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1. Introduction

Measurement of the proliferative behaviors of cells in vitro is important to many biomedical
applications ranging from basic biological research to advanced applications, such as drug
discovery, stem cell manufacturing, and tissue engineering. Critical to such measurement is
accurate identification and localization of mitosis, which is the process whereby a eukaryotic
cell separates the chromosomes in its cell nucleus into two identical sets in two daughter
nuclei. In the early years, it is possible to manually identify incidents of mitosis because
mitotic cells in culture tend to retract, round up, and exhibit intensified surrounding halos
under phase contrast illumination (Fig.1) for short-period, small-scale studies. Recently,
many cell proliferation assays have been developed for high throughput cell imaging and

analysis. Especially, phase contrast microscopy is a superior imaging modality because it
enables continuous monitoring of live cells without requiring destructive methods of cell
manipulation, such as cell lysis and staining. Consequently, the need for extended-time
observation and the proliferation of high-throughput imaging have made automated image
analysis mandatory.

The state-of-the-art mitosis detection methods can be categorized into three classes,
tracking-based, tracking-free, and hybrid approaches. Tracking-based approaches rely on
cell tracking to determine individual cell trajectories, and then identify mitosis based on
the temporal progression of cell features along their trajectories (Al-Kofahi et al., 2006; Bise
et al., 2009; Debeir et al., 2005). The dependency on cell tracking is a severe burden because
tracking per se is a challenging task. Tracking-free approaches alleviate this burden and can
detect mitosis directly in an image sequence. One representative technique was proposed
by Li et al (Li, Kanade, Chen, Miller & Campbell, 2008), which applies a cascade classifier
to classify volumetric sliding windows of an image sequence with 3D Haar-like features.
Major drawbacks of this approach include the requirement of a large amount of training
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Fig. 1. Mitosis Sample. All the frames in one mitosis sequence are concatenated into one
figure to show the visual pattern transition. One mitosis sequence can be visually divided
into three stages, before mitosis, during mitosis, and after mitosis. Especially, all mitotic
regions within the stage of during mitosis appear like 8 shape.

data and the lack of location specificity of detection. Hybrid approaches aim to construct a
self-contained solution by leveraging the advantages of the previous two methods. These
approaches typically consist of candidate sequence detection, sequence feature extraction,
and classification as consecutive steps. To detect mitosis candidates, earlier methods (Eccles
& Klevecz, 1986) apply thresholding and morphological filtering to extract bright halos
surrounding potentially mitotic cells in each image, and then group the extracted regions in
successive images based on their spatial relationship. Subsequently, to identify mitosis, Eccles
et al (Eccles & Klevecz, 1986) employed a ring shape detector to locate the mother and two
daughter cells; Gallardo et al (Gallardo et al., 2004) adopted a hidden Markov model to classify

candidates based on temporal patterns of cell shape and appearance features; Liang et al
(Liang et al., 2007) utilized conditional random field model to identify mitosis with shape and
texture features in the mitotic regions. However, these methods can only recognize mitosis
event without precise spatial and temporal localization during cell proliferation because of
the lack of the ability to analyze the latent structure of mitosis progression.

Different from previous work simultaneously identifying and localizing mitosis event, we
divided the problem of mitosis event detection into two sub-tasks: 1) mitosis identification:
identifying the visual pattern transition from 0 shape mother cell to 8 shape mother cell and
finally to two separate daughter cells in Fig.1; 2) mitosis localization: localizing the starting
point, the first 8 shape pattern, and ending point, the last 8 shape pattern, during mitosis
progression in Fig. 1. The proposed framework follows the spirit of the hybrid approach. It
takes a phase contrast microscopy image sequence as input, and automatically pinpoints the
time point at which mitosis occurs. First, model-based microscopy image preconditioning
(Li & Kanade, 2009) and volumetric segmentation are utilized to extract spatiotemporal
sub-regions in the input image sequence where mitosis potentially occurred. Then, a hidden
conditional random field classifier (Quattoni et al., 2007) is applied for mitosis identification.
By making significant extension on our previous work on mitosis sequence identification
(Liu et al., 2010a;b), a conditional random field model (Lafferty et al., 2001) is implemented

for mitosis localization. The first two stages jointly optimize the recall and precision for
mitosis identification while the third stage pinpoints the time point at which mitosis occurs,
minimizing the mean error and standard deviation of mitosis location. The superiority
lies in three aspects: 1) nonnegative mixed-norm preconditioning method can avoid over
segmentation and ad hoc image processing; 2) volumetric region grow method can avoid the
explicit cell tracking; 3) latent contextual information can be discovered by hidden conditional
random field and conditional random field classifiers for both sub-tasks. Consequently the
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proposed framework has high generalization ability and can be straightforwardly adapted to
different cell types.

The rest of the paper is structured as follows. In Section 2, we introduce the hierarchical
framework for mitosis event detection. Then, the experimental methods and results are
respectively detailed in Section 3 and 4. At last, the conclusion and future work are presented.

2. Mitosis detection framework

As shown in Fig.2, the proposed hierarchical framework for mitosis event detection consists
of three steps: Mitosis Candidate Extraction, Mitosis Identification, and Mitosis Localization. We

will present the technical details of each step in the subsequent sections.

Fig. 2. Mitosis detection framework
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Fig. 3. Outputs by the key steps of the proposed framework. (a) Original image sequence; (b)
Outputs of image preconditioning; (c) Outputs of mitosis candidate extraction; (d) Outputs
of mitosis identification; (e) Outputs of mitosis localization.

2.1 Mitosis candidate extraction

This step serves the purposes of eliminating "easily" negative regions in the image sequence
where mitosis is unlikely to occur and extracting temporally continuous sub-sequences with

potential mitosis to facilitate subsequent sequence classification. The algorithm consists of
two sub-steps, image preconditioning and sequence segmentation.

2.1.1 Image preconditioning

Image segmentation in microscopy, especially in non-fluorescence optical microscopy
modalities, is notoriously challenging due to inherent optical artifacts. Rather than treating
phase contrast microscopy images as general natural images and rushing into the image
processing warehouse for solutions, we study the properties of phase contrast optics to model
its image formation process. Li et al’s research revealed that the phase contrast imaging
system can be relatively well explained by a linear imaging model (Li, 2009; Li & Kanade,
2009; Yin et al., 2010). With this model, a quadratic optimization function with sparseness
and smoothness regularizations can be formulated to enhance cell regions and transforms the
original image into an ideal image with zero background and nonzero foreground regions
that correspond to potential mitotic cells as shown in Fig.3.(b). The detailed method contains
following two steps.

(a) Algebraic image model

The generic model for microscopy images consists of three components: 1) an imaging model
h(·) that represents the image formation process of the microscope; 2) an additive bias b(x, y)
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that compensates for a nonzero background level, nonuniform illumination, and spatial
sensitivity variations of the detector; and 3) a noise model n(·) that accounts for imaging
and detection noise. The model can be written as:

g(x, y) = n(h( f (x, y)) + b(x, y)), (1)

with g(x, y) being the observed image, and f (x, y) being the ideal object image that we want to
retrieve, which could represent the optical path length distribution in the object, fluorescence
intensities, or an phenomenological image that simply facilitates object segmentation. Under
the assumption of additive noise, the model above can be expressed succinctly in a linear
algebraic framework, given by

g = H f + b + n ≈ H f + constant, (2)

where g denotes a vectoried representation of the observed image, which is formed by
concatenating the image pixels in raster order. The vectors f , b, n are defined likewise for
the object, bias, and noise, respectively. The imaging model is expressed as a matrix-vector
multiplication between the N × N transfer matrix H and f , which is adequate for representing
a wide range of microscopy image formation processes. Depending on the physics of phase
contrast microscopy, we choose the image formation model, H, defined by an effective point
spread function (or EPSF) in (Li, 2009):

EPSF(x, y) ∝ δ(x, y)− (αe−(x2+y2)/σ2
1 − βe−(x2+y2)/σ2

2 ) (3)

where δ(·) is a Dirac delta function, and α, β are scaling factors. The EPSF approximates the

imaging function of phase contrast optics, which accounts for the formation of halo effects
around imaged cells.

(b) Nonnegative mixed-norm preconditioning

With the image model specified in Eq.2 and the assumption of additive noise, we need to
compute the ideal object image f given an observed image g. This inverse problem can be
tackled through a two-step process. Then an observed image which is unfriendly for computer

analysis can be transformed into the one that facilitates automated object segmentation and
measurement.

a.Bias Elimination:As the first step of preconditioning, a bias-corrected image can be obtained

by estimating the bias field from an image. Under the assumption that the bias field is smooth
and spatially slowly varying, it can be modeled as a K-th order polynomial surface:

b = Xp (4)

where p = (p0, p1, p2, . . .)⊤ is the coefficient vector, and X is a matrix of N rows and (K +
1)(K + 2)/2 columns with the i-th row being (1, xi, yi, x2

i , xiyi, y2
i , . . .). To eliminate the bias,

the optimal coefficients can be computed firstly by solving the over-determined linear system
Xp = g. This amounts to solving the least-squares problem p∗ = arg minp ||Xp − g||22, which

has a closed-form solution p∗ = (X⊤X)−1X⊤g. The bias-corrected image is then computed
as g∗ = g − Xp∗ .
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b.Object Reconstruction via Convex Optimization: The second step of preconditioning
reconstructs the object from the bias-corrected image. It is achieved by minimizing:

O( f ) = ||g∗ − H f ||22 + γSmoothness( f ) + βSparsity( f ), s.t. f ≥ 0 (5)

where || · ||2 denotes a L2 norm; the positive coefficients γ and β control the importance; the
first term promotes data fidelity; the second and third terms encourage the spatial smoothness
and sparseness of the reconstructed image, respectively.

By employing an L2 (Tikhonov) smoothness term (Tikhonov, 1977) and a weighted L1
sparseness term (Donoho, 2004), Eq.5 can be transformed into:

O1( f ) = ||g∗ − H f ||22 + γ||R f ||22 + β||W f ||1, s.t. f ≥ 0 (6)

The smoothness term penalizes the L2 norm of the Laplacian of f , where the N × N matrix
R represents an algebraic Laplacian operator with symmetric boundary condition. The
sparseness term penalizes the weighted L1 norm of f , where W is a diagonal matrix with
positive weights w1 . . . wN on the diagonal and zeros elsewhere.

By rewriting O1( f ) in terms of the symmetric positive definite matrix Q = H⊤H + γR⊤R and
the vector l = −H⊤g∗, and letting w denote the weight vector (w1 . . . wN), the minimization
problem can be expressed as the following nonnegative-constrained quadratic program:

f ∗ = arg min
f

1

2
f⊤Q f + (l + βw)⊤ f , s.t. f ≥ 0 (7)

We utilized the simple and efficient iterative algorithm, the sparseness-enhanced
multiplicative update (SEMU) algorithm (Li & Kanade, 2009), to solve the object function
above.

2.1.2 Sequence segmentation

After preconditioning, 3D seeded region growing (Silvela & Portillo, 2001) is applied to
the transformed image sequences to extract spatiotemporal sub-regions that correspond to
candidate mitosis sequences (Fig.3(c)). The algorithm relies on two automatically-determined
thresholds: a seeding threshold computed by Otsu’s optimal thresholding algorithm (Otsu,
1979)is used to detect seeds; and a lower threshold determined by Rosin’s unimodal
thresholding algorithm (Rosin, 2001) is used as the stopping criterion of region growing.

2.2 Mitosis identification

With the extracted candidate mitosis sequences, the goal of mitosis identification is to classify
the candidate mitosis sequences detected in the previous step as mitosis or not as shown
in Fig.3(d). To take advantages of the spatiotemporal context and the flexible constellation

of latent structure during mitosis progression, the hidden conditional random field (HCRF)
classifier is utilized to model the visual pattern transition shown in Fig.1.

HCRF is a powerful discriminative model for temporal inference (Quattoni et al., 2007).

Comparing to generative models, like Hidden Markov Models (HMMs) (Rabiner, 1989),
HCRF does not assume observations are independent of each other and therefore can
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incorporate long range dependencies for inference. On the other hand, different from other
discriminative models, like Conditional Random Fields(CRFs) (Lafferty et al., 2001), HCRF
use intermediate hidden variables to model the latent structure of the input domain and
can infer a single label for the entire input sequence with the training data not explicitly
labeled. Therefore, several literatures show that HCRF always outperforms HMMs and CRFs
(Gunawardana et al., 2005; Quattoni et al., 2007; Wang et al., 2006).

Mitosis identification can be formulated as the problem of predicting a label y given an
observation sequence X ≡ {xt}

T
t=1, where xt denotes the feature descriptor of the t-th

frame in the observation sequence and y is a member of a sequence-wise label set Y ≡
(Mitosis, Non − mitosis). HCRF model also consists of a vector of hidden variables h ≡
{ht}

T
t=1 where ht ∈ H captures the latent structure of the input domain and H is the set

of potential hidden states. A graphical representation of the HCRF model G = (V, E) where
V denotes the vertex set and E denotes the edge set, is shown in Fig.4 (a).

Given the definitions of the sequence-wise label y, the observation sequence X , the hidden
variables h and the model parameters θ, the HCRF model can be defined by:

p(y|X , θ) = ∑
h

p(y,h|X , θ) =
1

Z ∑
h

exp(ψ(y,h,X ; θ)) (8)

where Z = ∑y′∈Y,h∈H exp(ψ(y′,h,X ; θ)) is a partition function; ψ(y,h,X ; θ) ∈ R is a
potential function parameterized by θ as:

ψ(y,h,X ; θ) = ∑
j∈V

∑
p∈P1

f1,p(j, y, hj,X)θ1,p + ∑
(j,k)∈E

∑
p∈P2

f2,p(j, k, y, hj, hk ,X)θ2,p (9)

where f1,p and f2,p denote the P1 node feature functions and P2 edge feature functions
respectively; θ1,p, θ2,p are the components of θ, corresponding to node and edge parameters.

For mitosis identification, we define the two kinds of node feature functions, f1,1 and f1,2, as
follows:

f1,1(j, hj ,X) = φ(xj), f1,2(j, hj, y) =

{

1, if hj ∈ H and y is Mitosis,

0, otherwise.
(10)

where φ(xj) is the feature descriptor of frame xj. Correspondingly, θ1,p consists of two parts,
θ1,1 for f1,1 measuring the compatibility between observation xj and hidden state hj , and θ1,2

for f1,2 measuring the compatibility between latent variable hj and segment-wise label y. We
also define the edge feature function as follows:

f2,1(j, k, y, hj , hk,X) =

{

1, if (hj, hk) ∈ T and y is Mitosis,

0, otherwise.
(11)

where T denotes all possible hidden state transitions from hj to hk within a mitosis sequence.
Correspondingly, θ2,1 for f2,1 measures the compatibility between an edge with hidden state
hi and hj and the segment-wise label y.
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Given Tr = {(X1, y1), (X2, y2), . . . , (XN , yN)} be a set of training examples, the model
parameters can be learned by optimizing the objective function (Lafferty et al., 2001):

L(θ) =
N

∑
i=1

log p(yi|Xi, θ)−
1

2σ2
||θ||2 (12)

where N is the total number of training sequences. The first term in Eq.12 is the log-likelihood
of the data; the second term is the log of a Gaussion prior with variance σ2, i.e., p(θ) ∼
exp( 1

2σ2 ||θ||
2). The optimal model parameter θ∗ = arg maxθ L(θ) can be obtained with

gradient ascent algorithm, such as BFGS (Avriel, 2003). Given an unseen test sequence X ,
the best corresponding label y∗ can be computed by

y∗ = arg max
y

p(y|X , θ∗) (13)

Fig. 4. A comparison of graphical structure. (a)HCRF; (b)CRF

2.3 Mitosis localization

Comparing to previous work only focusing on coarse level mitosis localization (Gallardo et al.,
2004; Liang et al., 2007), it is more important to localize the start and end of mitosis event in
spatio-temporal domain which will benefit real-time quantitative analysis of mitotic rate and
the correlation between the mother cell and the daughter cells during cell division (Li, Miller,
Chen, Kanade, Weiss & Campbell, 2008). Different from our previous work only considering
the start and end of mitosis as a spatial visual pattern like 8 shape (Liu et al., 2010b), we
regard mitosis progression as the spatio-temporal visual pattern changes from 0 shape mother
cell to 8 shape cell and finally to two separate daughter cells. Consequently we propose
to model the visual pattern transition between adjacent frames with Conditional Random
Model (CRF), the most notably discriminative model proposed by Lafferty et al(Lafferty et al.,
2001), to localize the start and end of one mitosis event as shown in Fig.3(e). Comparing
to Support Vector Machine (Liu et al., 2010b) using only spatial information for mitotic cell
modeling, CRF can take good advantages of spatio-temporal context to refine the frame-wise
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annotation for accurate mitosis localization. Furthermore, CRF can incorporate long range
dependencies between observations and their labels without the assumption of generative
dynamic Bayesian network models that the observations are independent given the values of
hidden variables.

The task of mitosis localization can be considered as the problem of predicting a sequence of
labels L = {lt}

T
t=1 given an observation sequence X = {xt}

T
t=1 , where lt is a member of a

frame-wise label set L of all possible labels. For one mitosis event, we designate L contains
three members, before mitosis (BM), during mitosis (DM), after mitosis (AM). Therefore, the
first and the last frames of a segment with label DM within one mitosis sequence respectively
correspond to the start and end of mitosis event. CRF is an undirected probabilistic graphical
model (G′ = (V ′, E′)) as shown in Fig.4 (b).

Given the definitions of the frame-wise label sequence L, the observation sequence X , and
the model parameters γ, the CRF model can be mathematically formulated by:

p(L|X , γ) =
1

Z′ exp(ϕ(L,X ; γ)) (14)

where Z′ = ∑L′ exp(ϕ(L′,X ; γ)) is a partition function; ϕ(L,X ; γ) ∈ R is a potential
function parameterized by γ as:

ϕ(L,X ; γ) = ∑
j∈V ′

∑
q∈Q1

f ′1,q(j, lj,X)γ1,q + ∑
(j,k)∈E′

∑
q∈Q2

f ′2,q(j, k, lj, lk,X)γ2,q (15)

where f ′1,q and f ′2,q denote the Q1 node feature functions and Q2 edge feature functions

respectively; γ1,q and γ2,q are the components of γ, corresponding to node and edge
parameters. We define the node feature function as follows:

f ′1,1(j, lj,X) = φ(xj) (16)

where φ(xj) is the feature descriptor of frame xj and γ1,1 for f ′1,1 measures the compatibility
between observation xj and frame-wise label lj. We also define the edge feature function as
follows:

f ′2,1(j, k, lj, lk,X) =

{

1, if (lj, lk) ∈ T ′,

0, otherwise.
(17)

where T ′ denotes all possible state transitions from lj to lk within a mitosis sequence and γ2,1

measures the compatibility between an edge linking label lj and lk and the frame xj and xk.

Given Tr′ = {(X1,L1), (X2,L2), . . . , (XM ,LM )} be a set of training examples, the model
parameters can be learned by optimizing the objective function:

L(γ) =
M

∑
i=1

log p(Li|Xi, γ)−
1

2σ2
||γ||2 (18)

where M is the total number of training sequences. The first term in the objective function is
the log-likelihood. The second term denotes the Gaussian prior with variance σ2. Learning

the parameters of a CRF model is a convex problem so that the global optimality γ∗ =
arg maxγ L(γ) can be guaranteed and obtained with gradient ascent algorithm, such as BFGS
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(Avriel, 2003). Given a testing sequence X , with the optimal model parameters γ∗, the label
L
∗ of the input sequence is

L
∗ = arg max

L
p(L|X , γ∗) (19)

3. Experimental method

3.1 Data

Five phase contrast image sequences of C3H10T1/2 mouse mesenchymal stem cell
populations (American Type Culture Collection, Manassas, VA) were acquired, each
containing 1000 images. The multipotent C3H10T1/2 stem cells serve as a model for the adult
human mesenchymal stem cells that can differentiate into a variety of cell types. The growing
environment consists of Dulbecco’s Modified Eagle’s Media (DMEM; Invitrogen, Carlsbad,
CA), 10% fetal bovine serum (Invitrogen, Carlsbad, CA) and 1% penicillin streptomycin
(PS; Invitrogen, Carlsbad, CA). The cells were observed during growth under a Zeiss
Axiovert 135TV inverted microscope with a 5×, 0.15 N.A. objective and phase contrast optics.
Time-lapse image acquisition was performed every 5 minutes using a 12-bit Qimaging Retiga
EXi Fast 1394 CCD camera at 500ms exposure with a gain of 1.01. Each image consists of
1392×1040 pixels with a resolution of 19 µm/pixel.

3.2 Feature representation

From Fig.1, it is obvious that mitotic regions typically do not have rich features, and their
shapes and appearances are highly irregular and flexible. To represent the feature of each
frame within one mitosis sequence, we computed the GIST descriptor for each frame to
formulate φ(xi). GIST is a well-known visual feature for image classification and can
represent all levels of processing, from low-level features (e.g., color, spatial frequencies)
to intermediate image properties (e.g., surface, volume) and high-level information (e.g.,
objects, activation of semantic knowledge) (Oliva & Torralba, 2001). The superiorities of
GIST for mitotic region description lie in three aspects: 1) GIST representation can bypass
the segmentation of individual objects. Precise cell region segmentation in phase contrast
microscopy is a notoriously difficult problem due to the phenomena of halo or shade-off.
Consequently, shape features, like Histogram of Oriented Gradients (Dalal & Triggs, 2005)
and Shape Context (Belongie et al., 2002), are usually not satisfactory descriptors for this task.
Comparatively, the computation of GIST only uses spectral and coarsely localized information
and therefore formulates a holistic representation of entire image without requirement to
precisely extract edge or boundary in the image; 2) GIST is invariant to scale and rotation.

Mitotic regions usually experience drastic changes in both size and orientation during
mitosis progression. GIST physically represents the dominant spatial structure of an image
including a set of perceptual dimensions, naturalness, openness, roughness, expansion, and
ruggedness. Therefore GIST is a robust descriptor for mitotic regions; 3) GIST is a compact
descriptor. GIST can be formulated from localized energy spectrum (spectrogram) with both
intensity and local structure information. Due to the high dimension and redundancy of
spectrogram, dimensionality reduction of Karhunen-Loeve Transform (KLT) is implemented
on it to formulate a compact representation.
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3.3 Experiments

(a)Mitosis Identification: The proposed model-based microscopy image preconditioning and

sequence segmentation methods are implemented on the original image sequences to extract
mitotic candidate sequences. Then, an HCRF classifier is learned with manually labeled
mitotic and non-mitotic candidate sequences by the previous step for mitosis identification. In
HCRF model, we can incorporate long range dependencies controlled by a sequence window
length w which defines the amount of past and future observations to be used when predicting
the state at time t (w = 0 indicates only the current observation is used). To select the best
window size w, we tuned this parameter and trained the corresponding HCRF classifiers to
compare their performances with Area Under Curve (AUC) of ROC curve. After obtaining the
best window size, we randomly selected one image sequence as training set and tested on the
other four image sequences. Four different outcomes of the mitosis identification algorithm
are examined: 1) true positive (TP): the identified sequence contains one mitosis event; 2)
false positive (FP): the identified sequence does not contain any mitosis event; 3) true negative
(TN): the discarded sequence does not contain any mitosis event; 4) false negative (FN): the
discarded sequence contains mitosis events. Then, Precision (the ratio of TP to TP+FP) and
recall (the ratio of TP to TP+FN), and the F1 score (a harmonic mean of precision and recall) are
used as quantitative metrics for measuring the accuracy of mitosis identification. To evaluate

the performance of the proposed method, it is quantitatively compared with two different
methods: 1) to show the superiority of HCRF for sequence classification, it is compare to CRF
model (Liang et al., 2007) which can not discover the latent structure of the entire sequence
for classification; 2) to validate the advantage of integrating temporal information, it is also
compared to a frame-by-frame classification approach using a support vector machine (SVM)
classifier as we did previously (Liu et al., 2010b).

(b)Mitosis Localization: With the identified mitosis sequences, we manually annotate
the three states, before mitosis, during mitosis, and after mitosis, with label 1, 2, and 3
correspondingly. Then, a CRF classifier is trained for mitosis localization. In CRF model,
we can also incorporate long range dependencies with a sequence window length w′ which
defines the amount of past and future observations to be used when predicting the state
at time t. To select the best window size w′, we tuned this parameter and trained the
corresponding CRF classifiers to compare their performances with Area Under Curve of ROC
curve. After getting the best window size, we selected the same training set for model learning
and tested on the other four image sequences. To evaluate the accuracy of mitosis localization,
we calculated the mean and standard deviation (SD) of the timing error of the start and end
of the state of during mitosis. The timing error is defined as the absolute difference of the
first/last frame with label 2 by the proposed method against the manually-labeled ground
truth.

4. Experimental results

4.1 Mitosis identification

With preconditioning and volumetric region growing, we extracted candidate mitosis
sequences in each input sequence. This step achieved 100% recall with relatively low precision
around 42%. To improve precision, we trained HCRF models with GIST features to refine the
identification results. To optimize the performance of HCRF model, 4 HCRF classifiers were
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learned by varying window size from 0 to 3. From Fig.5, the optimal window size can be set
with 2 (AUC=0.929) by plotting the ROC curve of each model and comparing the AUC values.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ROC of HCRF(GIST)

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

 

 

WindowSize = 0 & AUC = 0.907

WindowSize = 1 & AUC = 0.899

WindowSize = 2 & AUC = 0.929

WindowSize = 3 & AUC = 0.912

Fig. 5. ROC curves of HCRF models with different sequence window sizes from 0 to 3.

Thereafter, the HCRF classifier was trained with GIST feature and window size 2 on the
training set. The ROC curves of the test results on the four test sequences are shown in Fig.6.
By choosing the threshold corresponding to the maximum F score, we identify the mitosis
events in each input sequence. Fig.7 shows the four kinds of samples decided by our method.
From Table 1, we can achieve an average precision of 0.83 and an average recall of o.92 with a
corresponding maximum F score of 0.88.

Sequence No. Precision (%) Recall (%) MaximumF (%)

1 85 95 90
2 83 90 87
3 79 94 86
4 84 90 87

Average 83 92 88

Table 1. Precision and recall of mitosis identification by HCRF

To demonstrate the superiority of HCRF for sequence classification, we compared its
performance to the CRF model trained with fully-labeled sequences. To utilize CRF for
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Fig. 6. ROC of HCRF with GIST feature and window size = 2

mitosis identification, it is first applied to label the full sequence. Then, a candidate sequence
is classified as mitosis if the number of frames assigned with labels 2 (during mitosis) is
greater than a certain threshold. By varying the threshold, we plot the ROC curves to
evaluate the performance of CRF models and obtained the optimal AUC of 0.78. Moreover,
to show the advantage of integrating temporal information, we compare its performance to a
frame-by-frame classification approach using a support vector machine (SVM) classifier. We
implemented a mitotic cell detector using SVM with a radial basis function (RBF) kernel. The
best parameters for the SVM models were selected by cross validation. The detector was

applied independently to each frame of a candidate sequence. Different from the training
strategy of CRF, we labeled the frames during mitosis as positive samples, and the other
frames as negative samples. A candidate sequence is classified as mitosis if the number of
frames assigned to be mitotic exceeds a certain threshold. By varying the threshold, we plot
the ROC curves to evaluate the performance of SVM models and obtained the optimal AUC
of 0.77.

To compare the overall classification performances of HCRF, CRF and SVM trained with GIST
features, we utilize the balanced F score as a complementary metric to AUC. We separately
computed the AUC and the best achievable F score of each sequence with each classifier. From
Table.2, the results indicate that the HCRF classifier consistently outperformed both CRF and
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Fig. 7. Mitosis identification results by HCRF.

SVM, with a best-case performance of 92% AUC and 90% maximum F score when precision
and recall are 85% and 95% respectively.

Sequence No.
AUC (%) Maximum F (%)

HCRF CRF SVM HCRF CRF SVM

1 92 78 77 90 84 80
2 93 73 71 87 83 77
3 91 73 70 86 84 81
4 86 62 55 87 75 80

Table 2. Comparison between HCRF, CRF and SVM

4.2 Mitosis localization

To localize the starting and ending points of mitosis events, we used CRF to label each frame of
the identified mitosis candidates by HCRF. To optimize the performance of CRF model, 4 CRF
classifiers were learned by varying window size from 0 to 3. From Fig.8, the results showed
that the model trained with GIST features and window size 1 outperformed the others with
the best AUC value of 0.933.

The CRF classifier was trained with GIST feature and window size 1 on the training set. The
ROC curves of the test results on the four test sequences are shown in Fig.9. By choosing the
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Fig. 8. ROC curve of CRF models with different sequence window lengths from 0 to 3.
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Fig. 9. ROC of CRF with GIST feature and window size = 1.

threshold corresponding to the maximum F score, we located the starting and ending points
in each input sequence as shown in Fig.10. The experimental result shows that the proposed
method can achieve an average localization error of 1.35 ± 1.46 frames for the start of mitosis
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Fig. 10. Mitosis localization results by CRF. (a) Both starting and ending points are labeled
correctly; (b-c) The starting point is labeled correctly while the ending point is labeled
wrongly; (d-e) The starting point is labeled wrongly while the ending point is labeled
correctly; (f-i) Four cases of locating both starting and ending points wrongly.

event and 1.68 ± 1.73 frames for the end of mitosis event. From Fig.10, it is understandable
that the start point can usually be localized more precisely than the end point because the
appearances and shapes of mitotic cells always change drastically when two daughter cells
separate with each other physically.

5. Conclusion

We propose a hierarchical framework of mitosis event detection for cell populations imaged
with time-lapse phase contrast microscopy. The method consists of three stages: mitosis
candidate extraction, mitosis identification, and mitosis localization, which jointly optimize
recall and precision for mitosis identification and minimize the mean error and standard
deviation of mitosis location. The proposed detection method achieved two kinds of excellent
results in very challenging image sequences of multipolar-shaped C3H10T1/2 mesenchymal
stem cells. For mitosis identification, we can achieve an average precision of 0.83 and a recall
of o.92 with a corresponding maximum F score of 0.88. For mitosis location, the proposed
method can achieve an average localization error of 1.35 ± 1.46 frames for the start of mitosis
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event and 1.68 ± 1.73 frames for the end of mitosis event. Moreover, the proposed method
does not depend on empirical parameters, ad hoc image processing, or cell tracking and
consequently can be straightforwardly adapted to different cell types.

6. Acknowledgement

We would like to thank Prof. Takeo Kanade, Dr. Phil G. Campbell, Dr. Lee E. Weiss,

Dr. Mei Chen, Dr. Eric D. Miller, Dai Fei Elmer Ker, Dr. Sung Eun Eom, Dr. Zhaozheng
Yin, Jiyan Pan, and Ryoma Bise for their helpful discussions. This work was supported
in part by the National Natural Science Foundation of China (61100124, 21106095), Tianjin
Research Program of Application Foundation and Advanced Technology (10JCYBJC25500),
China Postdoctoral Science Foundation (2011M500512), 2010/2011 Innovation Foundation of
Tianjin University.

7. References

Al-Kofahi, O., Radke, R., Goderie, S., Shen, Q., Temple, S. & Roysam, B. (2006). Automated
cell lineage construction: A rapid method to analyze clonal development established
with murine neural progenitor cells, Cell Cycle 5(3): 327–335.

Avriel, M. (2003). Nonlinear Programming: Analysis and Methods, Dover Publishing.
Belongie, S., Malik, J. & Puzicha, J. (2002). Shape matching and object recognition using shape

contexts, IEEE Trans. Pattern Anal. Mach. Intell. pp. 509–522.
Bise, R., Li, K., Eom, S. & Kanade, T. (2009). Reliably tracking partially overlapping neural

stem cells in dic microscopy image sequences, MICCAI Workshop on Optical Tissue
Image Analysis in Microscopy Histopathology and Endoscopy, Vol. 12, pp. 67–77.

Dalal, N. & Triggs, B. (2005). Histograms of oriented gradients for human detection, Proc. 2005
IEEE Int. Conf. Computer Vision and Pattern Recognition (CVPR05), pp. 886–893.

Debeir, O., Ham, P. V., Kiss, R. & Decaestecker, C. (2005). Tracking of migrating cells under
phase-contrast video microscopy with combined mean-shift processes, IEEE Trans.
Med. Imag. 24: 697–711.

Donoho, D. L. (2004). For most large underdetermined systems of linear equations the

minimal l1-norm solution is also the sparsest solution, Comm. Pure Appl. Math
59: 1848–1853.

Eccles, B. A. & Klevecz, R. R. (1986). Automatic digital image analysis for identification
of mitotic cells in synchronous mammalian cell cultures, Anal. Quant. Cytol. Histol.
8: 138–147.

Gallardo, G., Yang, F., Ianzini, F., Mackey, M. & Sonka, M. (2004). Mitotic cell recognition with
hidden Markov models, Proc. SPIE: Medical Imaging, Vol. 5367, pp. 661–668.

Gunawardana, A., Mahajan, M., Acero, A. & Platt, J. C. (2005). Hidden conditional random
fields for phone classification, Proc. Int. Conf. Speech Communication and Technology,
pp. 1117–1120.

Lafferty, J. D., McCallum, A. & Pereira, F. C. N. (2001). Conditional random fields: Probabilistic
models for segmenting and labeling sequence data., ICML’01, pp. 282–289.

Li, K. (2009). Large-Scale Stem Cell Population Tracking in Phase Contrast and DIC Microscopy
Image Sequences, PhD thesis, Carnegie Mellon University, 5000 Forbes Avenue,
Pittsburgh, PA.

371A Hierarchical Framework for Mitosis Detection in Time-Lapse 
Phase Contrast Microscopy Image Sequences of Stem Cell Populations

www.intechopen.com



18 Will-be-set-by-IN-TECH

Li, K. & Kanade, T. (2009). Nonnegative mixed-norm preconditioning for microscopy image
segmentation, Proc. Int. Conf. Information Processing in Med. Imaging, pp. 362–373.

Li, K., Kanade, T., Chen, M., Miller, E. D.and Weiss, L. E. & Campbell, P. G. (2008). Computer
vision tracking of stemness, Proc. IEEE Int. Symp. Biomed. Imaging, pp. 847 – 850.

Li, K., Miller, E., Chen, M., Kanade, T., Weiss, L. & Campbell, P. (2008). Cell population
tracking and lineage construction with spatiotemporal context, Med. Image Anal.
12(5): 546–566.

Liang, L., Zhou, X., Li, F., Wong, S., Huckins, J. & King, R. (2007). Mitosis cell identification
with conditional random fields, Proc. Life Sci. Sys. App. Workshop, pp. 9–12.

Liu, A., Li, K. & Kanade, T. (2010a). Mitosis sequence detection using hidden conditional
random fields, Proc. 7th IEEE International Symposium on Biomedical Imaging: From
Nano to Macro, pp. 580–583.

Liu, A., Li, K. & Kanade, T. (2010b). Spatiotemporal mitosis event detection in time-lapse
phase contrast microscopy image sequences, 2010 IEEE International Conference on
Multimedia and Expo (ICME10), pp. 161–166.

Oliva, A. & Torralba, A. (2001). Modeling the shape of the scene: A holistic representation of
the spatial envelope, Int. J. Comput. Vision. pp. 145–175.

Otsu, N. (1979). A threshold selection method from gray level histograms, IEEE Trans. Syst.,
Man, Cybern. 9: 62–66.

Quattoni, A., Wang, S., Morency, L.-P., Collins, M. & Darrell, T. (2007). Hidden conditional
random fields, IEEE Trans. Pat. Anal. Mach. Intel. 29(10): 1848–1852.

Rabiner, L. R. (1989). A tutorial on hidden markov models and selected applications in speech
recognition, Proceedings of the IEEE, Vol. 77, pp. 257–286.

Rosin, P. L. (2001). Unimodal thresholding, Patt. Recog. 34(11): 2083–2096.
Silvela, J. & Portillo, J. (2001). Breadth-first search and its application to image processing

problems, IEEE. T. Image. Process. 10(8): 1194–1199.
Tikhonov, A.-I. N. (1977). Solutions of Ill Posed Problems (Scripta Series in Mathematics), Vh

Winston.
Wang, S. B., Quattoni, A., Demirdjian, M. D. & Darrell, T. (2006). Hidden conditional random

fields for gesture recognition, Proc. 2006 IEEE Int. Conf. Computer Vision and Pattern
Recognition, pp. 1521–1527.

Yin, Z., Li, K., Kanade, T. & Chen, M. (2010). Understanding the optics to aid microscopy
image segmentation., Proc. International Conference on Medical Image Computing and
Computer Assisted Intervention (MICCAI10), pp. 209–217.

372 Medical Imaging

www.intechopen.com



Medical Imaging

Edited by Dr. Okechukwu Felix Erondu

ISBN 978-953-307-774-1

Hard cover, 412 pages

Publisher InTech

Published online 22, December, 2011

Published in print edition December, 2011

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

What we know about and do with medical imaging has changed rapidly during the past decade, beginning with

the basics, following with the breakthroughs, and moving on to the abstract. This book demonstrates the wider

horizon that has become the mainstay of medical imaging sciences; capturing the concept of medical

diagnosis, digital information management and research. It is an invaluable tool for radiologists and imaging

specialists, physicists and researchers interested in various aspects of imaging.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Anan Liu, Kang Li and Tong Hao (2011). A Hierarchical Framework for Mitosis Detection in Time-Lapse Phase

Contrast Microscopy Image Sequences of Stem Cell Populations, Medical Imaging, Dr. Okechukwu Felix

Erondu (Ed.), ISBN: 978-953-307-774-1, InTech, Available from: http://www.intechopen.com/books/medical-

imaging/a-hierarchical-framework-for-mitosis-detection-in-time-lapse-phase-contrast-microscopy-image-

sequenc



© 2011 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.


