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1. Introduction  

Urinary trypsin inhibitor (UTI), a serine protease inhibitor, has been widely (and sometimes 
experiencely) used as a supportive drug for patients with inflammatory disorders such as 
pancreatitis, shock, and disseminated intravascular coagulation (DIC). Also, previous in 
vitro studies have demonstrated that serine protease inhibitors may have anti-inflammatory 
properties at sites of inflammation. However, the therapeutic effects of UTI in vivo remain 
unclarified, since commercial UTI have been developed to act against human, with the 
activity and selectivity toward the relevant animal UTI being less characterized. In this 
review, we introduce the roles of UTI mainly in experimental endotoxin 
(lipopolysaccharide: LPS)-related inflammatory disorders using UTI-deficient (-/-) and 
corresponding wild-type (WT) mice. Our experiments employing genetic approach suggest 
that endogenous UTI can serve protection against the systemic inflammatory response and 
subsequent organ injury induced by LPS, at least partly, through the inhibition of 
proinflammatory cytokine and chemokine expression, which provide important in vivo 
evidence and understanding about a protective role of UTI in inflammatory conditions. 
Using genetically targeted mice selectively lacking UTI, UTI has been evidenced to provide 
an attractive “rescue” therapeutic option for endotoxin-related inflammatory disorders such 
as DIC, acute lung injury, and acute liver injury. 

2. General characteristics of UTI and clinical utility 

UTI, also referred to as ulinastatin, HI-30, ASPI, or bikunin, is an acidic glycoprotein with a 
molecular weight of 30 kDa by SDS-polyacrylamide gel electrophoresis. UTI is a multivalent 
Kunitz-type serine protease inhibitor found in human urine and blood [1]. It is composed of 
143 amino acid residues and its sequence includes two Kunitz-type domains (Fig. 1). UTI is 
produced by hepatocytes as a precursor in which UTI is linked to ͉1-microgloblin [2, 3]. In 

hepatocytes, different types of UTI-containing proteins are formed by the assembly of UTI 
with one or two of the three evolutionarily related heavy chains (HC) 1, HC 2, and HC 3, 

www.intechopen.com



 
Inflammatory Diseases – A Modern Perspective 4 

through a chondroitin sulfate chain [4]; these proteins comprise inter-͉-inhibitor (I͉I) 

family members, including I͉I, pre-͉-inhibitor (P͉I), inter-͉-like inhibitor (I͉LI), and 

free UTI. I͉I, p͉I, and I͉LI are composed of HC1 + HC2 + UTI, HC3 + UTI, and HC2 + 

UTI, respectively [5, 6]. Its specific activity was 2,613 U/mg protein, one unit being the 
amount necessary to inhibit the activity of 2μg trypsin (3,200 NFU/mg, Canada Packers) by 

50% [7]. During inflammation, UTI is cleaved from I͉I family proteins through proteolytic 

cleavage by neutrophil elastase in the peripheral circulation or at the inflammatory site [8-
11]. Therefore, plasma UTI has been considered to be one of the acute phase reactions and 
indeed, the plasma UTI level and its gene expression alter in severe inflammatory 
conditions [9]. Further, UTI is rapidly released into urine when infection occurs and is an 
excellent inflammatory marker, constituting most of the urinary anti-trypsin activity [12]. 
Various serine proteases such as trypsin, thrombin, chymotrypsin, kallikrein, plasmin, 

 

 

Fig. 1. Molecular structure of urinary trypsin inhibitor (UTI). 
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chymotrypsin, kallikrein, plasmin, elastase, cathepsin, and Factors IXa, Xa, XIa, and XlIa are 
inhibited by UTI [13, 14]. Furthermore, UTI can reportedly suppress urokinase-type 
plasminogen activator (uPA) expression through the inhibition of protein kinase C (PKC) 
[15, 16]. UTI appears to prevent organ injury by inhibiting the activity of these proteases [17, 
18]. Based on the multivalent nature of protease inhibition, clinically, UTI is widely used, 
especially in Japan, to treat acute pancreatitis including post-endoscopic retrograde 
cholangiopancreatography pancreatitis, in which proteases are thought to play a 
pathophysiological role [19]; however, current understanding as for the target 
mechanisms/pathways remains limited. 

3. Anti-inflammatory potential of UTI in in vitro, in vivo, and humans 

Beyond its inhibition of inflammatory proteases mentioned above, UTI exhibits anti-

inflammatory activity and suppresses the infiltration of neutrophils and release of elastase 

and chemical mediators from them [11, 20, 21]. Likewise, UTI reportedly inhibits the 

production of tumor necrosis factor (TNF)-ǂ[22, 23] and interleukin (IL)-1 [23] in LPS-

stimulated human monocytes and LPS- or neutrophil elastase-stimulated IL-8 gene 

expression in HL60 cells [24] or bronchial epithelial cells [25] in vitro. Matsuzaki et al. 

demonstrated that UTI inhibits LPS-induced TNF-ǂ and subsequent IL-1ǃ and IL-6 

induction by macrophages, at least partly, through the suppression of mitogen-activated 

protein kinase (MAPK) signaling pathways such as ERK1/2, JNK, and p38 in vitro [26]. 

Nakatani and colleagues demonstrated that UTI inhibits neutrophil-mediated endothelial 

cell injury in vitro, suggesting that UTI can act directly/indirectly on neutrophils and 

suppress the production and secretion of activated elastase from them [21]. Furthermore, 

UTI down-regulates stimulated arachidonic acid metabolism such as thromboxane B2 

production in vitro [27], which plays a role in the pathogenesis of sepsis [28]. 

A large number of in vivo reports have provided evidence that UTI protects against 

pathological traits related to septic shock induced by gram-negative bacteria: UTI reduces 

LPS-elicited circulatory failure such as hypotension, lactic acidosis, and hyperglycemia [29-

31] through modulating TNF-ǂ production via the inhibition of early growth response factor 

(Egr)-1 in monocytes and pulmonary induction of inducible nitric oxide synthase (iNOS) 

[29] and reduces mortality caused by sepsis [32]. Also, UTI can alleviate coagulatory 

disturbance accompanied by sepsis such as an increase in the serum level of fibrinogen and 

fibrinogen degradation products [33]. Likewise, UTI has a protective effect against ischemia-

reperfusion injury in the liver [35], kidney [36], heart [37], and lung [38] in vivo via the 

actions of its radical scavenging elements [39]. As for its mechanism, UTI reduces C-X-C 

chemotactic molecule production during liver ischemia/reperfusion in vivo [40]. In humans, 

prepump administration (5,000 U/kg) of UTI reportedly improves cardiopulmonary 

bypass-induced hemodynamic instability and pulmonary dysfunction through the 

attenuation of IL-6 and IL-8 production/release in humans [41]. Also, UTI can inhibit 

coagulatory activation accompanied by severe inflammation such as tissue factor (TF) 

expression on monocytes in vitro and in vivo [33] as well as coagulation and fibrinolysis 

during surgery in humans [42].     

Koizumi et al. have shown that UTI prevents experimental crescentic glomerulonephritis in 

rats, at least in part, by inhibiting the intraglomerular infiltration of inflammatory cells [50]. 

Interestingly, Tsujimura and colleagues reported a case of infectious interstitial pneumonia 
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associated with mixed connective tissue disease, in whom the bolus infusion of UTI improved 

the pathology [52]. Also, Komori et al. illustrated that UTI improves peripheral microcirculation 

and relieves bronchospasm associated with systemic anaphylaxis in rabbits [53].  

Moreover, UTI has been shown to down-regulate the expression of the cancer metastasis-
associated molecules uPA and uPA receptor (uPAR) possibly through MAPK- dependent 
signaling cascades in vitro and in vivo [61, 62]. In addition, UTI has anti-inflammatory effects 
against several forms of malignancy in vitro [58, 63]. These studies suggest that UTI is a 
candidate anti-cancer drug, although further studies are required in the future.  

4. In vivo mouse model supporting role of UTI in physiologic and pathologic 
conditions 

4.1 Generation of UTI-gene knockout mouse 
To further investigate the physiobiological functions of UTI in vivo, we generated UTI (-/-) 
mice [64]. UTI (-/-) mice were produced as follows: a targeting vector was designed to 
disrupt the exons encoding UTI, leaving the exons encoding ͉1m intact. Germline 

transmission was observed in 3 chimeric male mice derived from 3 independent targeted ES 
clones. We generated mice that were homozygous for the mutant UTI gene (UTI [-/-] mice) 
by intercrossing the heterozygous mice. Under specific pathogen-free conditions, UTI (-/-) 
mice were born and developed normally. They grew to a normal body size and showed no 
apparent behavioral abnormalities. A histological study of various organs revealed no 
apparent differences between wild-type (WT) and UTI (-/-) mice. The ages at vaginal 
opening during postnatal development and the estrous cycle of UTI (-/-) female mice 
determined by the vaginal smear method were also normal [64].   
Thereafter, we conducted a series of studies on the role of UTI in the inflammation related to 

LPS using the UTI (-/-) mice.  

4.2 Protective role of UTI in systemic inflammation  

In a study [65], both UTI (-/-) and wild-type (C57/BL6: WT) mice were injected 

intraperitoneally (i.p.) with vehicle or LPS at a dose of 1 mg/kg body weight. Evaluation of 

the coagulatory and fibrinolytic parameters and white blood cell (WBC) counts at 72 hours 

after i.p. challenge showed that fibrinogen levels were significantly greater in LPS- than in 

vehicle-challenged mice with the same genotypes. In the presence of LPS, however, they 

were also significantly higher in UTI (-/-) than in WT mice. WBC counts significantly 

decreased after LPS challenge in UTI (-/-) mice. In the presence of LPS, the prothrombin 

time was significantly shorter in UTI (-/-) than in WT mice. Furthermore, histopathological 

changes in the lung, kidney, and liver of both genotypes after LPS challenge revealed severe 

neutrophilic inflammation in UTI (-/-) lungs challenged with LPS, whereas little neutrophilic 

infiltration was found in LPS-treated WT mice. The overall trend was similar regarding 

findings in the kidney and liver.  

The protein expression levels of proinflammatory molecules such as macrophage 

chemoattractant protein (MCP)-1 in the lungs, MCP-1 and keratinocyte-derived 

chemoattractant (KC) in the kidneys, and IL-1͊, macrophage inflammatory protein (MIP)-2, 

MCP-1, and KC in the livers, were significantly greater in UTI (-/-) than in WT mice after 

LPS challenge. These results indicate that UTI protects against systemic inflammation 

induced by the intraperitoneal administration of LPS, at least partly, through the inhibition 
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of proinflamatory cytokine production/release [65], suggesting that UTI may be therapeutic 

against sepsis in humans.  

4.3 Protective role of UTI in acute lung inflammation  

A previous study showed that UTI improves acute lung injury in vivo [66]; however, no 
evidence has been reported using a genetic approach. In another series of studies [67, 68], 
therefore, UTI (-/-) and WT mice were intratracheally treated with vehicle or LPS 
(125μg/kg), and sacrificed 24 hours later. In both genotypes, LPS treatment induced 
significant increases in the numbers of total cells and neutrophils in bronchoalveolar lavage 
(BAL) fluid as compared with vehicle treatment, which was significantly greater in UTI (-/-) 
than in WT mice. Also, UTI (-/-) mice showed a significantly greater increase in the lung 
water content when compared to WT mice following LPS treatment. Lung specimens 
stained with hematoxylin and eosin 24 hours after intratracheal instillation showed that, in 
the presence of LPS, WT mice showed the moderate infiltration of neutrophils, whereas in 
UTI (-/-) mice, LPS treatment led to the marked recruitment of neutrophils and interstitial 
edema. LPS treatment induced a significant elevation of the protein levels of IL-1ǃ, MIP-1ǂ, 
MCP-1, and KC in lung homogenates when compared to vehicle treatment in both 
genotypes; however, in the presence of LPS, the expression was higher in UTI (-/-) than in 
WT mice. Furthermore, immunohistochemical examination showed that, in the presence of 
LPS, immunoreactive 8-hydroxy-2’-deoxyguanosine was detected in the lungs of both 
genotypes of mice, but the staining was more prominent in UTI (-/-) than in WT mice. In 
addition, immunoreactive nitrotyrosine was strongly detected only in UTI (-/-) mice 
challenged with LPS. Quantitative gene expression analyses of lung homogenates after 
intratracheal challenge showed that, compared to vehicle treatment, LPS treatment resulted 
in a significant elevation of gene expression for iNOS in both genotypes of mice; however, in 
the presence of LPS, the expression was higher in UTI (-/-) than in WT mice. These results 
indicate that UTI also protects against acute lung inflammation induced by the intratracheal 
administration of LPS, at least in part, via the local suppression of proinflammatory 
cytokines [67] and oxidative stress [68], suggesting that UTI may be a therapeutical tool for 
acute lung injury in humans. 

4.4 Protective role of UTI in acute liver inflammation   
One study has shown that plasma UTI levels increase in patients with acute hepatitis and 
markedly decrease in those with fulminant hepatitis, suggesting that the plasma UTI level is 
closely linked to the severity of liver damage [69]. Further, the plasma UTI level is reportedly 
correlated with the degree of liver damage in patients with chronic liver diseases such as liver 
cirrhosis and hepatocellular carcinoma [70]. In a liver inflammation and coagulatory 
disturbance model induced by LPS (3μg/kg) and D-galactosamine (800 mg/kg: LPS/D-GalN), 
LPS/D-GalN treatment caused severe liver injury characterized by neutrophilic inflammation, 
hemorrhagic change, necrosis, and apoptosis, which was more prominent in UTI (-/-) than in 
WT mice [71]. In both genotypes of mice, interestingly, LPS/D-GalN challenge caused 
elevations of aspartate amino-transferase and alanine amino-transferase, prolongation of the 
prothrombin and activated partial thromboplastin time, and decreases in fibrinogen and 
platelet counts, as compared with vehicle challenge. These changes, however, were 
significantly greater in UTI (-/-) than in WT mice. Circulatory levels of TNF-ǂ and interferon 
(IFN)-Ǆ were also greater in UTI (-/-) than in WT mice after LPS/D-GalN challenge. These 
results suggest that UTI protects against severe liver injury and subsequent coagulatory 
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disturbance induced by LPS/D-GalN, which was mediated, at least partly, through the 
suppression of TNF-ǂ production along with its anti-protease activity [71]. Furthermore, after 
LPS/D-GalN challenge, protein levels of IL-1ǃ, TNF-ǂ, IFN-Ǆ, MIP-1ǂ, and MCP-1 in the lung 
homogenates were elevated in both genotypes, but to a greater extent in UTI (-/-) than in WT 
mice. The IFN-Ǆ level was also significantly greater in LPS/D-GalN-challenged UTI (-/-) than 
in other mice. These results indicate that UTI protects against the local inflammatory response 
accompanied by severe liver injury, which supports its anti-inflammatory properties in vivo 
[72], implicating a therapeutic potential of UTI in fulminant hepatitis in humans. In this 
regard, Nobuoka and colleagues have recently implicated UTI in normal liver regeneration 
using UTI (-/-) mice via the regulation of systemic (serum) levels of cytokines such as IL-6 and 
IL-10 and chemokines such as MCP-1 and MIP-1ǂ [73].  

5. Concluding remarks 

As described above, UTI protects against endotoxin-related inflammatory diseases’ 
pathology and subsequent organ damage induced by LPS in mice, at least partly, via the 
regulation of neutrophil-derived proteases such as elastase, proinflammatory cytokines and 
chemokines such as IL-1͊, MIP-1͉, MCP-1, and KC and oxidative stress (Fig. 2). Our  
 

 

Fig. 2. Schematic representation of the protective role of UTI against endotoxin-related 
inflammation in mice. Our data suggest that UTI protects against: 1) endothelial 
activation/damage, 2) proinflammatory cytokine and chemokine production/release, 3) 
fibrinogen synthesis, 4) neutrophil recruitment into organs, and/or 5) organ injury. 
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consecutive in vivo results provide direct and novel molecular evidence for the “rescue” 
therapeutic potential of UTI against endotoxin-related inflammatory diseases such as DIC, 
acute lung injury, and acute liver injury. 
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