology and Melan-A 
immunostained sections of one representative area of skin with LMM (long arrow in (d)). 
(e) shows the spinous layer and demonstrates pagetoid spread of atypical, dendritic 
melanocytes (short arrow), loss of the normal architecture and a grainy background-all 
features consistent with LMM. (f,g) H&E-stained and Melan-A-stained histological 
sections of LMM, respectively. The Melan-A staining (g) shows the dendrites of the 
melanoma cell and correlates with the dendritic malignant melanocyte (arrow) seen in (e). 
Image adopted from Chen et al., 2005. 
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2.8 Multi-photon Luminescence Microscopy (MPLM) and Second Harmonic 
Generation (SHG) 
MPLM is a rapidly developing imaging technique in the field of optical sectioning, which has 
been applied to tissue imaging with intrinsic fluorescence (Zipfel et al., 2003a, 2003b). 
Endogenous fluorophores such as melanin, elastin and collagen are sources of tissue 
fluorescence. MPLM of animal and human skin has been reported by So et al, Masters et al, 
Hendriks et al, König et al and Peuckert et al (Hendriks & Lucassen, 1999; König, 2000a, 2000b, 
2002; Masters et al., 1998; Peuckert et al., 2000; So & Kim, 1998). Teuchner et al reported MPLM 
detection of melanin fluorescence (Teuchner et al., 1999). MPLM excites fluorophores by a non-
linear multiphoton (e.g., two-photon) process, as opposed to the single photon excitation used 
in conventional microscopy. Two-photon excitation occurs when two photons of approximately 
half the one photon energy are absorbed nearly simultaneously by the fluorescent molecule. 
MPLM allows non-invasive tissue screening with subcellular spatial resolution. Wang et al 
demonstrated that lateral and axial resolution of MPLM can reach about 0.3 and 1 μm, 
respectively (H. Wang et al., 2005). Masters et al detected the autofluorescence of human skin in 
depths down to 200 μm (Masters et al., 1997). Figure 12 illustrates the effectiveness of MPLM in 
obtaining subcellular resolution images of CMM and normal skin (Dimitrow et al., 2009).  
 

 

Fig. 12. MPLM of healthy human skin (a,b,c,d) and melanoma (e,f,g) with subcellular 
resolution. Optical sections of healthy skin were captured at the same skin site, but at different 
tissue depths showing: (a) the stratum corneum, (b) the granular layer, (c) the stratum 
spinosum and (d) the dermoepidermal junction; Optical sections of melanoma: (e) The stratum 
corneum characterized by highly fluorescent melanocytes marked by white arrows. (f) The 
granular layer characterized by large intercellular distance. (g) The spinous layer characterized 
by poorly defined keratinocyte cell borders. Image modified from Dimitrow et al., 2009. 
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Similar to SCM, MPLM has the potential to precisely measure the lateral margins of CMM, 
however, limited penetration depth prevents use for tumor depth margin delineation. 
SHG (also called frequency doubling) is also a nonlinear optical process, in which photons 
interacting with a nonlinear material are effectively combined to form new photons with 
twice the energy and, therefore, twice the frequency and half the wavelength of the incident 
photons (Fine & Hansen, 1971; Roth & Freund, 1979; Theodossiou et al., 2006). Because SHG 
excitation wavelength is off the resonance wavelength of chromophores in tissue, less 
energy is absorbed, and hence, negligible thermal or photodamage is observed (Lohela & 
Werb, 2010). Recently, SHG imaging has been employed to detect noncentrosymmetric 
crystalline structures (e.g., collagen) in tissues (Campagnola et al., 2001; Cox et al., 2003; Lim 
et al., 2010; H. Wang et al., 2009). Thrasivoulou et al demonstrated that SHG imaging 
showed detailed collagen distribution in healthy skin, with total absence of SHG signal 
(fibrillar collagen) within the melanoma-invaded tissue (Figure 13) (Thrasivoulou et al., 
2011). The presence or absence of SHG signal changed dramatically at the borders of CMM, 
allowing accurate demarcation of CMM margins that strongly correlated with H&E and 
Melan-A defined margins (p<0.002). 
 
 

 
 

Fig. 13. (a) SHG imaging of healthy, ex vivo, human skin sample showing collagen 
morphology throughout the entire thickness when imaged from the epidermis, in the 
transmission (red) and backscattered (green) geometry. The whole thickness of  
epidermis and dermis to depths of approximately 300 μm in the backscattered geometry and 
over 1000 μm in the transmission geometry were imaged, respectively. Montage of SHG 
images of CMM in (b) transmission, (c) backscattered geometry, and (d) bright-field  
image. (e) Superimposed image of bright-field and SHG images indicates collagen 
distribution within each section. (*) indicates the CMM location in (e). Image modified from 
Thrasivoulou et al., 2011. 
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2.9 Dermoscopy 
Dermoscopy (also called dermatoscopy, skin surface microscopy, epiluminescence 
microscopy) is a non-invasive technique for the early recognition of CMM. Dermoscopy was 
first introduced to evaluate pigmented lesions in 1971 (MacKie, 1971), studied rigorously in 
Europe and Australia during the 1980s and 1990s (Argenziano et al., 1998), and adopted 
slowly in the United States in recent years (Tripp et al., 2002). To date, dermoscopic and 
histologic correlations and algorithms for dermoscopic diagnosis of CMM have been 
established (Argenziano et al., 2003; Henning et al., 2007). Two types of dermoscopes are 
currently available: (1) nonpolarized dermoscope (NPD) and (2) polarized dermoscope (PD). 
NPD uses liquid (e.g., oil, water, or alcohol gel) to cover the lesion, which decreases light 
reflection, refraction, and diffraction, makes the epidermis essentially translucent and allows 
for visualization of subsurface anatomic structures of the epidermis and papillary dermis 
(Figure 14). PD uses a polarizer that preferentially captures backscattered light from below 
the surface of the skin. The liquid or direct contact with the skin is not needed. However, 
some subset of CMMs (e.g., amelanotic/hypomelanotic CMMs that lack pigmentations and 
dermoscopic structures) are difficult to diagnose with dermoscopy and, thus, impossible to 
determine lateral margins by dermoscopy. Although a dermoscopic image can show 
subsurface structures of CMM, this approach is a 2-D imaging technique that cannot obtain 
a depth profile of the lesion. Therefore, depth margins of melanoma are not provided by 
dermoscopy.  
 
 

 

Fig. 14. Superficial spreading CMM viewed with dermoscopy (large panel) and with the 
unaided eye (inset panel). Compared with the unaided eye, dermoscopy reveals several 
additional structural features, which are typical of CMM, including irregular dots and 
irregular extensions (pseudopods) in the periphery and a blue-whitish veil. Image adopted 
from Kittler et al., 2002. 

2.10 Multispectral Imaging (MSI), Diffuse Reflectance Spectroscopy (DRS) and Raman 
Spectroscopy (RS) 
MSI has been widely used in the fields of astronomy and remote sensing (Colarusso et al., 
1998; Curran, 1994) and, recently, is being applied to the field of biology and medicine 
(Johnson et al., 2007; Mansfield et al., 2005; Weber et al., 2011). An essential part of an MSI 
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microscope is a spectral dispersion element that separates incident light into its spectral 
components (i.e., 400-1000 nm) (Bearman & Levenson, 2003). MSI of skin acquires spectrally 
resolved information at each pixel of a multispectral image, providing information on the 
distributions of collagen, melanin content and blood vessels within skin lesions (Marchesini, 
1991, 1992). Carrara et al developed an algorithm for the automatic segmentation of 
multispectral images of 1856 cutaneous pigmented lesions including 264 CMMs, which 
successfully detected lateral margins of the lesions with a contour accuracy of 97.1% 
(Carrara et al., 2005). Marchesini et al reported that MSI and an artificial neural network 
could be used in the preoperative evaluation of CMM thickness with sensitivity (i.e., 
CMM≥0.75 mm thick correctly classified) and specificity (i.e., CMM<0.75 mm thick correctly 
classified) ranging from 76 to 90% and from 91 to 74%, respectively (Marchesini et al., 2007).  
DRS (also called elastic scattering spectroscopy) measures the spectral modification of 
remitted light (i.e., light that has propagated some distance into the skin, been scattered, and 
recollected at skin surface). DRS was first introduced as a single-point measurement 
technique by Marchesini et al in 1992 to study CMM and nevus with a 5 mm probe 
(Marchesini et al., 1992). Wallace et al later reported that DRS in the wavelength range 320-
1100 nm had the potential for improving the differential diagnosis of CMM from benign 
pigmented skin lesions (Wallace, 2000a, 2000b). However, further prospective study of DRS 
is needed to investigate its capability to detect tumor margins. 
RS is a non-invasive imaging technique that has been widely used for the past 70 years for 
nondestructive chemical analysis. RS is based on the principle of Raman scattering, the 
inelastic scattering of electromagnetic radiation. The Raman scattering effect is caused by 
molecular vibrations in the irradiated sample and thus gives information about the structure of 
the molecules. Earlier studies have shown that samples of various benign skin lesions and 
nonmelanoma skin cancer have characteristic Raman spectra (Gniadecka et al., 1997a, 1997b, 
1998). Recent studies on basal cell carcinoma by RS demonstrated its feasibility to distinguish 
malignant tissue from healthy surrounding tissue (Nijssen et al., 2002). More recently, 
Gniadecka et al developed a neural network system for the automated classification of Raman 
spectra, allowing CMM differentiation from other clinically similar skin tumors (Gniadecka et 
al., 2004). Therefore, RS is potentially capable of demarcating lateral margins of CMM. 
In contrast to other imaging techniques (e.g., dermoscopy), MSI, DRS and RS are more 
objective and not observer dependent. However, similar to demoscopy, MSI, DRS and RS 
are also 2-D imaging techniques that cannot image the depth profile of CMM directly. 
Therefore, detection of depth margins of CMM by MSI, DRS or RS is hardly possible. 

3. Conclusion 

Early detection and surgical resection can reduce CMM mortality. To this end, several non-
invasive imaging techniques have been developed to realize CMM screening, early 
diagnosis, preoperative tumor staging, surgical margin definition and in vivo tumor 
monitoring over multiple time points. Currently available instruments include MRI, CT, 
PET, HFUS, OCT, PAI, PPTR, SCM, MPLM, SHG, dermoscopy, MSI, DRS and RS. 
Dermoscopy, MSI, DRS and RS are useful in the evaluation of superficial CMMs, but they 
are not depth resolved. PET/CT do not have the resolution to detect early stage CMMs  
(e.g., <1 mm). They can, however, be used to detect tumor metastasis. MRI has comparable 
or higher resolution than CT and, hence, is suited to imaging advanced tumor invasion  
(e.g., >1 mm). SCM, MPLM and SHG provide physicians with an unprecedented capability 
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to visualize a CMM lesion at a detail comparable to histology, but their imaging depths are 
limited to several hundred micrometers from skin surface, preventing them from detection 
of CMM depth margins beyond penetration depth. HFUS, OCT, PAI and PPTR have spatial 
resolutions and penetration depths between MRI/CT/PET and SCM/MPLM/SHG, 
therefore, they are potentially capable of detecting both lateral and depth margins of CMMs. 
A comparison of spatial resolution, penetration depth, sensitivity/specificity, correlation 
with histology and temporal monitoring (possibility to monitor CMM changes at multiple 
time points) of the imaging techniques discussed are summarized in Table 2 below.  
From a clinical perspective, sensitivity and specificity studies of CMM diagnosis by 
MRI/CT/PET, HFUS, SCM/MPLM and dermoscopy/MSI/DRS/RS having been 
performed. Although sensitivity and specificity of OCT, PAI, PPTR and SHG on human 
CMM diagnosis are not yet established, they are promising imaging techniques that need 
further investigation on not only CMM diagnosis but also tumor lateral and depth margin 
delineation. To date, surgical resection is the major treatment for primary CMMs, which 
significantly increases the five-year survival rate. Surgical margins are currently determined 
by CMM thickness measured from biopsy with histology – the gold standard. The imaging 
techniques discussed, however, have the potential to non-invasively measure CMM 
thickness and detect tumor margins, and even guide CMM surgical resection in real time, 
which will reduce unnecessary biopsies and, eventually replace this invasive approach. 
Because each of these imaging techniques has advantages and shortcomings, the best 
performing imaging tool for CMM evaluation is a combination of different imaging 
techniques – although at increased cost. A multimodal imaging tool will significantly 
improve the accuracy of CMM identification as well as the precision of surgical margin 
definition, which would achieve the five-year survival rate currently determined by biopsy-
based surgical resection. 
 

Imaging 
Techniques 

Spatial 
Resolution 
(Lateral/Axial)

Penetration 
Depth 

Sensitivity/Specificity 
in CMM Diagnosis 

Correlation 
(R) with 
Histology

Temporal 
Monitoring 

MRI 
0.04-0.5 mm/  
0.3-0.5 mm† 

Whole body 79.8%/76.4%遖 NA Yes 

CT 
0.1-0.29 mm/ 
0.1-1 mm$ 

Whole body 77.1%/69.9%遖 NA Yes 

PET 
1-4 mm/  
1-4 mm* 

Whole body 70.4%/83.7%遖 NA Yes 

HFUS 
20-300 μm/  
20-50 μm§ 

4-7.6 mm§  100%/32%遘 >0.96遘 Yes 

OCT 
10 μm/ 10-20 
μm¶ 

1-2 mm NA NA Yes 

PAI 45 μm/15 μm 3 mm NA NA Possible 

PPTR 50 μm/75 μm 1.7 mm NA NA Possible 

SCM 
0.5-1 μm/  
1-5 μm 

200-300 μm 91%/99%遞 NA Possible 

MPLM 0.3 μm/1 μm 200 μm 84%/76%遨 NA Possible 
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Imaging 
Techniques 

Spatial 
Resolution 
(Lateral/Axial)

Penetration 
Depth 

Sensitivity/Specificity 
in CMM Diagnosis 

Correlation 
(R) with 
Histology

Temporal 
Monitoring 

SHG 
0.5 μm/ 
1-1.9 μmδ 

550 μmǇ NA 0.9924遯 Possible 

Dermoscopy 20 μm/NAǇ NA 96.3%/70.4%遶 NA Yes 

MSI 30 μm/NAǈ NA 76-90%/91-74%隨 0.33隨 Possible 

DRS 200 μm/NAκ NA 100%/84.4%遲 NA Possible 

RS 100 μm/NAμ NA 85%/99%邂 NA Possible 

† Lateral resolution varies from 0.04 (9.4 T) to 0.7 mm (3 T), axial resolution varies from 0.3 (9.4 T) to  
0.5 mm (3 T) (Gammal et al., 1996; Schick, 2005). 
$ Lateral resolution varies from 0.1 (micro-CT) to 0.29 mm (conventional CT), axial resolution varies 
from 0.1 (micro-CT) to 1 mm (conventional CT) (Badea et al., 2004; Schroeder et al., 2001). 
* Both lateral and axial resolution vary from nearly 1 mm FWHM (2 mm FWTM) for a 10-20 cm 
diameter system typical for animal studies with 18F to roughly 4 mm FWHM (7 mm FWTM) for an  
80 cm diameter system typical for human imaging using 15O (Levin & Hoffman, 1999). 
§ Lateral resolution varies from 20 (100 MHz) to 300 μm (20 MHz), axial resolution varies from 20  
(100 MHz) to 50 μm (20 MHz), penetration depth varies from 4 (100 MHz) to 7.6 mm (20 MHz) 
(Harland et al., 1993; Passmann & Ermert, 1999; Pavlin et al., 1990). 
¶ Lateral resolution can be 10 μm or better, axial resolution varies from 10 to 20 μm (Ding et al., 2002; 
Schenk & Brezinski, 2002). 
δ Axial resolution varies from 1 to 1.9 μm (Campagnola et al., 2002; Moreaux et al., 2000). 
Ǉ Lateral resolution is 20 μm with no axial resolution (Kopf et al., 1997). 
ǈ Lateral resolution is 30 μm with no axial resolution (Marchesini et al., 2007). 
κ Lateral resolution is limited by the fiber size, no axial resolution is available (Häggblad et al., 2010). 
μ Lateral resolution is limited by the laser spot size, no axial resolution is available (Gniadecka et al., 2004). 遖 420 stage III/IV melanoma lesions from 64 patients were examined by MRI, CT and PET respectively 
(Pfannenberg et al., 2007). 遘 114 pigmented skin lesions including 65 CMMs were examined by 20 MHz HFUS, ultrasound and 
histological measurement of melanoma thickness strongly correlated (Bessoud et al., 2003). 遞 162 skin lesions including 27 CMMs were examined by SCM (Gerger et al., 2006).  遨 100 melanocytic skin lesions including 26 CMMs from 83 patients were examined by MPLM 
(Dimitrow et al., 2009). 遯 Correlation of collagen fiber density was examined from mid-point of CMM lesion to deep area of 
non-lesion skin (Thrasivoulou et al., 2011). 遶 128 pigmented skin lesions including 33 CMMs were examined by dermoscopy and ABCD diagnosis 
rule (Argenziano et al., 2003). 隨 1939 pigmented skin lesions including 250 CMMs were examined by MSI, the correlation coefficient 
value between tumor thickness and area is not so great to fully assess that lesion dimension increases 
with thickness (Marchesini et al., 2007). 遲 15 CMMs and 32 compound naevi were examined by DRS (Wallace, 2000a). 邂 134 pigmented skin lesions including 22 CMMs were examined by RS and neural network analysis 
(Gniadecka et al., 2004). 

Table 2. Comparison of non-invasive imaging techniques for CMM diagnosis and tumor 
margin detection in terms of spatial resolution, penetration depth, sensitivity/specificity, 
correlation with histology and temporal monitoring (possibility to monitor CMM changes at 
multiple time points) 
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